Wireless Communication Systems @CS.NCTU

Lecture 5: Multi-User MIMO (MU-MIMO)

Instructor: Kate Ching-Ju Lin (林靖茹)

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Cross-Link Interference

• Problem:

 Any two nearby links cannot transmit simultaneously on the same frequency

Solution:

A transmitter with multiple antennas can <u>actively</u>
 cancel its interfering signals at nearby receiver(s)

Interference Nulling

Nulling: make $(h_1a+h_2\beta)=0$ \Rightarrow $a = -(h_2/h_1)\beta$

$$y = hx + (h_1a + h_2\beta)x'$$

 $y' = h'x + (h_{1a}a + h_{1b}\beta)x'$
 $y'' = h''x + (h_{2a}a + h_{2b}\beta)x'$
 \downarrow
 $\neq 0$

- Signals cancel each other at Alice's receiver
- Signals don't cancel each other at Bob's receiver
 - Because channels are different
 - Bob's receiver can remove Alice's interference via ZF decoding

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

802.11ac

Cannot leverage multiplexing gains if clients only have a single antenna

- From 802.11a/b/g, to 802.11n, to 802.11ac
 - AP can be more and more powerful > supporting multiple antennas
 - But, how about mobile devices? → usually lightweight and small size → limited number of antennas

802.11ac

- 802.11ac adopts multiuser MIMO (MU-MIMO)
 - Involve multiple clients in concurrent transmissions
 - Extract the multiplexing gain
 - Maximal number of clients (streams) = number of antennas at the AP
 - Only support downlink MU-MIMO now

Cross-Stream Interference

- Say the AP send x₁, x₂ and x₃ to client 1, 2 and 3, respectively
 - If the AP simply uses each antenna to send one stream,
 - Each client receives the combined signal of x_1 , x_2 and x_3
 - $-x_2$ and x_3 are cross-stream interference for client 1

Channel Model

$$\mathbf{h}_1 = [h_{11} \ h_{12} \ h_{13}]^T$$

$$\mathbf{h}_2 = [h_{21} \ h_{22} \ h_{23}]^T$$

$$\mathbf{h}_3 = [h_{31} \ h_{32} \ h_{33}]^T$$

Interference

$$y_1 = h_{11}x_1 + (h_{12}x_2 + h_{13}x_3) + n_1$$
$$y_2 = h_{22}x_2 + (h_{21}x_1 + h_{23}x_3) + n_2$$
$$y_3 = h_{33}x_3 + (h_{31}x_1 + h_{32}x_2) + n_3$$

How to Remove Cross-Stream Interference?

Zero-Forcing Beamforming (ZFBF)

- Also called zero-forcing precoding or null-steering
- Linear precoder that maximizes the output SNR
- The AP uses its antennas to actively cancel the interfering streams at a particular client
 - In the previous example, the AP cancel x₂ and x₃ at client 1 cancel x₁ and x₃ at client 2 cancel x₁ and x₂ at client 3
 - Steer a beam toward to its intended receiver
- How to suppress all the interference using the limited number of antennas?

Zero-Forcing Beamforming (ZFBF)

$$[w_{11} \ w_{12} \ w_{13}] * x_1$$

$$[w_{21} \ w_{22} \ w_{23}] * x_2$$

$$[w_{31} \ w_{32} \ w_{33}] * x_3$$

$$\mathbf{h}_1 \qquad \mathbf{h}_3$$

$$\mathbf{h}_2 \qquad \mathbf{h}_3$$

- Use all the antennas to send every stream
- Each stream *i* is precoded using ZFBF weight vector $w_i = [w_{i1} \ w_{i2} \ ... \ w_{iN}]$
- The precoded signal $w_{ij}x_i$ is sent by the j-th antenna
- The j-th antenna transmit the summation of all the precoded signal $(w_{1i}x_1 + w_{2i}x_2 + ... + w_{Ni}x_N)$

Zero-Forcing Beamforming (ZFBF)

$$y_i = \sqrt{P_i} \mathbf{h}_i \mathbf{w}_i x_i + \sum_{j \neq i} \sqrt{P_j} \mathbf{h}_i \mathbf{w}_j x_j + n_i \rightarrow \text{Null the interference:} \\ \sqrt{P_j} \mathbf{h}_i \mathbf{w}_j = 0, \forall j \neq i$$

