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Type of Approaches
• RSSI-based
• Angle of Arrival (AoA)
• Time of Flight (ToF)
• Time Difference of Arrival (TDoA)
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RF-based Localization
• See through walls

⎻ WiVi (SIGCOMM’13)

• ToF-based localization
⎻ WiTrack (NSDI’14, NSDI’15)

• AoA-based localization
⎻ ArrayTrack (NSDI’13)
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Can you use WiFi to get X-ray vision?



Key Idea

Tracking people from their reflections



Challenges

Wall refection is 10,000x stronger than 
reflections coming from behind the wall

How to separate the person’s reflections 
from the reflections of other objects?



WiVi [SIGCOMM’13]

• How to eliminate the wall’s reflections?
⎻ Leverage multiple antennas to perform 

interference nulling 

• How to track users using reflections?
⎻ Deem a mobile user as a virtual antenna array 

reflecting the signals
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• Idea: transmit two waves that cancel each 
other when they reflect off static objects 
but not moving objects

Wall is static

People tend 
to move

disappears

detectable

Eliminating Static Reflection



Eliminating via Multiple Antennas

Transmit 
antennas

Receive 
antenna

αx

x



Eliminating via Multiple Antennas

h2

h1

y = h1 x + h2αx
0

α = -h1 / h2

αx

x

Cancel strong 
reflections from walls



Eliminating All Static Reflections

✘ ✘

Only the reflections from mobile 
users survive à Why?



Eliminating All Static Reflections

y = h1 x + h2αx

Static objects (wall, furniture, 
etc.) have constant channels

y = h1 x + h2(- h1/ h2)x
0

People move, therefore 
their channels change

y = h’
1 x + h’

2 (- h1/ h2)x

Not Zero

h2

h1

αx
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WiVi [SIGCOMM’13]

• How to eliminate the wall’s reflections?
⎻ Leverage multiple antennas to perform 

interference nulling 

• How to track users using reflections?
⎻ Deem a mobile user as a virtual antenna array 

reflecting the signals
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Tracking Motion

θ

Antenna Array

RF source

Direction of reflection



Direction	of	motion

θ

Antenna Array

Tracking Motion

At any point in time, we 
have a single measurement



Direction
of motion

Tracking Motion

θ

Antenna Array

θ

Direction	of	motion



Tracking Motion

θ

Antenna Array

θ

Direction	of	motion

Human motion emulates antenna array
à Inverse synthetic aperture radar (ISAR)



How to Calculate the Direction? 
• Say we have w consecutive channel measures 

h[n], …, h[n+w] from time n to (n + w)
• The signal along the direction θ at time n is 

given by

• The direction can be found by
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A[✓, n] =
wX

i=1

h[n+ i]ej
2⇡
� i� sin ✓

✓⇤ = argmax

✓
A[✓, n]

spatial separation between 
successive antennas

How to get Δ given that 
user location is unknown?



Tracking Users
• Rough estimation Δ = vT, where v is user mobility 

(~1m/s)
• WiVi only tracks users, instead of localizing them

⎻ Only need to know whether the user is moving closer 
or away from the device
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Figure 2—Time samples as Antenna Arrays. Wi-Vi groups consecutive
time samples into overlapping windows of size w, then treats each window
h[n] . . . h[n + w] as an antenna array. This allows it to track the direction of
a moving object with respect to the receiver.

Wi-Vi, however, avoids using an antenna array for two reasons:
First, in order to obtain a narrow beam and hence achieve a good
resolution, one needs a large antenna array with many antenna ele-
ments. This would result in a bulky and expensive device. Second,
since Wi-Vi eliminates the flash effect using MIMO nulling, adding
multiple receive antennas would require nulling the signal at each
of them. This would require adding more transmit antennas, thus
making the device even bulkier and more expensive.

