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Traditionally, wireless signals are used for …

Data communication among devices



Now, we have internet of Things
More and more sensing/wearable devices,

wireless signals everywhere



Can we use wireless signals to create 

human-centric applications,

not just for data communication?



Why Device-Free?



Limitation of Cameras

• Privacy issues

• Line of sight limitation

• Lighting requirement
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Limitation of Wearable Devices

• Inconvenient

• High deployment cost

• Feedback overhead
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Device-Free MobileHCI Apps

[MobiCom’13]

[MobiCom’15]

Gesture recognition

Handwriting

Keystroke

Figure 1: WiKey System

Based on this observation, we design a keystroke extraction
algorithm that utilizes CSI streams of all transmit-receive
antenna (TX-RX) pair pairs to determine the approximate
start and end points of individual keystrokes in a given CSI-
waveform by continuously matching the trends in CSI time
series with the experimentally observed trends using a slid-
ing window approach.

The second technical challenge is to extract distinguishing
features for generating classification models for each of the
37 keys (10 digits, 26 alphabets and 1 space-bar). As the
keys on a keyboard are closely placed, conventional features
such as maximum peak power, mean amplitude, root mean
square deviation of signal amplitude, second/third central
moment, rate of change, signal energy or entropy, and num-
ber of zero crossings cannot be used because the values of
these features for adjacent keys are almost identical. To
address this challenge, we use the CSI-waveform shapes of
each key from each TX-RX antenna pair as features. As the
waveforms for each key contain a large number of samples,
we apply the Discrete Wavelet Transform (DWT) technique
on these waveforms to reduce the number of samples while
keeping the shape preserving time and frequency domain in-
formation intact. We use the waveforms resulting from the
DWT of individual keystrokes as their shape features.

The third technical challenge is to compare shape fea-
tures of any two keystrokes. The midpoints of extracted
CSI-wavforms of different keystrokes rarely align with each
other because the start and end points determined by ex-
traction algorithm are never exact. Moreover, the lengths
of different keystroke waveforms also differ because the dur-
ation of pressing any key is often different. Consequently,
the midpoints and lengths of shape features do not match
either. Another issue is that the shape of different keystroke
waveforms of the same key are often distorted versions of
each other because of slightly different formation and dir-
ection of motion of hands and fingers while pressing that
key. Thus, two shape features cannot be compared using
standard measures like correlation coefficient or Euclidean
distance. To address this challenge, we use the Dynamic
Time Warping (DTW) technique to quantify the distance
between the two shape features. DTW can find the min-
imum distance alignment between two waveforms of differ-
ent lengths.

The key novelty of this paper is on proposing the first
WiFi signal based keystroke recognition approach. Some re-
cent work uses CSI values to recognize variousmacro aspects
of human movements such as falling down [6], household
activities [7], detection of human presence [8], and estim-
ating the number of people in a crowd [9]. These schemes
extract coarse grained information from the CSI values to
recognize the macro-movements such as falling down or re-
cognizing fullbody/limb gestures. They cannot be directly

adapted to recognize keystrokes because such coarse grained
information does not capture the minor variations in the CSI
values caused by human micro-movements such as those of
hands and fingers while typing. Some recent work, namely
WiHear, uses CSI values to extract the micro-movements
of mouth to recognize 9 syllables in the spoken words [10].
However, WiHear uses special hardware including direc-
tional antennas and stepper motors to direct WiFi beams
towards speaker’s mouth and extract the micro-movements.
We implemented theWiKey system using COTS devices, i.e.
a TP-Link TL-WR1043ND WiFi router and a Lenovo X200
laptop with Intel 5300 WiFi NIC. In the evaluation process,
we build a keystroke database of 10 human subjects with
IRB approval. WiKey achieves more than 97.5% detection
rate for detecting the keystroke and 96.4% recognition ac-
curacy for classifying single keys. In real-world experiments,
WiKey can recognize keystrokes in a continuously typed sen-
tence with an accuracy of 93.5%.

In this paper, we have shown that fine grained activity
recognition is possible by using COTS WiFi devices. Thus,
the techniques proposed in this paper can be used for sev-
eral HCI applications. Examples include zoom-in, zoom-out,
scrolling, sliding, and rotating gestures for operating per-
sonal computers, gesture recognition for gaming consoles,
in-home gesture recognition for operating various household
devices, and applications such as writing and drawing in the
air. Other than being a potential attack, our WiKey tech-
nology can be potentially used to build virtual keyboards
where human users type on a printed keyboard.

2. RELATED WORK

2.1 Device Free Activity Recognition
Device-free activity recognition solutions use the vari-

ations in wireless channel to recognize human activities in a
given environment. Existing solutions can be grouped into
three categories: (1) Received Signal Strength (RSS) based,
(2) CSI based, and (3) Software Defined Radio (SDR) based.

RSS Based: Sigg et al. proposed activity recognition
schemes that utilize RSS values of WiFi signals to recog-
nize four activities including crawling, lying down, standing
up, and walking [11,12]. They achieved activity recognition
rates of over 80% for these four activities. To obtain the
RSS values from WiFi signals, they used USRPs, which are
specialized hardware devices compared to the COTS WiFi
devices that we used in our work. While RSS values can be
used for recognizing macro-movements, they are not suit-
able to recognize the micro-movements such as those of fin-
gers and hands in keyboard typing because RSS values only
provide coarse-grained information about the channel vari-
ations and do not contain fine-grained information about
small scale fading and multi-path effects caused by these
micro-movements.

CSI Based: CSI values obtained from COTS WiFI net-
work interface cards (NICs) (such as Intel 5300 and Ath-
eros 9390) have been recently proposed for activity recogni-
tion [6–10, 13] and localization [14–16]. Han et al. proposed
WiFall that detects fall of a human subject in an indoor
environment using CSI values [6]. Zhou et al. proposed a
passive human detection scheme which exploits multi-path
variations for detecting human presence in an indoor envir-
onment using CSI values [8]. Zou et al. proposed Electronic
Frog Eye that counts the number of people in a crowd using
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Figure 27: Tracking error of different ma-
terials.
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Figure 28: Error map of APA
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Figure 29: Error map of Phase-tracking.
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Figure 30: Detection accuracy for different
users.

