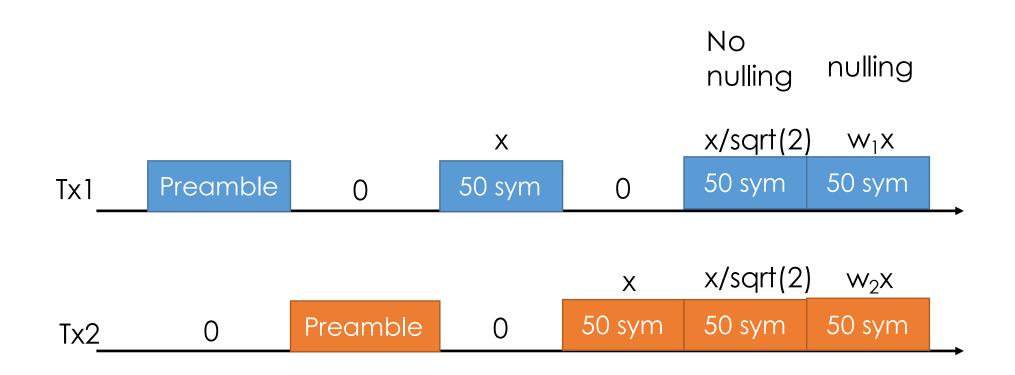

Wireless Communication Systems @CS.NCTU


Lab3: Interference Nulling

Interference Nulling

- 2-anttena Tx nulls its signals at a 1-antenna Rx
 - Connect two USRPs to the same external clock as Tx

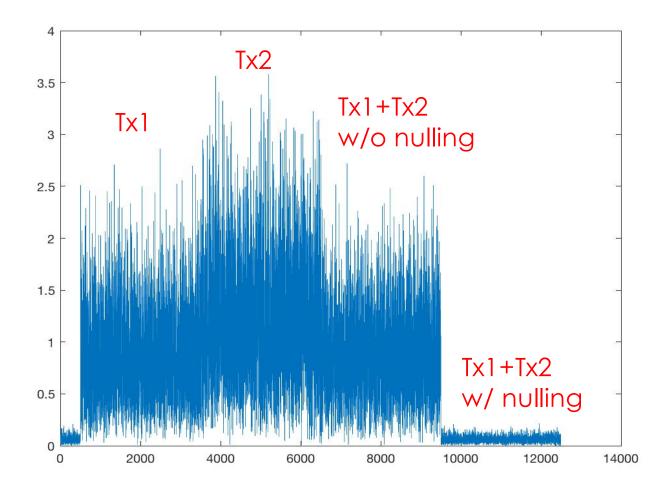
Packet Format

Modify Lab1 Code (Tx)

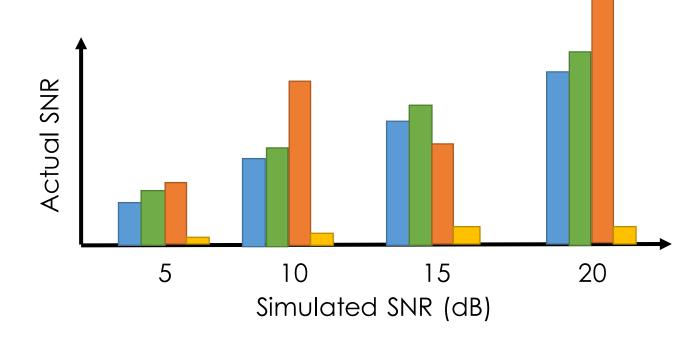
- Extend the code to tx1 (ant1) and tx2 (ant2)
 - A vector of digital bits (0 or 1)
 - Modulate them to two sequences of frequency-domain signals (X[k])
 - Generate random channels $H_1[k]$ and $H_2[k]$
 - In Matlab, $H_i[k] = (randn() + i * randn()) / sqrt(2)$
 - One channel for each subcarrier across all symbols
 - Precode frequency-domain signals by unit beamforming vector w
 - ant1: $X_1'[k] = w_1[k] X[k]$, ant2: $X_2'[k] = w_2[k] X[k]$
 - $(w_1[k], w_2[k])$ is a unit vector, i.e., $w_1^2[k] + w_1^2[k] = 1$
 - Multiply the frequency-domain signals by the randomlygenerated unit frequency-domain channel
 - $Y_1 = H_1[k] * X_1'[k], Y_2 = H_2[k] * X_2'[k]$
 - Convert f.-domain signals to time-domain signals (y_1, y_2)

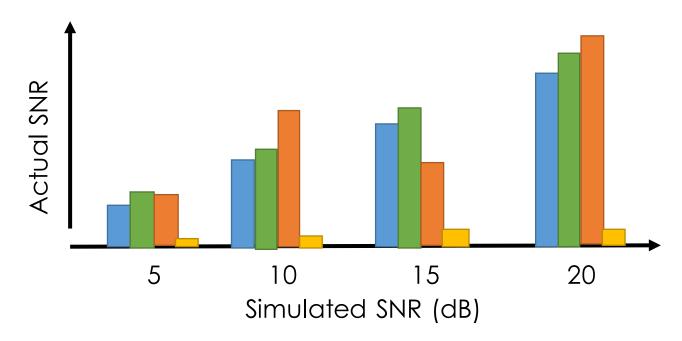
Modify Lab1 Code (Rx)

- Sum up the two time-domain signals
 - $y = y_1 + y_2$
- Generate noise to simulate different SNR (as in Lab 1)
 - Make sure $(E[y_1^2 + y_2^2]) / N = SNR$
 - Not E[$(y_1+y_2)^2$] / N = SNR
- Learn the channel H_1 and H_2
- Decode the received signal via SISO decoding (as in lab1)



- Modify the gen_signal.m
 - Generate a stream of frequency-domain signals
 - randomize two frequency-domain random channels
 - Calculate the precoding coefficients w_1 and w_2
 - Perform precoding
 - Convert frequency-domain signals to time-domain signals


- Generate different levels of noise (as in Lab1)
- Compare the SNR w/ and w/o precoding
 - SNR₁:
 - Tx1 sends the non-precoded signals y₁ (y₁ = ifft(H₁X)) along, and rx decodes y₁
 - SNR₂:
 - Tx2 sends the non-precoded signals y₂ (y₂ = ifft(H₂X)) along, and rx decodes y₂
 - SNR_{orig}:
 - tx1 and tx2 send the non-precoded signals simultaneously (y = ifft(H1X1 + H2X2))
 - rx decodes the combined original signals
 - SNR_{null}:
 - tx1 and tx2 send **precoded signals** simultaneously $(y = ifft(H_1W_1X_1 + H_2W_2X_2))$
 - rx decodes the combined precoded signals


 Plot the amplitude of the combined signal, abs(y) (SNR = 10dB)

- Plot the amplitude of the signal
 - Tx1 only
 - Tx2 only
 - Combined signal w/o precoding
 - Combined signal w/ precoding

- Plot the SNR of the signal
 - Tx1 only
 - Tx2 only
 - Combined signal w/o precoding
 - Combined signal w/ precoding

Grading

- Generate two Tx streams: 20%
- Generate Channel and precoding: 30%
- Calculate decoded SNR (4 schemes): 20%
- Plot figures: 10%
- Report: 20%

Code Submission

- Deadline: May. 13 (Sun.) 23:59
- Submit to E3
 - source code: signal_gen.m, decode.m
 - Report (.pdf): include all figures along with your discussion