To capture the benefits of an antenna array while avoiding its
drawbacks, Wi-Vi leverages a technique called inverse synthetic
aperture radar (ISAR). ISAR exploits the movement of the tar-
get to emulate an antenna array. Existing systems which use an-
tenna arrays capture the signal reflected off a target from spatially
spaced antennas and processes this information to identify the di-
rection of the target with respect to the array. In contrast, in ISAR,
there is only one receive antenna; hence, at any point in time,
the receiver captures a single measurement. However, as the target
moves, he/she samples the received signal at successive locations
in space, as if we had a receive antenna at each of these points. Fur-
thermore, because of channel reciprocity, successive time samples
received by Wi-Vi correspond to successive spatial locations of the
moving target. Hence, Wi-Vi effectively receives in time what an
antenna array would receive in space. By treating consecutive time
samples as spatial samples, Wi-Vi can emulate an antenna array and
use it to track motion behind the wall.

In what follows, we formalize the above discussion. Let y[n] be
the signal sample received by Wi-Vi at a discrete time point n. De-
fine the spatial angle θ as the angle between the line connecting the
human to Wi-Vi and the normal to the motion, as shown in Fig. 1(b).
Note that the sign of θ is positive when the vector from the human
to Wi-Vi and the vector of the motion are in the same direction, and
negative when these two vectors are in opposite directions.

We are interested in computing A[θ, n], a function that measures
the signal along the spatial direction θ at time n. To compute this
value, Wi-Vi first processes the received samples to remove the ef-
fect of the transmitted signal, and obtain the channel as a func-
tion of time, i.e., h[n] = y[n]/x[n]. To emulate an antenna array
of size w, Wi-Vi considers w consecutive channel measurements
h[n] . . . h[n + w], as shown in Fig. 2. Wi-Vi then computes A[θ, n]
by applying standard antenna array equations [34] as follows:

A[θ, n] =
w∑

i=1

h[n + i]ej 2π
λ i∆ sin θ , (4)

where λ is the wavelength, and ∆ is the spatial separation between
successive antennas in the array.7 At any point in time n, the value
of θ that produces the highest value in A[θ, n] will correspond to the
direction along which the object is moving.

To compute A[θ, n] from the above equation, we need to estimate
∆, the antenna spacing in the emulated array. Since human motion
emulates the antennas in the array, ∆ = vT , where T is Wi-Vi’s

7∆ is twice the one-way separation to account for the round-trip time.
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(a) Experimental Setup

(b) Wi-Vi’s output

Figure 3—Wi-Vi tracks a single person’s motion. (a) shows the experi-
mental setup of a trial which consisted of a single person moving around in
a conference room. (b) shows how Wi-Vi is able to track the motion of the
person by computing the variation of the inverse angle of arrival with time,
i.e. A′[θ, n] for θ in [−90◦, 90◦].

sampling period, and v is the velocity of the motion. Of course,
Wi-Vi does not know the exact speed at which the human is mov-
ing. However, the range of speeds that humans have in a confined
room is fairly narrow. Hence, we can substitute a value for v that
matches comfortable walking (our default is v = 1m/s [10]). Note
that errors in the value of v translate to an underestimation or an
overestimation of the exact direction of the human.8 Errors in ve-
locity, however, do not prevent Wi-Vi from tracking that the human
is moving closer (i.e., angle is positive) or moving away from the
Wi-Vi device (angle is negative). In other words, because we do not
know the exact v, we cannot pinpoint the location of the human, but
we can track her/his relative movements.

Fig. 3 shows results from one of our experiments. In particular,
3(a) shows a diagram of the movement, and 3(b) plots the mag-
nitude of A[θ, n] (in dB) as a heat map. There are two lines in
Fig. 3(b): the first one is a zero line, which represents the DC (i.e.,
the average energy from static elements).9 This line is present re-
gardless of the number of moving objects. Second, there is a curved
line with a changing angle. This line tracks the human motion.
Around n = 0 seconds, the person starts moving towards the Wi-Vi
device. As a result, the spatial angle θ is positive and decreasing. (It
is positive because the vector of motion and the line from the hu-
man to Wi-Vi are in the same direction, and it is decreasing because
the absolute angle between the normal on the motion and the line

8For example, in one of our experiments, Wi-Vi estimated the human’s di-
rection of motion at 30◦ when the actual direction was 40◦ but she was
moving at a speed around 1.2m/s
9Recall that nulling mitigates these reflections so that they do not saturate
the receiver’s ADC, enabling Wi-Vi to register the minute channel variations
due to moving objects behind the wall. However, minuscule errors in chan-
nel estimates during the nulling phase would still be registered as a residual
DC by Wi-Vi.

positive angle, decreasing à moving closer

negative angle, increasing à moving away



Tracking Multiple Persons
• Human mobility is continuous!