 15

 20

 25

 30

 10  20  30  40  50Y
 c

o
o
rd

in
a
te

 (
cm

)

X coordinate (cm)

Figure 31: mTrack example of letter and
word.
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Figure 32: Character and word recogni-
tion accuracy.

peaks can thus be reliably distinguished through fine-grained scan-
ning. However, with coarser steering granularity, their peaks tend to
merge, leading to an increasing error. Fortunately, background sub-
traction effectively mitigates the impact of background reflection,
hence reducing the estimation error by 50%.

Figure 24 shows the APA performance under human movement
as dynamic background. Human movement at 2m away from re-
ceiver does not affect positioning error, since reflecting RSS from
human body is much weaker than pen. Estimation error without
background subtraction increases to 2.8� when human stands close
to receive antenna. However, background subtraction can still con-
sistently reduce positioning error even under human movement.

8.1.3 Joint Performance of Tracking and APA.
Recall APA facilitates phase tracking through opportunistic cali-

bration. In this experiment, we verify the effectiveness of this joint
execution. The target pen moves along a circular trajectory of ra-
dius 7 cm. mTrack continuously runs phase tracking, and performs
the k/✓-test (Section 6) every 2 seconds. It invokes APA calibration
if the test dictates so. Figure 25 shows the tracking error at every
2-second check point. Without APA calibration, the phase track-
ing error steadily accumulates over time and reaches 46 cm when
moving 150 cm continuously along the circle. In contrast, APA cal-
ibration caps the phase tracking error below 10 mm across 90% of
the trajectory.

8.2 Performance on a Trackpad
We now evaluate mTrack’s performance in a real trackpad ap-

plication. The experiments are conducted in an office environment
with natural background (drywall, metal cabinet, a user, and occa-
sional human walking by). A 50cm ⇥50cm writing region is created
on a wood table. To test the precision of APA in locating anchoring
points, the user rests the pen tip on 40 random locations, ensuring
the bottom part of the pen is exposed to the antennas. mTrack steers
the antennas with granularity of 8�. To test phase tracking, the user
draws 10 circles and 10 triangles (with 20 cm perimeter) following
printed trajectories in the normal hand-writing speed. Since human-
hand deformation will affect phase tracking, testers hold the mid-
dle portion of pen, while directional antennas point to the bottom

portion. Due to lack of timing-synchronization between user writ-
ing trajectory and tracking estimation, we approximate the tracking
error as the minimum projection distance from mTrack’s location
estimation to the trajectory.

Types of writing objects. We evaluate APA for 3 writing ob-
jects of different reflectivity: metal-surfaced pen, plastic marker,
and wood pencil (Figure 15(b)). Our benchmark measurement shows
that, at 40 away from the transmit/receive antenna, the SNR of sig-
nals reflected by these objects are 12.3 dB, 10.1 dB and 4.7 dB, re-
spectively. Figure 26 plots the APA error distribution, which shows
90-percentile error of 2 cm, 4 cm and 16 cm, respectively. Obvi-
ously, object with strong reflectivity enables APA to easily combat
noise, thus achieving higher precision. Note that the APA precision
for pen is lower than the benchmark test in Section 8.1.2, mainly
because the presence of user’s hand creates more uncertainties.

Remarkably, mTrack’s phase-tracking algorithm demonstrates the
high accuracy in this trackpad application (Figure 27). The 90-
percentile errors for pen, marker and pencil are 8 mm, 11 mm and
4.8 cm respectively.

Localization/tracking error across a large region. Distance
between the target and the receiver determines the reflected signal
strength and hence may affect mTrack’s accuracy. The transmitter
and receivers are placed at coordinates (100, 100) cm, (50, 100)cm
and (100, 50)cm, respectively. To quantify such location-dependent
error, we partition the writing area into 10cm ⇥10cm squares, and
repeat the previous precision test on each square. Figure 28 and 29
plot the APA and phase-tracking error across all squares within a
90cm ⇥90cm region.

When the pen is close to both receivers (distance < 60cm), mTrack
can achieve high accuracy with APA/tracking error of <1.5 cm
and <8 mm, respectively. Accuracy starts degrading when the tar-
get moves over 70 cm away from receiver, and hence SNR drops.
Nonetheless, the tracking error is still within 1.5 cm even when the
target is 90 cm from the receiver. mmWave attenuates to almost
noise floor at 100 cm owing to high pathloss of mmWave signals.
We expect at least two ways of scaling the writing region: increas-
ing the transmit power, and placing more receivers along the x- and
y-axis. We leave such exploration for future work.
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Smart Homes that Monitor Breathing and Heart Rate
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ABSTRACT
The evolution of ubiquitous sensing technologies has led to
intelligent environments that can monitor and react to our
daily activities, such as adapting our heating and cooling sys-
tems, responding to our gestures, and monitoring our elderly.
In this paper, we ask whether it is possible for smart en-
vironments to monitor our vital signs remotely, without in-
strumenting our bodies. We introduce Vital-Radio, a wire-
less sensing technology that monitors breathing and heart rate
without body contact. Vital-Radio exploits the fact that wire-
less signals are affected by motion in the environment, in-
cluding chest movements due to inhaling and exhaling and
skin vibrations due to heartbeats. We describe the operation
of Vital-Radio and demonstrate through a user study that it
can track users’ breathing and heart rates with a median ac-
curacy of 99%, even when users are 8 meters away from the
device, or in a different room. Furthermore, it can monitor the
vital signs of multiple people simultaneously. We envision
that Vital-Radio can enable smart homes that monitor peo-
ple’s vital signs without body instrumentation, and actively
contribute to their inhabitants’ well-being.

Author Keywords Wireless; Vital Signs; Breathing; Smart
Homes; Seeing Through Walls; Well-being

Categories and Subject Descriptors H.5.2. Information
Interfaces and Presentation: User Interfaces - Input devices
and strategies. C.2.2. Network Architecture and Design:
Wireless Communication.

