Wireless Communication Systems @CS.NCTU

Lecture 6: Multiple-Input Multiple-Output (MIMO) Instructor: Kate Ching-Ju Lin (林靖茹)

Agenda

- Channel model
- MIMO decoding
- Degrees of freedom
- Multiplexing and Diversity

MIMO

- Each node has multiple antennas
	- Capable of transmitting (receiving) multiple streams concurrently
	- ⎻ Exploit antenna diversity to increase the capacity

$$
\mathbf{H}_{N \times M} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}
$$

N: number of antennas at Rx M: number of antennas at Tx H_{ii} : channel from the j-th Tx antenna to the i-th Rx antenna

Channel Model (2x2)

• Say a 2-antenna transmitter sends 2 streams simultaneously to a 2-antenna receiver

Equations
\n
$$
y_1 = h_{11}x_1 + h_{12}x_2 + n_1
$$

\n $y_2 = h_{21}x_1 + h_{22}x_2 + n_2$
\n
$$
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}
$$

MIMO (MxN)

• An M-antenna Tx sends to an N-antenna Rx

Antenna Space (2x2, 3x3)

N-antenna node receives in N-dimensional space

Agenda

- Channel model
- MIMO decoding
- Degrees of freedom
- Multiplexing and Diversity

Zero-Forcing (ZF) Decoding

• Decode x_1 orthogonal vectors $|?|$ $\int y_1$ ◆ $\binom{h_{11}}{h_{21}}$ $\binom{h_{12}}{h_{22}}$ $\sqrt{n_1}$ ◆ $* h_{22}$ = $x_1 +$ $x_2 +$ *y*2 $n₂$ + $\binom{y_2}{x_1}$ $\binom{h_{21}}{x_2}$ $\binom{h_{22}}{x_1}$ $\binom{h_{22}}{x_1}$ $\binom{h_{21}}{x_2}$

$$
y_1h_{22} - y_2h_{12} = (h_{11}h_{22} - h_{21}h_{12})x_1 + n'
$$

$$
x'_1 = \frac{y_1h_{22} - y_2h_{12}}{h_{11}h_{22} - h_{21}h_{12}}
$$

$$
= x_1 + \frac{n'}{h_{11}h_{22} - h_{21}h_{12}}
$$

$$
= x_1 + \frac{n'}{\overline{h}_1 \cdot \overline{h}_2^{\perp}}
$$

Zero-Forcing (ZF) Decoding

• **Decode x₂**
\n•
$$
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} h_{11} \\ h_{21} \end{pmatrix} x_1 + \begin{pmatrix} h_{12} \\ h_{22} \end{pmatrix} x_2 + \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} * h_{21}
$$
\n• h_{11} \n
$$
y_1 h_{21} - y_2 h_{11} = (h_{12} h_{21} - h_{22} h_{11}) x_2 + n'
$$

$$
x'_2 = \frac{y_1 h_{21} - y_2 h_{11}}{h_{12} h_{21} - h_{22} h_{11}}
$$

= $x_2 + \frac{n'}{h_{12} h_{21} - h_{22} h_{11}}$
= $x_2 + \frac{n'}{\vec{h}_2 \cdot \vec{h}_1^{\perp}}$

ZF Decoding (antenna space)

- \bullet To decode x_1 , project the received signal y onto the interference-free direction $\mathsf{h}_2\text{-}$
- \bullet To decode x_2 , project the received signal y onto the interference-free direction h_1 [⊥]
- SNR reduces if the channels h_1 and h_2 are correlated, i.e., not perfect orthogonal $(h_1 \cdot h_2=0)$

SNR Loss due to ZF Detection

$$
\vec{h}_2 = (h_{12}, h_{22})
$$
\n
$$
\vec{h}_2 = (h_{12}, h_{22})
$$
\n
$$
\vec{h}_1 = (h_{11}, h_{21})
$$
\n
$$
\vec{h}_2 = (y_1, y_2)
$$
\n
$$
\vec{h}_2 = (y_1, y_2)
$$
\n
$$
\vec{h}_1 = (h_{11}, h_{21})
$$
\n
$$
\vec{h}_1 = (h_{
$$

• The more correlated the channels (the smaller angles), the larger SNR reduction

When will MIMO Fail?