20

from the human to Wi-Vi is getting smaller.) Around n = 1.8s, the
person crosses in front of the Wi-Vi device, at which time his an-
gle becomes zero. From n = 1.8s to n = 3s, the person is moving
away from Wi-Vi, and hence, his angle is negative. But the abso-
lute value of the angle is decreasing. At n = 3, the person turns and
starts moving inward, causing the angle to go back toward zero,
but the signal becomes weaker as he is now relatively far from the
Wi-Vi receiver.10

5.2 Tracking Multiple Humans
In this section, we show how Wi-Vi extends its tracking proce-

dure to multiple humans. Our previous discussion about using hu-
man motion to emulate an antenna array still holds. However, each
human will emulate a separate antenna array. Since Wi-Vi has a
single antenna, the received signal will be a superposition of the
antenna arrays of the moving humans. In particular, instead of hav-
ing one curved line as in Fig. 3(b), at any time, there will be as
many curved lines as moving humans at that point in time.

However, with multiple humans, the noise increases signifi-
cantly. On one hand, each human is not just one object because of
different body parts moving in a loosely coupled way. On the other
hand, the signal reflected off all of these humans is correlated in
time, since they all reflect the transmitted signal. The lack of inde-
pendence between the reflected signals is important. For example,
the reflections of two humans may combine systematically to dim
each other over some period of time.

The problem of disentangling correlated super-imposed signals
is well studied in signal processing. The basic approach for process-
ing such signals relies on the smoothed MUSIC algorithm [31, 39].
Similar to the standard antenna array processing in Eq. 4, smoothed
MUSIC computes the power received along a particular direction,
which we call A′[θ, n] because it estimates the same function in
Eq. 4 but in manner more resilient to noise and correlated sig-
nals [34].

For a given antenna array h = (h[n], . . . , h[n + w]) of size w,
MUSIC first computes the w × w correlation matrix R[n]:

R[n] = E[hhH], (5)

where H refers to the hermitian (conjugate transpose) of the vector.
It then performs an eigen decomposition of R[n] to remove the noise
and keep the strongest eigenvectors, which in our case correspond
to the few moving humans, as well as the DC value. For example, in
the presence of only one human, MUSIC would produce one main
eigenvector (in addition to the DC eigenvector). On the other hand,
if 2 or 3 humans were present, it would discover 2 or 3 eigenvectors
with large eigenvalues (in addition to the DC eigenvector). MUSIC
partitions the eigenvector matrix U[n] into 2 subspaces: the signal
space US[n] and the noise space UN [n], where the signal space is the
span of the signal eigenvectors, and the noise space is the span of
the noise eigenvectors. MUSIC then projects all directions θ on the
null space, then takes the inverse. This causes the θ’s corresponding
to the real signals (i.e., moving humans) to spike. More formally,

10Interestingly, even when the direction of motion is perpendicular to the line
connecting the person to the device, Wi-Vi registers this motion (note how
the DC line is much wider at n = 5 than at n = 0). This is because Eq. 4
approximates Wi-Vi as a monostatic radar, i.e., it simplifies the model by
assuming all antennas are co-located. A more detailed model that accounts
for the fact that the antennas are not completely co-located shows that for
a trajectory to be invisible (i.e., coincide with the DC line) two conditions
have to hold: (1) the person moves on an ellipse whose foci are the first
transmit antenna and the receive antenna, (2) she moves on an ellipse whose
foci are the second transmit antenna and the receive antenna. However, the
locus of such motion is discontinuous.

Figure 4—Wi-Vi tracks the motion of two humans. The figure shows how
the presence of two humans translates into two curved lines whose angles
vary in time, and one straight line which corresponds to the DC.