INTRODUCTION
The past few years have witnessed a surge of interest in ubiq-
uitous health monitoring [22, 25]. Today, we see smart homes
that continuously monitor temperature and air quality and
use this information to improve the comfort of their inhab-
itants [46, 32]. As health-monitoring technologies advance
further, we envision that future smart homes would not only
monitor our environment, but also monitor our vital signals,
like breathing and heartbeats. They may use this information
to enhance our health-awareness, answering questions like
“Do my breathing and heart rates reflect a healthy lifestyle?”
They may also help address some of our concerns by an-
swering questions like “Does my child breathe normally dur-
ing sleep?” or “Does my elderly parent experience irregular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04...$15.00
http://dx.doi.org/10.1145/2702123.2702200

(a) Inhale Motion (b) Exhale Motion
Figure 1—Chest Motion Changes the Signal Reflection Time. (a)
shows that when the person inhales, his chest expands and becomes
closer to the antenna, hence decreasing the time it takes the signal
to reflect back to the device. (b) shows that when the person ex-
hales, his chest contracts and moves away from the antenna, hence
the distance between the chest and the antenna increases, causing an
increase in the reflection time.

heartbeats?” Furthermore, if non-intrusive in-home continu-
ous monitoring of breathing and heartbeats existed, it would
enable healthcare professionals to study how these signals
correlate with our stress level and evolve with time and age,
which could have a major impact on our healthcare system.

Unfortunately, typical technologies for tracking vital signals
require body contact, and most of them are intrusive. Specif-
ically, today’s breath monitoring sensors are inconvenient:
they require the person to attach a nasal probe [19], wear a
chest band [43], or lie on a special mattress [3]. Some heart-
rate monitoring technologies are equally cumbersome since
they require their users to wear a chest strap [18], or place
a pulse oximeter on their finger [21]. The more comfortable
technologies such as wristbands do not capture breathing and
have lower accuracy for heart rate monitoring [12]. Addition-
ally, there is a section of the population for whom wearable
sensors are undesirable. For example, the elderly typically
feel encumbered or ashamed by wearable devices [20, 37],
and those with dementia may forget to wear them. Children
may remove them and lose them, and infants may develop
skin irritation from wearable sensors [40].

In this paper, we ask whether it’s possible for smart homes
to monitor our vital signs remotely – i.e., without requiring
any physical contact with our bodies. While past research
has investigated the feasibility of sensing breathing and heart
rate without direct contact with the body [17, 16, 15, 34, 27,
48, 14], the proposed methods are more appropriate for con-
trolled settings but unsuitable for smart homes: They fail in
the presence of multiple users or extraneous motion. They
typically require the user to lie still on a bed facing the device.
Furthermore, they are accurate only when they are within
close proximity to the user’s chest.

[CHI’15, MobiCom’16]

Fall detection

Breathing and heart-rate
monitoring
Emotion detection

Sleep Apnea Diagnosis

Figure 13—The various phone positions used for the results in
Fig. 12. We experiment with four different positions along a semi-
circle centered at the subject.

described in §4, the breathing frequency on the phone is rela-
tively stable compared to the amplitude variations that are neces-
sary for detecting sleep apnea events.

• As the distance increases beyond a meter the accuracies decrease.
This is because the strength of the reflections due to breathing
reduces with distance, making the breathing signal noisy. The
one-meter range is, however large enough to enable contactless
breath monitoring that is non-intrusive, as demonstrated in our
clinical study. It also limits the negative effects of environmental
changes farther away than a meter on ApneaApp’s accuracies.

• The accuracies are unaffected by audible noise in the environ-
ment from the vehicular and foot traffic on the street. Introducing
human conversations in the vicinity of the experiments also does
not affect these accuracies. This is because, we use a high-pass
filter to filter out audible signals below 18 kHz.

Effect of the phone’s orientation. We place the phone 20 cm away
and to the left of the subject. We then rotate the phone and compute
the accuracies for each phone orientation. As before, for each trial,
we perform five experiments for a total of 10 minutes per phone
orientation. Fig. 12 plots the results as a function of the phone’s
orientation. We observe that the accuracies remain high, demon-
strating that during ApneaApp’s operation we do not need to fix the
phone orientation.

Effect of the phone’s position. Next, we experiment with the phone
at different positions around the subject. Specifically we place the
phone is four different positions — near the head, near the legs,
and two positions to the left — along a semicircle of radius 40 cm
centered at the subject as shown in Fig. 13. Fig. 12 shows that
the accuracies are high when the phone is in the left positions and
slightly lower when placed near the head and the feet. This is be-
cause in the latter positions, the head and the leg effectively block
the chest/abdomen motion. We however note that the maximum er-
ror is less than 0.13 breaths per minute across all the phone posi-
tions.

6.2 Effect of Sleeping Position and Blankets

Next, we evaluate the accuracies for different sleeping positions
and in the presence of blankets.

Effect of the subject’s sleeping position. We consider four different
sleeping positions: supine (on the back), prone (on the abdomen),
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Figure 14—Effect of sleeping position. The accuracy is lower
when the patient is lying with her face down (prone). In this po-
sition, both the signals from the Vernier belt and ApneaApp expe-
rience larger variations. We however note that in our clinical study
we track the chest movements throughout the sleep duration where
the patient’s sleeping position was not controlled.
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Figure 15—Effect of blankets. We use four blankets with thick-
nesses varying from 2-5 cm. The plot shows that the accuracies are
high even when blankets separate the subject from the phone.

lying on the left, and the right. We place the smartphone at a dis-
tance of 20 cm to the left of the subjects and measure the breathing
rate accuracies. As before, for each sleep position we monitor the
breathing rate over chunks of two minutes for a total of ten minutes.
Fig. 14 shows that the average residual error is below 0.16 breaths
per minute across all the sleeping positions. We note that the accu-
racy is lower when the patient is lying with her face down (prone).
In this position, we noticed that both the signals from the Vernier
belt and ApneaApp experience a larger variation. We however note
that our clinical study tracks the chest movements throughout the
sleep duration where the patient’s sleeping position was not con-
trolled.

Effect of Blankets. We measure the breathing frequency accuracy
for various blanket thicknesses. The subjects are asked to sleep in
the supine position and the phone is placed left of the subject at a
distance of 40 cm. We use four blankets with thicknesses varying
from 2-5 cm. Fig. 15 shows that the accuracies are not noticeably
degraded by the use of blankets. This demonstrates that ApneaApp
is well suited for the sleep environment, which is further validated
by our clinical study where all the patients used blankets.

