Wireless Communication Systems @CS.NCTU

Lecture 8: Successive Interference Cancellation Instructer: Kate Ching-Ju Lin (林靖茹)

1

Agenda

- Successive Interference Cancellation
- ZigZag decoding

SRN and SNR_{dB}

•
$$
\mathsf{SNR} = \frac{P_{\mathsf{signal}}}{P_{\mathsf{noise}}}
$$

• Unit of power: watt

Logarithmic unit of power: decibel (**dBm**)

$$
P_{\text{dB}} = 10 \log_{10} P
$$
\n
$$
\bullet \text{ SNR}_{\text{dB}} = 10 \log_{10} \left(\frac{P_{\text{signal}}}{P_{\text{noise}}} \right)
$$
\n
$$
= 10 \log_{10} (P_{\text{signal}}) - 10 \log_{10} (P_{\text{noise}})
$$
\n
$$
= P_{\text{signal,dBm}} - P_{\text{noise,dBm}}
$$
\n
$$
= P_{\text{signal,dBm}} - P_{\text{noise,dBm}}
$$

Scenario

Reliably decode when the rate is no larger than capacity $R \le C = \log(1 + \frac{P1}{P_0 + P_1})$ P_2+N_0)

Scenario

Example: $signal = -70$ dBm Interference = -75 dBm $noise = -90$ dBm $SNR \sim = -70 - (-75) = 5 \text{ dB}$

Can still decode if selecting a very low bit-rate

SIC Decoding

- Successive Interference Cancellation (SIC)
	- **1. Decode one** user first in the presence of interference $x'_2 = y/h_2 = x_2 + h_1x_1/h_2 + n/h_2$
	- **2. Re-encode** the recovered data to remove the noise (demodulate x'_{2} and re-modulate it)
	- **3. Subtract** the re-encoded data from the received signal $y' = y - h_2x_2 = h_1x_1+n$
	- 4. Decode the second user $x'_1 = y'_1/h_1$

Capacity Region without SIC

- $y_1 = h_1x_1 + (h_2x_2 + n)$
- $y_2 = h_2x_2 + (h_1x_1 + n)$

$$
R_1 \le \log(1 + \frac{P_1}{P_2 + N_0})
$$

$$
R_2 \le \log(1 + \frac{P_2}{P_1 + N_0})
$$

Maximal sum-rate: point C

- Decoding order: user $1 \rightarrow$ user 2
	- $-I$ If we decode u1 in the presence of interfering u2, and then decode u2
	- $-y_1 = h_1x_1 + (h_2x_2 + n)$
	- $-y_2 = h_2x_2 + n$
		- \rightarrow Get single-user rate
		- \rightarrow Maximal sum-rate: point A

- Decoding order: user $2 \rightarrow$ user 1
	- If we decode u2 in the presence of interfering u1, and then decode u1

• To ensure reliable decoding, the rates (R1, R2) need do satisfy three constraints:

R1 R2 A $\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$ B $\log(1+\frac{P_2}{N})$ *N*⁰) $log(1 + \frac{P_2}{P_1 + P_2})$ $P_1 + N_0$) $log(1 + \frac{P_1}{P_1})$ $P_2 + N_0$) $\log(1 + \frac{P_1}{N})$ *N*⁰) $R_1 + R_2 \leq \log(1 + \frac{P_1 + P_2}{N_0})$ $N_{\rm 0}$) $R_1 \leq \log(1 + \frac{P_1}{N_0})$ $N_{\rm 0}$) $R_2 \leq \log(1 + \frac{P_2}{N_0})$ $N_{\rm 0}$) 10

• User 1 achieves its single-user bound (point B) while user 2 can get a non-zero rate

$$
= R_2^* = \log(1 + \frac{P_1 + P_2}{N_0}) - \log(1 + \frac{P_1}{N_0}) = \log(1 + \frac{P_2}{P_1 + N_0})
$$

⎻ Namely, decode u2 in the presence of interfering u1

• Segment AB contains all the optimal sum-rate, and can be achieved via time-sharing

⎻ Pareto optimal

Decoding Order

- If the goal is to maximize the sum-rate, any point on AB is equally fine
- If we want to ensure max-min fairness such that the weak user get its best possible rate - Decode the stronger user first
- To minimize the total transmit power or increase the capacity in an interferencelimited system

⎻ Decode the stronger user first

With SIC,

the near-far problem (SNR2 < SNR1) becomes an advantage

 \rightarrow a far user now becomes decodable if SNR2 << SNR1

SIC for Multiple Users

 $y = h_1x_1 + h_2x_2 + ... + h_Nx_N + n$

- Repeat the following procedure iteratively
	- 1. Decode any user $x_i = y/h_i$
	- 2. Re-encode x_i (demodulate and re-modulate)
	- 3. Subtract the re-encoded signal from y
- The user decoded earlier is interfered by more users