MUSIC computes the power density along each angles θ as:

A′[θ, n] =
1

∑K
k=1 ||

∑w
i=1 e−j 2π

λ i∆ sin θUN [n](i, k)||2
. (6)

where K is the total number of noise eigenvectors.
In comparison to the conventional MUSIC algorithm described

above, smoothed MUSIC performs an additional step before it com-
putes the correlation matrix. It partitions each array h of size w into
overlapping sub-arrays of size w′ < w. It then computes the cor-
relation matrices for each of these sub-arrays. Finally, it combines
the different correlation matrices by summing them up before per-
forming the eigen decomposition. The additional step performed by
smoothed MUSIC is intended to de-correlate signals arriving from
spatially different entities. Specifically, by taking different shifts for
the same antenna array, reflections from different bodies get shifted
by different amounts depending on the distance and orientation of
the reflector, which helps de-correlating them [31].

Fig. 4 shows the result of applying smoothed MUSIC on the sig-
nal captured from two moving humans. Similar to Fig. 3(b), the
y-axis corresponds to the angle, and the x-axis corresponds to time.
As before, the zero line corresponds to DC. At any point in time, we
see significant energy at two angles (besides the DC). For example,
at time n = 0.5s, both humans have negative angles and, hence,
are moving away from Wi-Vi. Between n = 1s and n = 2s, only
one angle is present. This may be because the other human is not
moving or he/she is too far inside the room. Again, from n = 2s to
n = 3s, we see both humans, one moving towards the device and
the other moving away (since one has a positive angle while the
other has a negative angle).

One point is worth emphasizing: the smoothed MUSIC algorithm
is conceptually similar to the standard antenna array beamforming
discussed in §5.1; both approaches aim at identifying the spatial
angle of the signal. However, by projecting on the null space and
taking the inverse norm (as described in Eq. 6), MUSIC achieves
sharper peaks, and hence is often termed a super-resolution tech-
nique [34]. Because smoothed MUSIC is similar to antenna array
beamforming, it can be used even to detect a single moving object,
i.e., the presence of a single person. In fact, Fig. 3(b) was generated
by the smoothed MUSIC algorithm.11

Finally, to enable Wi-Vi to automatically detect the number of
humans in a closed room, one option is to train a machine learning
classifier using images like those in Fig. 3(b) and Fig. 4. We dis-
covered, however, that a simple heuristic based on spatial variance

11Plotting the magnitude of A[θ, n] as opposed to A′[θ, n] gives the same
figure but with more noise. This is because, unlike standard beamforming,
the MUSIC algorithm does not incur significant side lobes which would
otherwise mask part of signal reflected from different objects.

user 1 user 2



RF-based Localization
• See through walls

⎻ WiVi (SIGCOMM’13)

• ToF-based localization
⎻ WiTrack (NSDI’14, NSDI’15)

• AoA-based localization
⎻ ArrayTrack (NSDI’13)
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Applications
Gaming Gesture Control

Elderly MonitoringFirst Responders



ToF-based Localization

Rx

Tx

Distance = Reflection time  x  Speed of light



How to Measure ToF?

Tx pulse Rx pulse

Option1: Transmit short pulse and listen for echo

Reflection Time
time



How to Measure ToF?

time

Tx pulse Rx pulse

capturing the pulse needs sub-nanosecond sampling

signal samples

reflection time (3.33ns per meter)

Need multi-GHz samplers 
à expensive and with high noise

Option1: Transmit short pulse and listen for echo



time
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ToF

ΔF

ΔF
slopeToF =

How to Measure ToF?
Option2: Frequency Modulated Carrier Wave (FMCW)

How to measure ΔF? 



• To find ΔF = fRx – fTx,
1. Use mixer to subtract fTx from the received signal à

the signal whose frequency is ΔF
2. Take FFT and identify the frequency with peak power

Mixer

Measuring ΔF

Transmitted
received

FFT

power

ΔF

ΔF à Reflection Time à Distance



How to Deal with Multiple Reflections?

Rx

Tx

Distance

Re
fle
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n 
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w
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Reflections from 
different objects
à which one is 
from the person?