Matrix:
$$\mathbf{y} = \mathbf{H}\mathbf{W}\sqrt{\mathbf{P}}\mathbf{x} + \mathbf{n}$$
 \rightarrow $\mathbf{W} = \mathbf{H}^{\dagger} = \mathbf{H}^{*}(\mathbf{H}\mathbf{H}^{*})^{-1}$

Let **W** be the **pseudo inverse** of **H** $\mathbf{W}=\mathbf{H}^{\dagger}=\mathbf{H}^*(\mathbf{H}\mathbf{H}^*)^{-1}$ Then, $\mathbf{y}=\sqrt{\mathbf{P}}\mathbf{x}+\mathbf{n}'$

SNR of ZFBF

 ZFBF is essentially equivalent to ZF, but just performed by the transmitter

 The achievable SNR is determined by the channel correlation among concurrent clients

MU-MIMO Bit-Rate Selection

Select a proper rate based on SNR_{ZEBE}

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates

→ Need proper user selection

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates

→ Need proper user selection

- Exhaustive search:
 - Calculate the sum-rate for each of ${N \choose k}$ groups
 - Pick the one with the maximal sum-rate
- Greedy:
 - sequentially add a user producing the maximal rate after projecting on the subspace of the users that have been selected

MU-MIMO Power Allocation

Achievable sum-rate for a set of user S

$$R = \max_{p_i} \sum_{i \in \mathcal{S}} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2)$$

subject to

$$\sum_{i \in \mathcal{S}} \|\mathbf{w}_i\|^2 p_i \le P_{\text{max}}$$

Power allocated to user i

MU-MIMO Power Allocation

$$R = \max_{p_i} \sum_{i \in \mathcal{S}} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2) \quad \text{s.t.} \quad \sum_{i \in \mathcal{S}} ||\mathbf{w}_i||^2 p_i \le P_{\text{max}}$$

Optimal power allocation: Waterfilling

$$p_i = \left(\frac{\mu}{\|\mathbf{w}_i\|^2} - 1\right)^+,$$

where

$$(x)^+ = \max\{x, 0\}$$

$$\mu$$
 is the water level satisfying $\sum_{i \in \mathcal{S}} (\mu - \|\mathbf{w}_i\|^2)^+ = P$

- [1] Yoo et.al. "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming," IEEE JSAC, 24(3):528–541, March 2006.
- [2] Huang et.al., "User Selection for Multiuser MIMO Downlink With Zero-Forcing Beamforming," in IEEE TVT, vol. 62, no. 7, pp. 3084-3097, Sept. 2013.

Waterfilling Power Allocation

- Good channels get more power than poor channels
- Fairness is a concern

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Interference Alignment

N-antenna node can only decode N signals

If I_1 and I_2 are aligned,

- → appear as one interferer
- → 2-antenna receiver can decode the wanted signal x and the combined interference (I₁+I₂)
- \rightarrow No need to decode I_1 and I_2 since the Rx does not care

Rotate Signal

A multi-antenna transmitter can rotate the received signal

To rotate received signal y to y' = Ry,
 the transmitter precodes the transmitted signal by multiplying it with the rotation matrix R

Rotate Signal (2x2 Example)

- Say an interfering transmitter wants to align its signal at the interfered receiver along the direction (u,v)
- The interferer precodes its signal x with a weight vector (w_1, w_2)

Rotate Signal (2x2 Example)

• Find (w_1, w_2) such that

-
$$(w_1h_{11}+w_2h_{12}, w_1h_{21}+w_2h_{22}) // (U, V)$$

(1)
$$\frac{w_1h_{11} + w_2h_{12}}{w_1h_{21} + w_2h_{22}} = \frac{u}{v}$$
 Alignment

$$(2) \quad \sqrt{w_1^2 + w_2^2} = 1$$

Power constraint

Interference Alignment

How to align interfering signals?

- \rightarrow Find the direction of any interference (e.g., I_1)
- \rightarrow All the remaining interferers (e.g., I_1 and I_2) rotate their signals to that direction

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Network MIMO

- Also known as virtual MIMO, cooperative MIMO, distributed MIMO
- Why we need network MIMO?
 - Maximal number of concurrent packets is limited by the number of antennas per AP
 - It is hard to equip with a large number of antennas in a single AP
- How to build a network MIMO node?