Use SIC in MIMO Decoding

- Standard Zero Forcing (ZF) decoding
	- ⎻ SNR reduction due to channel correlation $SNR_{ZF} = SNR_{\text{oria}} * \sin^2(\theta)$
	- In 2x2 system, both streams suffer from SNR reduction if they are both decoded using ZF
- Combine ZF with SIC
	- ⎻ 2x2 example
	- $-$ Decode $x₂$ using ZF
	- $-$ Decode x_1 using SIC

Decode x₂ Using ZF

orthogonal vectors
\n
$$
\begin{aligned}\n&\text{orthogonal vectors} \\
&+ \underline{\int_{y_2}^{y_1} y_2} = \underline{\begin{pmatrix} h_{11} \\ h_{21} \end{pmatrix} x_1} + \underline{\begin{pmatrix} h_{12} \\ h_{22} \end{pmatrix} x_2} + \underline{\begin{pmatrix} n_1 \\ n_2 \end{pmatrix}} \quad *h_{21} \\
&y_1 h_{21} - y_2 h_{11} = (h_{12} h_{21} - h_{22} h_{11}) x_2 + n' \\
&x_2' = \frac{y_1 h_{21} - y_2 h_{11}}{h_{12} h_{21} - h_{22} h_{11}} \\
&= x_2 + \frac{n'}{h_{12} h_{21} - h_{22} h_{11}} \\
&= x_2 + \frac{n'}{\overrightarrow{h_2} \cdot \overrightarrow{h_1}^{\perp}}\n\end{aligned}
$$

8

Decode x₁ Using SIC

$$
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} h_{11} \\ h_{21} \end{pmatrix} x_1 + \begin{pmatrix} h_{12} \\ h_{22} \end{pmatrix} x_2 + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}
$$

- Re-encode x_2
- Removing x_2 and we get

$$
y_1 = h_{11}x_1 + n_1
$$

$$
y_2 = h_{21}x_1 + n_2
$$

• Use traditional SISO decoder

$$
x_1 = \frac{y_1}{h_{11}}
$$
 or $x_1 = \frac{y_2}{h_{21}}$

ZF-SIC Decoding

- Combine ZF with SIC to improve SNR
	- ⎻ Decode one stream and subtract it from the received signal
	- Repeat until all the streams are recovered
	- $-$ Example: after decoding x_2 , we have $y_1 = h_1x_1+n_1$ \rightarrow decode x_1 using standard SISO decoder
- Why it achieves a higher SNR?
	- ⎻ The streams recovered after SIC can be projected to a smaller subspace \rightarrow lower SNR reduction
	- $-$ In the 2x2 example, x_1 can be decoded as usual without $ZF \rightarrow$ no SNR reduction (though x2 still experience SNR loss)

Wireless Communication Systems @CS.NCTU

Lecture 8: Successive Interference Cancellation ZigZag Decoding (SIGCOMM'08)

Lecturer: Kate Ching-Ju Lin (林靖茹)

Hidden Terminal

• Two nodes hidden to each other transmit at the same time, leading to collision

ZigZag

Exploits 802.11's behavior

- Retransmissions
	- \rightarrow Same packets collide again
- Senders use random jitters
	- \rightarrow Collisions start with interference-free bits

How does ZigZag Work?

∆1 ≠∆2

• Find a chunk that is interference free in one collision and has interference in the other

How does ZigZag Work? ✔1 1 \leftarrow Δ 1 Δ 2

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

How does ZigZag Work?

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

How does ZigZag Work?

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

How does ZigZag Work? ✔1 3 5 7 6 6 4 2 Δ 1 Δ 2

- Find a chunk that is interference free in one collision and has interference in the other
- Decode the interference-free chunk and subtract it from the other collision

Practical Issues

- How does the receiver know it is a collision and where they start?
- What if the channel has changes in the second collision?
- How to deal with error propagation?

Detecting Collisions

- Preamble correlation
	- ⎻ Detect collision and the offset value ∆
	- ⎻ Work despite interference because correlation with an independent signal (random data samples) is zero

Signal Subtraction

- Channel's attenuation or phase may change between collisions
- Can't simply subtract a chunk across collisions
- Subtract as conventional SIC
	- ⎻ **Decode** chunk in one collision into bits
	- ⎻ Demodulate and **re-modulate** bits to get channelfree signal
	- ⎻ Apply the **channel learned from the other collision** to encode the signal
	- ⎻ **Subtract** it!

What if decoding errors happen?

- Error can propagate across chunks
- Cannot completely avoid the problem, but can reduce this probability via leveraging **time diversity**

⎻ Get two independent decodings: forward and backward

When will ZigZag Fail?