Subtract Static Paths
• Static objects don’t move 

⎻ Eliminate by subtracting consecutive measurements

distance

p
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@ time t+30ms
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multi-path

multi-path

2 meters
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distance

distance

Why 2 peaks?



Dynamic Multipath

Rx

Tx

Distance

Po
w

er

Dynamic 
Multi-path

Moving Person

Find the first peak since the direct reflection arrives 
before other dynamic multipaths



• Person can be anywhere on an ellipse whose 
foci are (Tx,Rx) 
• One ellipse is not enough to localize! 

TxRx

d

From Distances to Localization



• Use two Rx antennas to find the intersection
• WiTrack uses directional antennas so only one 

point is in-beam
• Extend to 3D by using 3 Rx antennas and 

taking the intersection of ellipsoids

From Distances to Localization

TxRx Rx’

d

in beam

d’



Key Issue of FMCW
• Don’t need a high sampling rate
• But, need a very wide band channel
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Bandwidth of 1.69GHz to support 
a distance resolution of 8.8cm

Cannot be applied in the unlicensed WiFi band



RF-based Localization
• See through walls

⎻ WiVi (SIGCOMM’13)

• ToF-based localization
⎻ WiTrack (NSDI’14, NSDI’15)

• AoA-based localization
⎻ ArrayTrack (NSDI’13)
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Angle of Arrival
• Determine the direction of propagation of a 

radio-frequency wave using an antenna array
• Key idea:

⎻ The phase of the received signal is determined 
by the length of a path

⎻ The path lengths to different elements of an 
antenna array vary slightly

⎻ Leverage TDOA (time difference of arrival) at 
individual elements of the array to measure 
AoA
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Time Difference of Arrival

36

…dA dA

≈ d
≈ d

≈ d
≈ d

≈ d

Δ
2Δ 3Δ

NΔ

Tx Assumption: d ≫ dA! Then, the distance from Tx
to the k-th Rx antennas is close do (d+kΔ)

Rx



Time Difference of Arrival
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Figure 4: Principle of operation for ArrayTrack’s AoA spectrum com-
putation phase. (Left:) The phase of the signal goes through a 2π
cycle every radio wavelength λ, and the distance differential between
the client and successive antennas on the access point is related to the
client’s bearing on the access point. (Right:) The complex representa-
tion of the sent signal at the client (filled dot) and received signals at
the access point (crosses) reflects this relationship.

measured from the I axis to the cross labeled x1 (repre-
senting the signal received at antenna one). Since there is
a λ/2 separation between the two antennas, the distance
along a path arriving at bearing θ is a fraction of a wave-
length greater to the second antenna than it is to the first,
that fraction depending on θ. Assuming d ≫ λ/2, the
added distance is 1

2λ sin θ.

These facts suggest a particularly simple way to com-
pute θ at a two-antenna access point in the absence of
multipath: measure x1 and x2 directly, compute the phase
of each (∠x1 and ∠x2), then solve for θ as

θ = arcsin
(∠x2 − ∠x1

π

)
(1)

Generalizing to multiple antennas. In indoor multi-
path environments, Equation 1 quickly breaks down, be-
cause multiple paths’ signals sum in the I-Q plot. How-
ever, adding multiple, say M, antennas can help. The best
known algorithms are based on eigenstructure analysis of
an M×M correlation matrix Rxx in which the entry at the
lth column and mth row is the mean correlation between
the lth and mth antennas’ signals.

Suppose D signals s1(t), . . . , sD(t) arrive from bear-
ings θ1, . . . , θD at M > D antennas, and that xj(t) is the
received signal at jth antenna element at time t. Recall-
ing the relationship between measured phase differences
and AP bearing discussed above, we use the array steer-
ing vector a(θ) to characterize how much added phase
(relative to the first antenna) we see at each of the other
antennas, as a function of the incoming signal’s bearing.
For a linear array,

a(θ) = exp
(
−j2πd

λ

)

⎡

⎢⎢⎢⎢⎢⎣

1
exp(−jπλ cos θ)

exp (−j2πλ cos θ)
...

exp (−j(M − 1)πλ cos θ)

⎤

⎥⎥⎥⎥⎥⎦
(2)

x1

x2

x3

a(θ1)

a(θ2)

Signal 
e-vector e1

Signal e-vector e2

Noise
e-vector e3

Signal subspace

a(θ) continuum

Figure 5: In this three-antenna example, the two incoming signals
(at bearings θ1 and θ2 respectively) lie in a three-dimensional space.
Eigenvector analysis identifies the two-dimensional signal subspace
shown, and MUSIC traces along the array steering vector continuum
measuring the distance to the signal subspace. Figure adapted from
Schmidt [26].