6.3 Breathing Signals from Multiple Subjects

As discussed in §3.1, the sonar reflections from multiple subject
arrive at different times at the microphone. Thus, ApneaApp can si-
multaneously track breathing movements from more than one sub-

[MobiSys’15]



WiSee
Device-free gesture recognition 

using wireless signals [MobiCom’13]
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Idea: Doppler shift 
• Frequency change of a wave occurs as its 

source moves relative to the observer

f � =

�
c + vr

c

�
f

source: https://en.wikipedia.org/wiki/Doppler_effect

Velocity of the signal receiver (observer)

�f = f � � f =
f

c
vr

vr⬆ Δf ⬆

Speed of light



Doppler Effect Caused by Human Mobility

• When a user is mobile, Rx will observe the Doppler 
effect even if Rx itself is static

⎻ Why? 

• If the moving speed is v, what’s the Doppler effect 
⎻ Δf ≤ (2f/c) * v à Why?

Detect the gesture by 
measuring the Doppler 

effect at Rx à Device-free!

Velocity of Rx along the 
reflected path is at most 2v

The length of the reflected path varies over time



Is it that Simple?
• Challenge 1

⎻ The velocity of a human gesture is VERY SMALL 
(e.g., 0.5 m/s) 

⎻ Correspond to a small Doppler shift
e.g., Δf=2fv/C = 17Hz when v = 0.5 m/s and f = 5GHz

• Challenge 2
⎻ WiFi operates in the 20MHz wide band 
à Corse resolution!!

⎻ Each 802.111 OFDM symbol includes 64 subcarriers
à bandwidth of each subcarrier

= 20*106/64 ~ 313KHz

13

Cannot observe 17Hz 
within a 312.5KHz band f1 f2 f3

Δf = 17Hz

313KHz



How to Identify Small Shift
even in Wideband Channels?

Idea:  Transform the WiFi signals to 
narrowband pulses via large FFT!

FFT over one symbol FFT over two identical symbol



Large FFT
• Assume Tx sends two identical symbols, each 

with N sample
• If Rx performs a 2N point FFT

15

xk =
N�

n=1

Xnei2�kn/N Xn =
N�

k=1

xke�i2�kn/N

1. Bandwidth of each subcarrier is halved!
2. In theory, odd subcarriers must be 0. Then, if Rx 

receives pulse in odd subcarriers à Doppler effect!!

X2l = 2
N�

k=1

xke�2�kl/N

X2l+1 = 0

IFFT FFT

Even sub-ch

Odd sub-ch

Xn =
N�

k=1

xke�i2�kn/2N +
2N�

k=N+1

xke�i2�kn/2N

=
N�

k=1

xke�i2�kn/2N +
N�

k=1

xke�i2�(k+N)n/2N

=
N�

k=1

xke�i2�kn/2N (1 + e�i�n)



How Large is FFT Required?
• 2N points FFT à halve the bandwidth

⎻ Each subcarrier is (20/64) /2 = 10(MHz)

• MN points FFT à reduce the bandwidth by M 
times

⎻ Each subcarrier is 20/M (MHz)

16

To get a resolution of 10Hz, we need (20/64)*106/M = 10 
à M = 31,250



Capturing Movement via Large FFT

17

FFT over 31,250 symbols → 10Hz per subcarrier 
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Capturing over Time

Frequency-time Doppler profile 
of an example gesture (push)
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Figure 5—Frequency-time Doppler profile of an ex-
ample gesture. The user moves her hand towards the re-
ceiver.

to be a specific kind of discontinuity between the OFDM
symbols. Thus, we can perform interpolation between the
OFDM symbols as described earlier. We note, however, that
since all the CPs have a fixed length, such an interpolation is
equivalent to resampling the OFDM symbols at a constant
rate given by Symbol length+CP length

Symbol length
, where Symbol length and

CP length denote the length of the OFDM symbol and CP
respectively. Since such resampling of the symbols does not
change the doppler pattern, in practice we simply skip the
CPs to reduce the computation.

3.2 Mapping Doppler Shifts to Gestures

So far we described how to transform the wideband 802.11
transmissions into a narrowband signal at the receiver. In
this section, we show how to extract the Doppler informa-
tion and map it to the gestures. Specifically, we describe the
following three steps: (1) Doppler extraction which computes
the Doppler shifts from the narrowband signals, (2) Segmen-
tation which identifies a set of segments that correspond to
a gesture, and (3) Classification which determines the most
likely gesture amongst a set of gestures. We describe how
WiSee performs each of these steps. We focus on the sin-
gle user case; in §3.3, we extend our design to work in the
presence of other users.

(1) Doppler Extraction: WiSee extracts the Doppler in-
formation by computing the frequency-time Doppler profile
of the narrowband signal. To do this, the receiver computes
a sequence of FFTs taken over time. Specifically, it computes
an FFT over samples in the first half-a-second interval. Such
an FFT give a Doppler resolution of 2 Hertz. The receiver
then moves forward by a 5 ms interval and computes an-
other FFT over the next overlapping half-a-second interval.
It repeats this process to get a frequency-time profile.

Fig. 5 plots the frequency-time Doppler profile (in dB) of
a user moving her hand towards the receiver. The plot shows
that, at the beginning of the gesture most of the energy is
concentrated in the DC (zero) frequency. This corresponds to
the signal energy between the transmitter and the receiver,
on paths that do not include the human. However, as the
user starts moving her hand towards the receiver, we first
see increasing positive Doppler frequencies (corresponding
to hand acceleration) and then decreasing positive Doppler
frequencies (corresponding to hand deceleration).

We note that the WiSee receiver is only interested in the
Doppler shifts produced by human gestures. Since the speeds
at which a human can typically perform gestures are between
0.25 m/sec and 4 m/sec [12], the Doppler shift of interest at
5 GHz is between 8 Hz and 134 Hz. Thus, the WiSee receiver
reduces its computational complexity by analyzing the FFT
output corresponding to only these frequencies.

(2) Segmentation: To do this, WiSee leverages the struc-
ture of the Doppler profiles, shown in Fig. 6. These corre-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 6—Frequency-time Doppler profiles of the
gestures in Fig. 1. WiSee segments the profiles into
sequences of positive and negative Doppler shifts, which
uniquely identify each gesture.

spond to the gestures in Fig 1. The plots show that the
profiles are a combination of positive and negative Doppler
shifts. Further, each gesture comprises of a set of segments
that have positive and negative Doppler shifts. For example,
the profile in Fig. 6(a) has just one segment with positive
Doppler shift. However, Fig. 6(b) has two segments each of
which has a positive and a negative Doppler shift. Further,
within each segment, the Doppler energy first increases and
then decreases (which correspond to acceleration and decel-
eration of human body parts).