- The offsets in the two collisions happen to be the same
- A packet is sent at different bit-rates (modulation and coding schemes) in the two collisions
- Packets are modulated with OFDM
	- ⎻ Symbols cannot be reliably converted the frequency domain when the colliding packets are not aligned in the symbol level
	- ⎻ Lead to **inter-symbol interference**

Wireless Communication Systems @CS.NCTU

Lecture 8: Successive Interference Cancellation

Symphony: Cooperative Packet Recovery over the Wired Backbone(MOBICOM'13)

Lecturer: Kate Ching-Ju Lin (林靖茹)

Basic Ideas

- Allow multiple APs to cooperatively recover their collided packets
- Exchange decoded bits via the wired backbone
- Leverage the property that not all the APs will hear the same set of packets
	- An AP hears an interference-free packet can initiate SIC decoding

Example

- Clients
	- ⎻ In T1, four nodes transmit
	- ⎻ In T2, C and D retransmit

• APs

- 1. AP1 decodes the interferencefree packet from D in T2
- 2. AP1 forwards the bits of D to AP2 s.t. it can uses SIC to recover C in T2 via SIC
- 3. AP1 uses SIC to subtract D in T1 and decode A
- 4. AP1 forwards the bits of A to AP2 s.t. it can recover B in T1

Example

- Deliver 4 packets in two slots
- TDMA: need 4 slots

Challenges

- Determine the decoding order so as to minimize the amount of traffic forwarded via the wired backbone
- Specify which clients should transmit in which time slots so as to maximize the number of transmissions
- Deal with imperfect time synchronization among APs and the latency over the backbone

Wireless Communication Systems @CS.NCTU

Lecture 5: Multi-User MIMO (MU-MIMO) Interference Alignment and Cancellation (SIGCOMM'09) Lecturer: Kate Ching-Ju Lin (林靖茹)

Naïve Cooperative MIMO

- Say we combine two 2-antnena APs as a 4– antenna virtual AP
- Naïve solution:
	- ⎻ Connect the two APs to a server via Ethernet
	- ⎻ Each physical AP sends every received raw signal (complex values) to the server over Ethernet

Naïve Cooperative MIMO

\blacksquare Impractical overhead: \blacksquare

For example, a 3 or 4-antenna system needs 10's of Gb/s

- Naïve solution:
	- ⎻ Connect the two APs to a server via Ethernet
	- ⎻ Each physical AP sends every received raw signal (complex values) to the server over Ethernet

How to Minimize Ethernet Overhead?

- High-level idea:
	- 1. Decode some packets in certain AP
	- 2. Forward the decoded packets through the Ethernet to other APs
	- 3. Other APs decode the remaining packets
	- 4. Repeat 1-3 until all packets are recovered

How to Minimize Ethernet Overhead?

- Advantage:
	- ⎻ The size of data packets is much smaller than the size of raw samples \rightarrow minimize overhead
- Challenge:
	- ⎻ In theory, an N-antenna AP cannot recover M concurrent transmissions if M>N
	- ⎻ How can an N-antenna AP recover its packet from M concurrent transmissions (M>N)? à **Interference Alignment and Cancellation**

Interference Alignment and Cancellation

- Align p_3 with p_2 at AP1
- AP1 broadcasts p_1 on Ethernet
- AP2 subtracts/cancels $p_1 \rightarrow$ decodes p_2 , p_3

Interference Alignment and Cancellation

Only forward 1 data packet through the Ethernet!

How to Align?

1. Learn the direction we need to align $-$ Client 2 aligns p_3 along (h_{21}, h_{22}) at AP1

How to Align?

- 2. Precode p_3 by (w_1, w_2)
- 3. AP2 receives p_3 along the direction $(w_1h_{31}+w_2h_{41}, w_1h_{32}+w_2h_{42})$

How to Align?

4. Since AP1 tries to decode p_1 , we align the interference p_3 along the direction of p_2 \rightarrow Let (w₁h₃₁+w₂h₄₁)/(w₁h₃₂+w₂h₄₂)=h₂₁/h₂₂

> Infinite number of solution? No! **power constraint** w_1^2 +w₂^{2=P}max

How to Remove Interference?

- For example, how can AP2 remove the interference from p_1 ?
- Cannot just subtract the bits of p_1 from the received packet
	- ⎻ Should subtract interference signals as received by AP2
- \cdot How? \rightarrow Similar to SIC
	- $-$ AP2 re-modulates p_1 's bits
	- ⎻ AP2 estimate the channel from client 1 to AP2 and apply the learned channel on the remodulated signals of p_1
	- \sim Subtract it from the received signal y \sim

How to Generalize to M-Antenna MIMO?

Theorem

In a M- antenna MIMO system, IAC delivers

- *2M concurrent packets on uplink*
- *max{2M-2, 3M/2} concurrent packets on downlink*

e.g., M=2 antennas 4 packets on uplink 3 packets on downlink

See the paper for the details!