So we can express what the AP hears as

x(t) =
A︷ ︸︸ ︷

[a(θ1) a(θ2) · · · a(θD)]

⎡

⎢⎢⎢⎣

s1(t)
s2(t)

...
sD(t)

⎤

⎥⎥⎥⎦
+ n(k), (3)

where n(k) is noise with zero mean and σ2
n variance. This

means that we can express Rxx as

Rxx = E[xx∗]
= E [(As + n) (s∗A∗ + n∗)]

= AE [ss∗]A∗ + E [nn∗]

= ARssA∗ + σ2
nI (4)

where Rss = E [ss∗] is the source correlation matrix.
The array correlation matrix Rxx has M eigenvalues

λ1, . . . ,λM associated respectively with M eigenvectors
E = [e1 e2 · · · eM]. If the noise is weaker than the in-
coming signals, then when the eigenvalues are sorted in
non-decreasing order, the smallest M − D correspond to
the noise while the next D correspond to the D incoming
signals. The D value depends on how many eigenvalues
are considered big enough to be signals. We choose D
value as how many eigenvalues are larger than a thresh-
old that is a fraction of the largest eigenvalue. Based on
this process, the corresponding eigenvectors in E can be
classified as noise or signal:

E =

⎡

⎣
EN︷ ︸︸ ︷

e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM

⎤

⎦ (5)

we refer to EN as the noise subspace and ES as the signal
subspace.

The MUSIC AoA spectrum [26] inverts the distance
between a point moving along the array steering vector

4
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Signal received at 2nd antenna:

Signal received at Nth antenna:
…

exp(
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)
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�
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Time Difference of Arrival
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Figure 4: Principle of operation for ArrayTrack’s AoA spectrum com-
putation phase. (Left:) The phase of the signal goes through a 2π
cycle every radio wavelength λ, and the distance differential between
the client and successive antennas on the access point is related to the
client’s bearing on the access point. (Right:) The complex representa-
tion of the sent signal at the client (filled dot) and received signals at
the access point (crosses) reflects this relationship.

measured from the I axis to the cross labeled x1 (repre-
senting the signal received at antenna one). Since there is
a λ/2 separation between the two antennas, the distance
along a path arriving at bearing θ is a fraction of a wave-
length greater to the second antenna than it is to the first,
that fraction depending on θ. Assuming d ≫ λ/2, the
added distance is 1

2λ sin θ.

These facts suggest a particularly simple way to com-
pute θ at a two-antenna access point in the absence of
multipath: measure x1 and x2 directly, compute the phase
of each (∠x1 and ∠x2), then solve for θ as

θ = arcsin
(∠x2 − ∠x1

π

)
(1)

Generalizing to multiple antennas. In indoor multi-
path environments, Equation 1 quickly breaks down, be-
cause multiple paths’ signals sum in the I-Q plot. How-
ever, adding multiple, say M, antennas can help. The best
known algorithms are based on eigenstructure analysis of
an M×M correlation matrix Rxx in which the entry at the
lth column and mth row is the mean correlation between
the lth and mth antennas’ signals.

Suppose D signals s1(t), . . . , sD(t) arrive from bear-
ings θ1, . . . , θD at M > D antennas, and that xj(t) is the
received signal at jth antenna element at time t. Recall-
ing the relationship between measured phase differences
and AP bearing discussed above, we use the array steer-
ing vector a(θ) to characterize how much added phase
(relative to the first antenna) we see at each of the other
antennas, as a function of the incoming signal’s bearing.
For a linear array,

a(θ) = exp
(
−j2πd

λ

)

⎡
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1
exp(−jπλ cos θ)

exp (−j2πλ cos θ)
...
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Figure 5: In this three-antenna example, the two incoming signals
(at bearings θ1 and θ2 respectively) lie in a three-dimensional space.
Eigenvector analysis identifies the two-dimensional signal subspace
shown, and MUSIC traces along the array steering vector continuum
measuring the distance to the signal subspace. Figure adapted from
Schmidt [26].