A WiSee receiver leverages these properties to first find
segments and then cluster segments into a gesture. Our pro-
cess of finding segments is intuitively similar to packet detec-
tion in wireless communication systems. In communication,
to detect the beginning of a packet, the receiver computes
the average received energy over a small duration. If the ratio
between this energy and noise level is greater than a thresh-
old, then the receiver detects the beginning of a packet. Sim-
ilarly, if this ratio falls below a threshold, the receiver detects
the end of the packet. Likewise, in our system, the energy
in each segment first increases and then decreases. So the
WiSee receiver computes the average energy in the positive
and negative Doppler frequencies (other than the DC and
the four frequency bins around it). If the ratio between this
average energy and the noise level is greater than 3 dB, the
receiver detects the beginning of a segment. When this ratio
falls below 3 dB, the receiver detects the end of the segment.3

To cluster segments into a single gesture, WiSee’s receiver
uses a simple algorithm: if two segments are separated by
less than one second, we cluster them into a single gesture.

(3) Gestures Classification: As described earlier, the
Doppler profiles in Fig. 6 can be considered as a sequence
of positive and negative Doppler shifts. Further, from the
plots, we see that the patterns are unique and different across
the nine gestures. Thus, the receiver can classify gestures
by matching the pattern of positive and negative Doppler
shifts. Specifically, there are three types of segments: seg-
ments with only positive Doppler shifts, segments with only

3The noise level is calibrated at the receiver by computing
the energy in the non-DC frequencies, in the absence of ges-
tures.
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Detection by Classification

Different gestures correspond to various 
frequency-time Doppler profiles
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Figure 5—Frequency-time Doppler profile of an ex-
ample gesture. The user moves her hand towards the re-
ceiver.

to be a specific kind of discontinuity between the OFDM
symbols. Thus, we can perform interpolation between the
OFDM symbols as described earlier. We note, however, that
since all the CPs have a fixed length, such an interpolation is
equivalent to resampling the OFDM symbols at a constant
rate given by Symbol length+CP length

Symbol length
, where Symbol length and

CP length denote the length of the OFDM symbol and CP
respectively. Since such resampling of the symbols does not
change the doppler pattern, in practice we simply skip the
CPs to reduce the computation.

3.2 Mapping Doppler Shifts to Gestures

So far we described how to transform the wideband 802.11
transmissions into a narrowband signal at the receiver. In
this section, we show how to extract the Doppler informa-
tion and map it to the gestures. Specifically, we describe the
following three steps: (1) Doppler extraction which computes
the Doppler shifts from the narrowband signals, (2) Segmen-
tation which identifies a set of segments that correspond to
a gesture, and (3) Classification which determines the most
likely gesture amongst a set of gestures. We describe how
WiSee performs each of these steps. We focus on the sin-
gle user case; in §3.3, we extend our design to work in the
presence of other users.

(1) Doppler Extraction: WiSee extracts the Doppler in-
formation by computing the frequency-time Doppler profile
of the narrowband signal. To do this, the receiver computes
a sequence of FFTs taken over time. Specifically, it computes
an FFT over samples in the first half-a-second interval. Such
an FFT give a Doppler resolution of 2 Hertz. The receiver
then moves forward by a 5 ms interval and computes an-
other FFT over the next overlapping half-a-second interval.
It repeats this process to get a frequency-time profile.

Fig. 5 plots the frequency-time Doppler profile (in dB) of
a user moving her hand towards the receiver. The plot shows
that, at the beginning of the gesture most of the energy is
concentrated in the DC (zero) frequency. This corresponds to
the signal energy between the transmitter and the receiver,
on paths that do not include the human. However, as the
user starts moving her hand towards the receiver, we first
see increasing positive Doppler frequencies (corresponding
to hand acceleration) and then decreasing positive Doppler
frequencies (corresponding to hand deceleration).

We note that the WiSee receiver is only interested in the
Doppler shifts produced by human gestures. Since the speeds
at which a human can typically perform gestures are between
0.25 m/sec and 4 m/sec [12], the Doppler shift of interest at
5 GHz is between 8 Hz and 134 Hz. Thus, the WiSee receiver
reduces its computational complexity by analyzing the FFT
output corresponding to only these frequencies.

(2) Segmentation: To do this, WiSee leverages the struc-
ture of the Doppler profiles, shown in Fig. 6. These corre-
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Figure 6—Frequency-time Doppler profiles of the
gestures in Fig. 1. WiSee segments the profiles into
sequences of positive and negative Doppler shifts, which
uniquely identify each gesture.

spond to the gestures in Fig 1. The plots show that the
profiles are a combination of positive and negative Doppler
shifts. Further, each gesture comprises of a set of segments
that have positive and negative Doppler shifts. For example,
the profile in Fig. 6(a) has just one segment with positive
Doppler shift. However, Fig. 6(b) has two segments each of
which has a positive and a negative Doppler shift. Further,
within each segment, the Doppler energy first increases and
then decreases (which correspond to acceleration and decel-
eration of human body parts).

A WiSee receiver leverages these properties to first find
segments and then cluster segments into a gesture. Our pro-
cess of finding segments is intuitively similar to packet detec-
tion in wireless communication systems. In communication,
to detect the beginning of a packet, the receiver computes
the average received energy over a small duration. If the ratio
between this energy and noise level is greater than a thresh-
old, then the receiver detects the beginning of a packet. Sim-
ilarly, if this ratio falls below a threshold, the receiver detects
the end of the packet. Likewise, in our system, the energy
in each segment first increases and then decreases. So the
WiSee receiver computes the average energy in the positive
and negative Doppler frequencies (other than the DC and
the four frequency bins around it). If the ratio between this
average energy and the noise level is greater than 3 dB, the
receiver detects the beginning of a segment. When this ratio
falls below 3 dB, the receiver detects the end of the segment.3

To cluster segments into a single gesture, WiSee’s receiver
uses a simple algorithm: if two segments are separated by
less than one second, we cluster them into a single gesture.

(3) Gestures Classification: As described earlier, the
Doppler profiles in Fig. 6 can be considered as a sequence
of positive and negative Doppler shifts. Further, from the
plots, we see that the patterns are unique and different across
the nine gestures. Thus, the receiver can classify gestures
by matching the pattern of positive and negative Doppler
shifts. Specifically, there are three types of segments: seg-
ments with only positive Doppler shifts, segments with only

3The noise level is calibrated at the receiver by computing
the energy in the non-DC frequencies, in the absence of ges-
tures.