Network MIMO

- Combine multiple APs as a giant virtual AP
- Distributed antennas are connected via backhual wired network
- Process signals by one or multiple backend servers

Open Issues of Network MIMO

- Salability
- Latency
- Synchronization

Scalability

- Forwarding raw complex signals through the Ethernet requires an extremely large backhual bandwidth
 - Ethernet capacity might now become a bottleneck
- Complexity of precoding/decoding a large scale of streams is fairly high
 - A single server can only support a limited number of concurrent packets
 - Software-based precoding/decoding at the servers is less efficient than hardware-based processing at APs

Latency

- Servers need to collect the received signals from distributed antennas
- The latency between antennas and servers might be longer than symbol duration
 - For example, the symbol duration of 802.11n is only 4 microseconds (us)
- A packet might not be able to be acknowledged immediately after data transmission
 - The MAC protocol might need to be re-designed

Synchronization

- MIMO transmissions require all the antennas to be tightly synchronized
 - Otherwise, a small frequency offset could destroy all the concurrent packets
- Potential Solutions
 - Connect all the APs to an external clock ->
 scalability would be an issue
 - Each AP learn the frequency offset based on a reference clock and calibrate the offset
 hard to achieve a granularity acceptable for network MIMO

Wireless Communication Systems @CS.NCTU

Lecture 5: Multi-User MIMO (MU-MIMO)

Interference Alignment and Cancellation (SIGCOMM'09)

Lecturer: Kate Ching-Ju Lin (林靖茹)

Naïve Cooperative MIMO

- Say we combine two 2-anthena APs as a 4antenna virtual AP
- Naïve solution:
 - Connect the two APs to a server via Ethernet
 - Each physical AP sends every received raw signal (complex values) to the server over Ethernet

Naïve Cooperative MIMO

Impractical overhead:

For example, a 3 or 4-antenna system needs 10's of Gb/s

- Naïve solution:
 - Connect the two APs to a server via Ethernet
 - Each physical AP sends every received raw signal (complex values) to the server over Ethernet

How to Minimize Ethernet Overhead?

High-level idea:

- 1. Decode some packets in certain AP
- 2. Forward the decoded packets through the Ethernet to other APs
- 3. Other APs decode the remaining packets
- 4. Repeat 1-3 until all packets are recovered

How to Minimize Ethernet Overhead?

Advantage:

 The size of data packets is much smaller than the size of raw samples > minimize overhead

Challenge:

- In theory, an N-antenna AP cannot recover M concurrent transmissions if M>N
- How can an N-antenna AP recover its packet from M concurrent transmissions (M>N)?
 - → Interference Alignment and Cancellation

Interference Alignment and Cancellation

- Align p₃ with p₂ at AP1
- AP1 broadcasts p₁ on Ethernet
- AP2 subtracts/cancels $p_1 \rightarrow$ decodes p_2 , p_3

Interference Alignment and Cancellation

Only forward 1 data packet through the Ethernet!

How to Align?

- 1. Learn the direction we need to align
 - Client 2 aligns p₃ along (h₂₁, h₂₂) at AP1

How to Align?

- 2. Precode p_3 by (w_1, w_2)
- 3. AP2 receives p_3 along the direction $(w_1h_{31}+w_2h_{41}, w_1h_{32}+w_2h_{42})$

How to Align?

4. Since AP1 tries to decode p_1 , we align the interference p_3 along the direction of p_2

$$\rightarrow$$
 Let $(w_1h_{31}+w_2h_{41})/(w_1h_{32}+w_2h_{42})=h_{21}/h_{22}$

Infinite number of solution? No! **power constraint** $w_1^2+w_2^2=P_{max}$

How to Remove Interference?

- For example, how can AP2 remove the interference from p₁?
- Cannot just subtract the bits of p₁ from the received packet
 - Should subtract interference signals as received by AP2
- How? → Similar to SIC
 - AP2 re-modulates p₁'s bits
 - AP2 estimate the channel from client 1 to AP2 and apply the learned channel on the remodulated signals of p₁
 - Subtract it from the received signal y

How to Generalize to M-Antenna MIMO?

Theorem

In a M- antenna MIMO system, IAC delivers

- 2M concurrent packets on uplink
- max{2M-2, 3M/2} concurrent packets on downlink

e.g., M=2 antennas

4 packets on uplink3 packets on downlink

See the paper for the details!

Quiz

Consider a 2x1 system

 How can the AP (Tx) send a symbol x without being heard by the smartphone?