
Wireless Communication Systems
@CS.NCTU

Lab2: OFDM over USRP
2018.03.30

Outline
• Background

• USRP
• Environment

• ToDo
• Tx / Rx (C++ for USRP)
• Decoding (MATLAB)

• Grading Criteria

2

3

What is USRP?

• Software Defined Radio
• Use software to program how a radio operates

USRP

• Universal Software Defined Radio
• Expensive! (~2,000USD)
• Use C++/ python/GUI to

define the radio!!

• Official document
• https://www.ettus.com/content/files/07495_Ettus_N

200-210_DS_Flyer_HR.pdf

Ethernet to PC

USRP Driver (API)
• UHD

• USRP Hardware Driver
• C++ API
• http://files.ettus.com/manual/
• https://github.com/EttusResearch/uhd

• Installation
• Done by TA

• Locating devices
• host/build/utils/uhd_find_devices --args "addr=192.168.10.14"
• This program scans the network for supported devices

and prints out a list of discovered devices and their IP
addresses

• host/build/utils/uhd_usrp_probe
• This program constructs an instance of the device

and prints out its properties, such as detected
daughterboards, frequency range, gain ranges, etc

How to Add a New File & Compile
• File (Source) Directory

• Use built in Makefile
• Put your files in ~/uhd/host/examples/
• Add your filenames to the CmakeList.txt in

~/uhd/host/examples

• Compile (Binary) Directory
• cd ~/uhd/host/build/examples

• make

• The executable bin file should be in this folder after
compile

10

Environment

11

Offine generate
time-domain signal

using Matlab
(reuse lab1)

Run single_tx
at USRP_TX

Run single_rx
at USRP_RX

Decode offline
In Matlab

(reuse lab1)

• USRP Testbed in EC-538
• Access through ssh to test your UHD codes

• single_tx.cpp and single_rx.cpp

• Run Matlab in your own machine

USRP Server
• ssh wcs-g#@140.113.203.6

e.g., wcs-g1@140.113.203.6
default password:

• USRP IP
• Tx: 192.168.10.2 (connecting to eth0)
• Rx: 192.168.20.2 (connecting to eth1)

• HW code put in ~/uhd/host/example
• single_tx.cpp/ single_tx.h
• single_rx.cpp/ single_rx.h

• cd ~/uhd/host/build
• cmake .. (only the first time)
• make
• cd example (now in ~/uhd/host/build/example)

USRP Server
• mkdir wcs_trace
• Transimitter :

• ./single_tx --f=2.49 --i=128

• Receiver:
• ./single_rx --f=2.49 --i=128

• Received data in ./wcs_trace/rx_signals.bin

TODO
• Tx repetitively sends 50 symbols

• USE_WARPLAB_TXRX = 0 to see the simulation result
• Set MOD_ORDER = 2 to use BPSK modulation

• Rx receives at least one batch of 50 symbols
• Matlab offline decoding

14

50 symbolsP 50 symbolsP 50 symbolsP

time

time

Tx

Rx
receiving

Task 1: OFDM Symbol Generator
• modify your lab1 code: signal_gen.m

• Change number of symbol to 50
• Remove the codes related to ”interpolate”
• signal_gen.m outputs

• transmitted digital bits to tx_data.bin

• transmitted frequency-domain samples to
tx_syms_mat.bin

15

Task 2: USRP Transmitter
• Login to the testbed (page 12)
• Compile the example code and test (page.13)
• Sample code provided by the TA

• Transmit on 2.49GHz
• Please check the IP before transmission

• Command: uhd_find_device

• Launch the transmitter (USRP_TX) first
• ./single_tx --f=2.49 --i=128

• TODO (single_tx.cpp/ single_tx.h)
• Modify single_tx.cpp/ singal_tx.h to transmit the

message you just generated
• Use a while loop in Tx to continuously send batches

16

Task 3: USRP Receiver
• Sample code provided by the TA

• Receive the upcoming signal
• Save the data at wcs_trace/recv_singal.bin
• Launch single_rx after single_tx

• ./single_rx --f=2.49 --i=128

• Press ^C to terminate after the receiver finishes
receiving

• TODO (single_rx.h)
• Modify single_rx.h to ensure at least receiving one

batch of 500 symbols for offline decoding

17

Task 4: Matlab Decoding
• Download wcs_trace/recv_singal.bin

• Read the above received signals to your lab1
decoder

• Remove “decimate”
• raw_rx_dec = filter(interp_filt2, 1, rx_vec_air);
• raw_rx_dec = raw_rx_dec(1:2:end);

• The most difficult part should be packet
detection

• Visually check whether the detected packet index
actually matches the location of a preamble

• If you cannot find the location of preamble
correctly, try to adjust the parameter
“LTS_CORR_THRESH” and see if detection can be
successful

• (default LTS_CORR_THRESH = 0.8) 18

TA’s sample code
• Send random integers
• Plot of the abs of signals in r_signal.bin

Task 5: Results
• Plot the figures
• Calculate the SNR and BER

20

Required figures
• Figure 1: Channel Estimation H[k] (WARP figure

4-1)

Required figures
• Figure 2: subcarrier SNR

• average SNR of each data subcarrier among all
symbols (bar graph)

• With and without phase track

• Observation
• Check if there exists deep fading

Required figures

• Figure 3: symbol SNR
• average SNR of all subcarriers for symbols over time

(line graph or scatter plot)
• With and without phase track

• Observation
• Check if SNR drops

over time if phase track
is disabled

Required figures
• Figure 4: Phases of decoded signal of different

subcarriers in the first symbol
• with and without phase track

x
x

x

x
x

x

xx
x
o

o
o o o

o
o

oo Subcarrier index

phase
‘x’ without phase tracking
‘o’ with phase tracking

Required figures
• Figure 5: constellation points (WARP figure 6)

Grading
• Tx/Rx: 30%
• decode.m: 40%

• Each figure: 8%
• Report: 20%

Code Submission
• Deadline: Apr. 17 (Tue.) 23:59
• Submit to E3

• source code: signal_gen.m, decode.m, single_tx.cpp,
single_tx.h, single_rx.cpp, single_rx.h

• Report (.pdf): include all figures and your
discussion/ovservation