Classification
• Partition signals into segments
• Represent the moving pattern as a sequence 

of positive/negative Doppler Effects

20

Doppler Effect Value
Positive 1
Negative -1
Both Positive/Negative 2

Compare the received sequence with the set of 
pre-defined sequenced



Practical Issue
• Tx never sends the identical symbols over time
• Solution: Decode and re-encode

⎻ Decode the data symbol as usual 
⎻ Re-encode the frequency-domain symbols

Y1 = H1X1
Y2 = H2X2 à Y2’= Y2*(X1/X2) ~= H2X1

YM = HMXM à YM’= YM*(X1/XM) ~= HMX1

⎻ Convert it back to time-domain y’(m) = IFFT(Y’m)
⎻ Perform large FFT for y’(0)~y’(M)

21
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Performance – Accuracy
• Confusion matrix
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Figure 10—Confusion matrix for gestures in the
home scenario: The figure shows that the average de-
tection and classification accuracy is 94% across the nine
gestures. In contrast, random guesses have an accuracy of
11.1%. This shows that WiSee can extract rich information
about gestures from wireless signals.

The occupants move about and have meetings and lunches
in the office as usual. We believe that, given the higher den-
sity of people, the office room is a worse scenario compared
to our two-bedroom apartment. We note that there are other
scenarios in which WiSee can be evaluated, which are, how-
ever, not in the scope of this paper.

Fig. 11 plots the number of false detection events per hour
as a function of time. The figure shows results for differ-
ent number of repetitions in the preamble. The plot shows
that when the receiver uses a preamble with only one rep-
etition (i.e., perform the gesture once), the number of false
events is, on the average, 15.62 per hour. While this is low,
it is expected because typical human gestures do not fre-
quently result in a positive Doppler shift followed by a neg-
ative Doppler shift. For example, in our experiments, walk-
ing caused a continuous monotone Doppler shift that was
not confused with alternating positive and negative Doppler
shifts. Also, as the number of repetitions in the preamble in-
creases, the false detection rate significantly reduces. Specif-
ically, with three repetitions, the average false detection rate
reduces to 0.13 events per hour; with more than four rep-
etitions, the false detection rate is zero. This is expected
because it is unlikely that typical human motion would pro-
duce a repetitive pattern of positive and negative Doppler
shifts. Further, since the WiSee receiver requires repetitive
positive and negative Doppler shifts to occur at a particu-
lar range of speeds (0.25 m/s to 4 m/s), it is unlikely that
even typical environmental and mechanical variations would
produce them.

Classifying the target human gestures in the presence of other
humans: As described in §3.3, WiSee computes the MIMO
channel for the target user that minimizes the interference
from the other humans. We would like to evaluate the use of
MIMO in classifying a target user’s gestures, in the presence
of other moving humans. We run experiments in a 13 feet by
19 feet room with our WiSee receiver and transmitter. We
have the target user perform the two gestures in Fig. 1(a)
and Fig. 1(b). Our experiments have up to four interfering
users in random locations in the room. The users were asked
to perform arbitrary gestures using their arms.
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Figure 11—False Detection Rate from a 24-Hour
Trace: The figure plots the false detection rate in an office
room with 12 people over a 24-hour period on a weekday.
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Figure 12—WiSee in the presence of other interfer-
ing users: The figure plots the detection and classification
accuracy of the target user in the presence of other users
in a 13 × 19 sq. feet room. The plots show that, given a
fixed number of antennas, as the number of interfering users
increases, the accuracy decreases. However, with three in-
terfering users, the accuracy is still as high as 90% with a
five-antenna receiver.

Fig. 12 plots the average recognition accuracy of the tar-
get user’s gestures as a function of the number of interfering
users. The figure shows results for different number of anten-
nas at the WiSee receiver. The plots show that using a five-
antenna receiver, the accuracy is as high as 90% with three
interfering users in the room. Further, using additional an-
tennas significantly improves this accuracy in the presence
of multiple interfering users. We note however, that for a
fixed number of transmitters and antennas at the receiver,
the classification accuracy degrades with the number of users
(e.g., a conference room setting or a party scenario). For ex-
ample, in our experiments, the accuracy is less than 60%
with four interfering users. However, since typical home sce-
narios do not have a large number of users in a room, WiSee
can enable a significant set of interaction applications for
always-available computing embedded in the environment.

Stress-testing WiSee: Since WiSee leverages MIMO to can-
cel the signal from the interfering human, it suffers from
the near-far problem that is typical to interference cancella-
tion systems. Specifically, reflections from an interfering user
closer to the receiver, can have a much higher power than
that of the target user. To evaluate WiSee’s classification
accuracy in this scenario, we run the following experiment:
We fix the location of the target user six feet away from the
WiSee receiver. We then change the interfering user’s loca-
tion between three feet and ten feet from the receiver. The
target user performs the two gestures shown in Fig. 1(a) and

Accuracy: .88~1



Performance – False Detection

False detection can be almost eliminated if the subject 
repeats the preamble (pre-defined gesture) several times 
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Figure 10—Confusion matrix for gestures in the
home scenario: The figure shows that the average de-
tection and classification accuracy is 94% across the nine
gestures. In contrast, random guesses have an accuracy of
11.1%. This shows that WiSee can extract rich information
about gestures from wireless signals.

The occupants move about and have meetings and lunches
in the office as usual. We believe that, given the higher den-
sity of people, the office room is a worse scenario compared
to our two-bedroom apartment. We note that there are other
scenarios in which WiSee can be evaluated, which are, how-
ever, not in the scope of this paper.