• In the worst case, SNR might drop down to 0 if the channels are strongly correlated to each other, e.g., h_1/\hbar_2 in the 2x2 MIMO

- To ensure channel independency, should guarantee the full rank of H
	- ⎻ Antenna spacing at the transmitter and receiver must exceed half of the wavelength

ZF Decoding – General Eq.

• For a N x M MIMO system,

 $y = Hx + n$

• To solve **x**, find a decoder **W** satisfying the constraint

 $\mathbf{W}\mathbf{H}=\mathbf{I}, \text{ then } \mathbf{x}'=\mathbf{W}\mathbf{y}=\mathbf{x}+\mathbf{W}\mathbf{n}$

 \rightarrow **W** is the pseudo inverse of **H** $\mathbf{W} = (\mathbf{H}^* \mathbf{H})^{-1} \mathbf{H}^*$

ZF-SIC Decoding

- Combine ZF with SIC to improve SNR
	- ⎻ Decode one stream and subtract it from the received signal
	- Repeat until all the streams are recovered
	- $-$ Example: after decoding x_2 , we have $y_1 = h_1x_1+n_1$ \rightarrow decode x_1 using standard SISO decoder
- Why it achieves a higher SNR?
	- ⎻ The streams recovered after SIC can be projected to a smaller subspace \rightarrow lower SNR reduction
	- $-$ In the 2x2 example, x_1 can be decoded as usual without $ZF \rightarrow$ no SNR reduction (though x2 still experience SNR loss)

Other Detection Schemes

- Maximum-Likelihood (ML) decoding
	- Measure the distance between the received signal and all the possible symbol vectors
	- ⎻ Optimal Decoding
	- ⎻ High complexity (exhaustive search)
- Minimum Mean Square Error (MMSE) decoding
	- ⎻ Minimize the mean square error
	- ⎻ Bayesian approach: conditional expectation of **x** given the known observed value of the measurements
- ML-SIC, MMSE-SIC

Channel Estimation

• Estimate N x M matrix H

$$
y_1 = \boxed{h_{11}x_1 + h_{12}x_2 + n_1}
$$

$$
y_2 = \boxed{h_{21}x_1 + h_{22}x_2 + n_2}
$$

Two equations, but four unknowns

Agenda

- Channel model
- MIMO decoding
- Degrees of freedom
- Multiplexing and Diversity

Degree of Freedom

For N x M MIMO channel

- Degree of Freedom (DoF): min {N,M} ⎻ Can transmit at most DoF streams
- Maximum diversity: NM
	- There exist NM paths among Tx and Rx

MIMO Gains

- Multiplex Gain
	- Exploit DoF to deliver multiple streams concurrently
- Diversity Gain
	- Exploit path diversity to increase the SNR of a single stream
	- Receive diversity and transmit diversity

Multiplexing-Diversity Tradeoff

- Tradeoff between the diversity gain and the multiplex gain
- Say we have a N x N system
	- ⎻ Degree of freedom: N
	- ⎻ The transmitter can send k streams concurrently, where $k \leq N$
	- If k < N, leverage partial multiplexing gains, while each stream gets some diversity
	- The optimal value of k maximizing the capacity should be determined by the tradeoff between the diversity gain and multiplex gain

Agenda

- Channel model
- MIMO decoding
- Degrees of freedom
- Multiplexing and Diversity

Receive Diversity

• 1 x 2 example

$$
y_1 = h_1 x + n_1 \n y_2 = h_2 x + n_2
$$

- ⎻ Uncorrelated whit Gaussian noise with zero mean
- Packet can be delivered through at least one of the many diverse paths

Theoretical SNR of Receive Diversity

• 1 x 2 example

Maximal Ratio Combining (MRC)

