Wireless Communication Systems @CS.NCTU

Lecture 15: mmWave

Lecturer: Kate Ching-Ju Lin (林靖茹)

Millimeter Wave Bands

• Huge amount of available bandwidth (λ =C/f)

mmWave Wireless Applications

5G Cellular Networks

Wireless Data Centers

Wireless LANs 802.11ad

Wireless Virtual/ Augmented Reality

Connected Vehicles

Gesture Recognition

- Between 30GHz and 300GHz
- Offers much greater bandwidths combined with further gains via beamforming and spatial multiplexing
- Antenna arrays: Enable large numbers (32 elements) of miniaturized antennas placed in small dimensions
- Increasing omnidirectional path loss due to the higher frequencies of mmWave transmissions
 - Compensated through suitable beamforming and directional transmissions
 - Severely vulnerable to shadowing (blockage)

Challenges

- Directional communications
- Shadowing
- Channel fluctuation
- Multiuser coordination
- Power consumption

Directional Transmissions

Path loss grows with the square of the frequency

 $rac{P_r}{P_t} = G_t G_r igg(rac{\lambda}{4\pi R}igg)^2$

- Small wavelength → Large path loss → Short transmission range
- Leverage antenna array and beamforming to steer directional beam with a stronger power
- Deafness occurs when the main lobes at both
 Tx and Rx do not point to each other

Shadowing

- mmWave signals are extremely susceptible to shadowing
 - High penetration loss due to obstacles
 - Brick can attenuate signals by as much as 40–80 dB

Channel Fluctuation

- For a given mobile velocity, channel coherence time is linear in the carrier frequency -> higher frequency, shorter coherence time
 - Connectivity will be highly intermittent and communication will need to be rapidly adaptable
 - Channel estimation should be performed frequently
 Iarge overhead

Multiuser Coordination

Directional transmissions imply more spatial reuse opportunities

- Challenges
 - How to locate users?
 - How to quickly switch the beam directions and widths?

Power Consumption

- Power consumption generally scales
 - linearly in the sampling rate
 - exponentially in the number of bits per samples
- Hard to achieve high-resolution quantization at wide bandwidths and large numbers of antennas
- Efficient RF power amplification and combining will be needed for phased array antennas

Phase Array

mmWave radios use phased antenna arrays to focus the power along one direction

Small Wavelength enables thousands of antennas to be packed into small space

→ Extremely narrow beams

Beam Searching

N: number of possible directions

Naïve solution: Exhaustive search $O(N^2)$ Beacon Packets \rightarrow Too expensive

802.11ad: Multi-Stage Scan

 Stage 1: Client uses omni-directional; AP scans directions

802.11ad: Multi-Stage Scan

 Stage 2: AP uses omni directional; client scans directions

Client

Hybrid Precoding

Iteratively reduce the size of lobes as scanning

Hybrid Precoding

Iteratively reduce the size of lobes as scanning

Hybrid Precoding

- Iteratively reduce the size of lobes as scanning
- Until the narrowest beam pointing to each other