Fig. 11 plots the number of false detection events per hour
as a function of time. The figure shows results for differ-
ent number of repetitions in the preamble. The plot shows
that when the receiver uses a preamble with only one rep-
etition (i.e., perform the gesture once), the number of false
events is, on the average, 15.62 per hour. While this is low,
it is expected because typical human gestures do not fre-
quently result in a positive Doppler shift followed by a neg-
ative Doppler shift. For example, in our experiments, walk-
ing caused a continuous monotone Doppler shift that was
not confused with alternating positive and negative Doppler
shifts. Also, as the number of repetitions in the preamble in-
creases, the false detection rate significantly reduces. Specif-
ically, with three repetitions, the average false detection rate
reduces to 0.13 events per hour; with more than four rep-
etitions, the false detection rate is zero. This is expected
because it is unlikely that typical human motion would pro-
duce a repetitive pattern of positive and negative Doppler
shifts. Further, since the WiSee receiver requires repetitive
positive and negative Doppler shifts to occur at a particu-
lar range of speeds (0.25 m/s to 4 m/s), it is unlikely that
even typical environmental and mechanical variations would
produce them.

Classifying the target human gestures in the presence of other
humans: As described in §3.3, WiSee computes the MIMO
channel for the target user that minimizes the interference
from the other humans. We would like to evaluate the use of
MIMO in classifying a target user’s gestures, in the presence
of other moving humans. We run experiments in a 13 feet by
19 feet room with our WiSee receiver and transmitter. We
have the target user perform the two gestures in Fig. 1(a)
and Fig. 1(b). Our experiments have up to four interfering
users in random locations in the room. The users were asked
to perform arbitrary gestures using their arms.
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Figure 11—False Detection Rate from a 24-Hour
Trace: The figure plots the false detection rate in an office
room with 12 people over a 24-hour period on a weekday.
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Figure 12—WiSee in the presence of other interfer-
ing users: The figure plots the detection and classification
accuracy of the target user in the presence of other users
in a 13 × 19 sq. feet room. The plots show that, given a
fixed number of antennas, as the number of interfering users
increases, the accuracy decreases. However, with three in-
terfering users, the accuracy is still as high as 90% with a
five-antenna receiver.

Fig. 12 plots the average recognition accuracy of the tar-
get user’s gestures as a function of the number of interfering
users. The figure shows results for different number of anten-
nas at the WiSee receiver. The plots show that using a five-
antenna receiver, the accuracy is as high as 90% with three
interfering users in the room. Further, using additional an-
tennas significantly improves this accuracy in the presence
of multiple interfering users. We note however, that for a
fixed number of transmitters and antennas at the receiver,
the classification accuracy degrades with the number of users
(e.g., a conference room setting or a party scenario). For ex-
ample, in our experiments, the accuracy is less than 60%
with four interfering users. However, since typical home sce-
narios do not have a large number of users in a room, WiSee
can enable a significant set of interaction applications for
always-available computing embedded in the environment.

Stress-testing WiSee: Since WiSee leverages MIMO to can-
cel the signal from the interfering human, it suffers from
the near-far problem that is typical to interference cancella-
tion systems. Specifically, reflections from an interfering user
closer to the receiver, can have a much higher power than
that of the target user. To evaluate WiSee’s classification
accuracy in this scenario, we run the following experiment:
We fix the location of the target user six feet away from the
WiSee receiver. We then change the interfering user’s loca-
tion between three feet and ten feet from the receiver. The
target user performs the two gestures shown in Fig. 1(a) and



Concluding Remark
• First device-free wireless-based gesture 

recognition
• Leverage the Doppler Effect to detect 

gestures
• Improve the resolution using large FFT
• How to detect multiple persons?

⎻ Use multiple antennas

• Limitation: a finite set of detectable gesture
⎻ The Doppler shift patterns of different gestures 

should be distensible
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EchoTag
Infrastructure-free indoor localization tagging

[MobiCom’15]

Yu-Chih Tung and Kang Shin

University of Michigan, Ann Arbor  
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What is Location Tagging?
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What is Location Tagging?
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What is Location Tagging?

28

Locate the 
position using 

Acoustic Signals!

HOW?



Existing Solutions
• Infrastructure free

• Infrastructure-based
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Existing Solutions
• Infrastructure free

⎻ SurroundSense [Mobisys’09] room-level
⎻ Batphone [Mobisys’11] room-level
⎻ RoomSense [AH’11] 300cm
⎻ Horse [Mobisys’05] 200cm
⎻ Geo [Mobisys’11] 100cm
⎻ FM [Mobisys’12] 30cm

• Infrastructure-based
⎻ Luxapose [Mobisys’14] 10cm
⎻ Cricket [Mobicom’00] 10cm
⎻ Guoguo [Mobisys’13] 6-25cm

30

Not accurate

Hard to deploy



EchoTag
• Active acoustic sensing
• Fine sensing resolution based on built-in 

sensors (microphone and speaker)
• Low cost and easy deployment

31



How to Use EchoTag?

32

(a) Outline contour (b) Sense w/ sound (c) Select app (d) Replay tag



EchoTag
1. Active acoustic sensing
2. Classification and optimization
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Sound Fingerprint

34

Freq 

Freq 

Freq 

Freq 

Freq 

(a) Hardware imperfection (b) Surface absorption 

(c) Multipath fading by reflections from surface & near objects 

(a) Hardware imperfection (b) Surface absorption

(c) Multipath fading by reflections from surfaces and near objects



Sound Fingerprint – Example
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Volumn Control

36

Similar to the linearity 
problem in WiFi



Classification
• Support Vector Machine (SVM)

⎻ One-against-all multi-class SVM
⎻ NoTag Classifier 

37



Sensing Optimization
• Acoustic sensing is triggered selectively

⎻ Save energy and reduce annoyance
⎻ Based on WiFi beacons and tilt

38

Trigger EchoTag



FCC
Electronic Frog Eye: Counting Crowd Using WiFi

[INFOCOM’14]

Wei Xi, Jizhong Zhao, Xiang-Yang Li, Kun Zhao, Shaojie Tang, Xue

Liu, Zhiping Jiang

Xi’an Jiaotong University, Tsinghua University, Illinois Institute of 

Technology, Temple University, McGill University
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People Counting 

• Application
⎻ Crowd control, 

marketing research, etc

• Existing solutions
⎻ Camera-based: 

line-of-sight limitation, lighting requirement, 
vulnerable to object overlap, privacy concern

⎻ Device-based (RFID tags, sensors, mobile phones):
not scalable, high deployment cost 

40

http://www.axis.com/dk/en/solutions-by-
application/people-counting



Device-free RF-based Counting
• RSS-based

⎻ Leverage attenuation models to localize users
⎻ Poor performance in a multipath-rich environment

• PHY-based
⎻ Exploit raw physical-layer information
⎻ Need special hardware, such as USRP