So we can express what the AP hears as

x(t) =
A︷ ︸︸ ︷

[a(θ1) a(θ2) · · · a(θD)]

⎡

⎢⎢⎢⎣

s1(t)
s2(t)

...
sD(t)

⎤

⎥⎥⎥⎦
+ n(k), (3)

where n(k) is noise with zero mean and σ2
n variance. This

means that we can express Rxx as

Rxx = E[xx∗]
= E [(As + n) (s∗A∗ + n∗)]

= AE [ss∗]A∗ + E [nn∗]

= ARssA∗ + σ2
nI (4)

where Rss = E [ss∗] is the source correlation matrix.
The array correlation matrix Rxx has M eigenvalues

λ1, . . . ,λM associated respectively with M eigenvectors
E = [e1 e2 · · · eM]. If the noise is weaker than the in-
coming signals, then when the eigenvalues are sorted in
non-decreasing order, the smallest M − D correspond to
the noise while the next D correspond to the D incoming
signals. The D value depends on how many eigenvalues
are considered big enough to be signals. We choose D
value as how many eigenvalues are larger than a thresh-
old that is a fraction of the largest eigenvalue. Based on
this process, the corresponding eigenvectors in E can be
classified as noise or signal:

E =

⎡

⎣
EN︷ ︸︸ ︷

e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM

⎤

⎦ (5)

we refer to EN as the noise subspace and ES as the signal
subspace.

The MUSIC AoA spectrum [26] inverts the distance
between a point moving along the array steering vector

4

Signal from angle θ:



Combined Signals from D paths
• If the Rx receives signals from D different paths
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x(t) = [a(�1) a(�2) · · · a(�D)]
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s1(t)
s2(t)
...

sD(t)
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����
+ nFinal received signal:

x(t) = e
�j2�d

�

�

������

1 1 · · ·
e�j� sin �1 · · · e�j� sin �D

e�j�2 sin �1 · · · e�j�2 sin �D

... . . . · · ·
e�j�(N�1) sin �1 · · · e�j�(N�1) sin �D

�

������

�

����

s1(t)
s2(t)
...

sD(t)

�

����
+ n



MUSIC Algorithm
• MUltiple SIgnal Classification (MUSIC)
• Find the direction of the LOS path from

• High level idea:
⎻ We collect N received signals (N equations)
⎻ Assume there exist only D paths, D ≤ N, (D unknowns) 
⎻ Use linear algebra to find the D components from N 

measures 
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x(t) = [a(�1) a(�2) · · · a(�D)]

�

����

s1(t)
s2(t)
...

sD(t)

�

����
+ n



MUSIC Algorithm
• Find the N x N source correlation matrix

• N eigenvalues of Rxx àE = [e1 e2 … eN-D eN-D+1 … eN]
⎻ D components with large eigenvalues 
à from D paths (angles)

⎻ (N – D) components with near-zero eigenvalues 
à noise
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Figure 4: Principle of operation for ArrayTrack’s AoA spectrum com-
putation phase. (Left:) The phase of the signal goes through a 2π
cycle every radio wavelength λ, and the distance differential between
the client and successive antennas on the access point is related to the
client’s bearing on the access point. (Right:) The complex representa-
tion of the sent signal at the client (filled dot) and received signals at
the access point (crosses) reflects this relationship.

measured from the I axis to the cross labeled x1 (repre-
senting the signal received at antenna one). Since there is
a λ/2 separation between the two antennas, the distance
along a path arriving at bearing θ is a fraction of a wave-
length greater to the second antenna than it is to the first,
that fraction depending on θ. Assuming d ≫ λ/2, the
added distance is 1

2λ sin θ.