- Extract receive diversity via MRC decoding
- Multiply each **y** with the conjugate of the channel

$$
y_1 = h_1 x + n_1 \implies h_1^* y_1 = |h_1|^2 x + h_1^* n_1
$$

$$
y_2 = h_2 x + n_2 \implies h_2^* y_2 = |h_2|^2 x + h_2^* n_2
$$

• Combine two signals constructively

$$
h_1^*y_1 + h_2^*y_2 = (|h_1|^2 + |h_2|^2)x + (h_1^* + h_2^*)n
$$

• Decode using the standard SISO decoder

$$
x' = \frac{h_1^* y_1 + h_2^* y_2}{(|h_1|^2 + |h_2|^2)} + n'
$$

Achievable SNR of MRC

$$
h_1^*y_1 + h_2^*y_2 = (|h_1|^2 + |h_2|^2)x + (h_1^* + h_2^*)n
$$

$$
\begin{aligned}\n\text{SNR}_{\text{MRC}} &= \frac{E[((|h_1|^2 + |h_2|^2)X)^2]}{(h_1^* + h_2^*)^2 n^2} \quad \text{SNR}_{\text{single}} = \frac{E[|h_1|^2 X^2]}{n^2} \\
&= \frac{(|h_1|^2 + |h_2|^2)^2 E[X^2]}{(|h_1|^2 + |h_2|^2) \sigma^2} = \frac{|h_1|^2 E[X^2]}{\sigma^2} \\
&= \frac{(|h_1|^2 + |h_2|^2) E[X^2]}{\sigma^2}\n\end{aligned}
$$

• gain =
$$
\frac{|h_1|^2 + |h_2|^2}{|h_1|^2}
$$

•
$$
\sim 2x \text{ gain if } |h_1| \sim |h_2|
$$

Transmit Diversity

- Signals go through two diverse paths
- Theoretical SNR gain: similar to receive diversity
- How to extract the SNR gain?
	- Simply transmit from two antennas simultaneous? ?
	- $-$ No! Again, h₁ and h₂ might be destructive

Transmit Diversity: Repetitive Code

- Deliver a symbol twice in two consecutive time slots
- Repetitive code

$$
\mathbf{X} = \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix}^{\text{time}}
$$

- Diversity: 2
- Data rate: 1/2 symbols/s/Hz
- Decode and extract the diversity gain via MRC
- Improve SNR, but reduce the data rate!!

Transmit Diversity: Alamouti Code

- Deliver 2 symbols in two consecutive time slots, but switch the antennas
- Alamouti code (space-time block code)

$$
\mathbf{x} = \begin{pmatrix} x_1 & -x_2 \\ x_2^* & x_1^* \end{pmatrix}
$$

- Diversity: 2
- Data rate: 1 symbols/s/Hz
- Improve SNR, while, meanwhile, maintain the data rate

Transmit Diversity: Alamouti Code

- Decoding $y(t) = h_1x_1 + h_2x_2 + n$ $y(t+1) = h_2x_1^* - h_1x_2^+ n$ $h_1^* y(t) = |h_1|^2 x_1 + h_1^* h_2 x_2^* + h_1^* n$ $y^*(t+1) = h_2^*x_1 - h_1^*x_2^* + n^*$ $h_2y^*(t+1) = |h_2|^2x_1 - h_1^*h_2x_2^* + h_2n^*$
- $\implies h_1^* y(t) + h_2 y^* (t+1) = (|h_1|^2 + |h_2|^2) x_1 + h_1^* n + h_2 n^*$
	- Achievable SNR

$$
\frac{(|h_1|^2 + |h_2|^2)^2 E[X^2]}{(h_1^* n + h_2 n^*)}
$$

=
$$
\frac{(|h_1|^2 + |h_2|^2)^2 E[X^2]}{(|h_1|^2 + |h_2|^2) \sigma^2} = \frac{(|h_1|^2 + |h_2|^2) E[X^2]}{\sigma^2}
$$

Multiplexing-Diversity Tradeoff

Repetitive scheme Alamouti scheme

$$
\mathbf{X} = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}
$$

$$
\mathbf{X} = \begin{pmatrix} x_1 & -x_2 \\ x_2^* & x_1^* \end{pmatrix}
$$

Diversity: 4 Data rate: 1/2 sym/s/Hz

Diversity: 4 Data rate: 1 sym/s/Hz

But 2x2 MIMO has 2 degrees of freedom

Quiz

- Explain what is the channel correlation
- With ZF decoding, the more correlated the channel, the 1) higher or 2) lower the SNR?
- What is the degrees of freedom for a 8 x 6 MIMO system?