• CSI-based
⎻ Use fine-grained channel state information 

(attenuation and phase information of OFDM 
subcarriers)

⎻ Can be captured by commodity NICs

41



Key Idea: 
# of People vs. CSI Variance

42

More mobile users à Higher CSI variation



Why?
• Each user can be regarded as a virtual 

antenna, which reflects the signal toward Rx

C

�����������	

�
�
�
��
		
��
	�
��
�
�
�

-222 12222 1-222

-

12

1-

02

0-

/2

L�K F �����

������������	

�
�
�
��
		
��
	�
���
�
�
�

-222 12222 1-222

-

12

1-

02

0-

/2

L�K D ������

������������	

�
�
�
��
		
��
	�
���
�
�
�

-222 12222 1-222

-

12

1-

02

0-

/2

L�K B ������

������������	

�
�
�
��
		
��
	�
���
�
�
�

-222 12222 1-222

-

12

1-

02

0-

/2

L�K @ ������

5��H AH 8(2 ����
������ �� CF �
������ ���� �������� ��	��� ������

23- 1 13- 0 03- /

��12
.

,

*

12

10

1.

1,

����

'
�
"

L�K F �����

23- 1 13- 0 03- /

��12
.

2

12

02

/2

.2

����

'
�
"

L�K D ������

23- 1 13- 0 03- /

��12
.

2

12

02

/2

.2

����

'
�
"

L�K B ������

23- 1 13- 0 03- /

��12
.

2

12

02

/2

.2

����

'
�
"

L�K @ ������

5��H @H 8(2 ����
������ �� ��� �
����� ���� �������� ��	��� ������

-2
122

1-2
022

12
02

/2
2

02

.2

,2

��
�������������		��	������

'
�
"�
�



���
�
�
�

5��H CH .���
�� 8(2 	��
�� ���

��� �
������

Rx

2
1Tx

1
1Tx

3
1Tx

4
1Tx0

1Tx

5��H BH (����� (������ �� .
�������

6�����

	����J �������	���H '������J ��� ��������� 	��
� �� � ���

�� �������� ��

�� �
�

�
LCK

8(2 �� �������	� �� ��� ������ �� ��� ��	�������H 2� ����I

��� ��	�� ������� ��� ����
�������� ����J ��� 8(2 ����

��	� 
������� ��	��
� �������H $� 
�� 2���� ACFF �������

��� ��� ��� /��
� >FDHEE� 8(2 '��� �� ������ CF ���� ��

������
�� ��� ����� 8(2 	��
�� �� ���� ������H $� ����
��

� ��� �� ���������� �� ����� ��� ����������� ������� 8(2

����
������ ��� ��� �
��� �� ��	��� ������H $� ����� �

��� �� ������� A ����� ���� ��� ���� ���� �� ����� ��

5��
� DH ,�� ������
�� �� ���� ������� �� ��� ����J ��� ����

�� ���� ������ ������� �� ��� ����	� ���H 5��
� C �����

��� 	������� �� 8(2 ������
�� ��� CF �
������ �	� ����J

����� ����� ������ �� ��� )����� ������H 5��
� B ���
������

����� ����� ���������� ��� ����������� ����� ��� 	��� ��

)� �� � ��������� �����H '�� ����	� 	���� �� ������� �� � �

��� ��� ����������� 8(2 �� ������� �� ��H '�� �� ��� ��

��������� �� � �������� �� � ������ ������� ���� �� �����H

	���� ����� ����������� � ��������H 2� ��� �� ������ �� �

	��
�� �������J ��� ��� ����	� 	����� ��� 	��
�� ��������

�� ������� �� � 	 L� � �' �' �' (((KH '�� 	��
�� �������� ��	�

��� ��������� ��������<

'�� )� ������ �������
��� ��� ������� ��� 	��� ���

	�	�J ����
�� ��� ������� ���������� ��� ��� ��� 	��
��

�������� ���
���� �������� ��� 	���J ��� ��� �������

	����� �	 �� ��� ���� ��� ��
�� �� �� ��� 	���H

� 	 ����� ����� ������
���� �� �
�
��J ���� � ���

�
� �� �
������� ���� ������� �� ��� �
��� �� 	�	�H 2�

���� ����J � 	 �� ����������� ��� ����������� ������
���

���� ��� ��������� �� ��� ���� �
��� �� 	�	�H

'�
�J ��� 8(2 ������� )� ��� '� ��� �� ��������� ��

�� �
�

�
�

� � �
��

	��
� 	

�
� ��� �

�

�

��

	��

� 	 LBK

:������� 	������ ������ �� ��� ��� ����� �� 6�
����� BJ

�� ���

!� ��� �
�
�

��
LAK

�
� �������� �� ��� �
��� �� 	�	� ����J ����� �� ��
���

�� ����������� �
�
����H '�� �������� �������� ������ �� 	��
��

�������J ��� ��� ���� �� � 	 �� ��
���H '�� ���������� ��

��������J ��
�J ��� �� ����
����� �� ���������<

��
� �
��
"��
�

�
��
� �� $

���
�
� �

�
���
�

���	�
 ���

���
 $ 


L@K

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

363

Y = Ystatic + Yfrom_user

= HX

H = Hstatic + Hfrom_user

H = Hstatic + ∑u=1..NHu

à

N↑ ⟺ Var(H)↑



Challenge
• Why it is difficult?

⎻ Should be resistant to environmental changes
⎻ But sensitive to human motion

• Need to learn “short-term” CSI variance 
⎻ Long-term average variance is helpless when the 

crowd number changes frequently

• Problem: How to get short-term variance 
when the sample size is small?

44

i



PEM

• Percentage of non-zero element in the 
dilated CSI matrix

45

M

k = (|hij|- hmin )/ (hmax - hmin ) * M
Normalize |hij| to (hmin, hmax)
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PEM

• Percentage of non-zero element in the 
dilated CSI matrix
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M

k = (|hij|- hmin )/ (hmax - hmin ) * M
Normalize |hij| to (hmin, hmax)
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à set M[k][j]=1



PEM

• Count the percentage of non-zero elements
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Map PEM to Number of People
• Use fringerprint to find the relationship 

between PEM and people number

• How to use fewer samples (less effort of 
measurements) to find the fitting curve?

⎻ Verhulst model (check the paper)
48
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Quasi-monotonous relationship