These facts suggest a particularly simple way to com-
pute θ at a two-antenna access point in the absence of
multipath: measure x1 and x2 directly, compute the phase
of each (∠x1 and ∠x2), then solve for θ as

θ = arcsin
(∠x2 − ∠x1

π

)
(1)

Generalizing to multiple antennas. In indoor multi-
path environments, Equation 1 quickly breaks down, be-
cause multiple paths’ signals sum in the I-Q plot. How-
ever, adding multiple, say M, antennas can help. The best
known algorithms are based on eigenstructure analysis of
an M×M correlation matrix Rxx in which the entry at the
lth column and mth row is the mean correlation between
the lth and mth antennas’ signals.

Suppose D signals s1(t), . . . , sD(t) arrive from bear-
ings θ1, . . . , θD at M > D antennas, and that xj(t) is the
received signal at jth antenna element at time t. Recall-
ing the relationship between measured phase differences
and AP bearing discussed above, we use the array steer-
ing vector a(θ) to characterize how much added phase
(relative to the first antenna) we see at each of the other
antennas, as a function of the incoming signal’s bearing.
For a linear array,

a(θ) = exp
(
−j2πd

λ

)

⎡

⎢⎢⎢⎢⎢⎣

1
exp(−jπλ cos θ)

exp (−j2πλ cos θ)
...

exp (−j(M − 1)πλ cos θ)

⎤

⎥⎥⎥⎥⎥⎦
(2)
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Figure 5: In this three-antenna example, the two incoming signals
(at bearings θ1 and θ2 respectively) lie in a three-dimensional space.
Eigenvector analysis identifies the two-dimensional signal subspace
shown, and MUSIC traces along the array steering vector continuum
measuring the distance to the signal subspace. Figure adapted from
Schmidt [26].

So we can express what the AP hears as

x(t) =
A︷ ︸︸ ︷

[a(θ1) a(θ2) · · · a(θD)]

⎡

⎢⎢⎢⎣

s1(t)
s2(t)

...
sD(t)

⎤

⎥⎥⎥⎦
+ n(k), (3)

where n(k) is noise with zero mean and σ2
n variance. This

means that we can express Rxx as

Rxx = E[xx∗]
= E [(As + n) (s∗A∗ + n∗)]

= AE [ss∗]A∗ + E [nn∗]

= ARssA∗ + σ2
nI (4)

where Rss = E [ss∗] is the source correlation matrix.
The array correlation matrix Rxx has M eigenvalues

λ1, . . . ,λM associated respectively with M eigenvectors
E = [e1 e2 · · · eM]. If the noise is weaker than the in-
coming signals, then when the eigenvalues are sorted in
non-decreasing order, the smallest M − D correspond to
the noise while the next D correspond to the D incoming
signals. The D value depends on how many eigenvalues
are considered big enough to be signals. We choose D
value as how many eigenvalues are larger than a thresh-
old that is a fraction of the largest eigenvalue. Based on
this process, the corresponding eigenvectors in E can be
classified as noise or signal:

E =

⎡

⎣
EN︷ ︸︸ ︷

e1 . . . eM−D

ES︷ ︸︸ ︷
eM−D+1 . . . eM

⎤

⎦ (5)

we refer to EN as the noise subspace and ES as the signal
subspace.

The MUSIC AoA spectrum [26] inverts the distance
between a point moving along the array steering vector

4

source correlation matrix sorted



MUSIC Algorithm

• The distance between a signal coming from 
the arrival direction θ and the noise subspace

• D major components are orthogonal to the 
subspace of (N - D) noise components

⎻ dist(θ)~0 for the D paths from θ

• Power function
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EN = [e1 e2 … eN-D]

P (�) =
1

dist(�) =
1

a(�)�ENE�
Na(�) AoA = maxθ P(θ)

Distance in the vector space, instead of 
the distance between Tx-Rx

dist(�) = a(�)�ENE�
Na(�)



AoA-based Localization
• Find location via trigonometry 
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θ1

θ2

θ3

AP1AP2

AP3



Quiz
• While interference nulling can only cancel 

static reflections, but not body reflections?
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