Wireless Communication Systems @CS.NCTU

Lecture 14: Full-Duplex Communications

Instructor: Kate Ching-Ju Lin (林靖茹)

Outline

- What's full-duplex
- Self-Interference Cancellation
- Full-duplex and Half-duplex Co-existence
- Full-duplex relaying

What is Duplex?

• Simplex

Half-duplex

• Full-duplex

How Half-duplex Works?

Time-division half-duplex

Frequency-devision half-duplex

Co-Channel (In-band) Full-duplex

Very strong self-interference (~70dB for 802.11)

- The transmitted signals will be an interference of the received signals!
- But, we know what we are transmitting
 → Cancel it!

Benefits beyond 2x Gain

- Can solve some fundamental problems
 - Hidden terminal
 - Primary detection for cognitive radios
 - Network congestion and WLAN fairness
 - Excessive latency in multihop wireless

Mitigating Hidden Terminal

- Current network have hidden terminals
 - CSMA/CA cannot solve this
 - Schemes like RTS/CTS introduce significant overhead

 Since both slides transmit at the same time, no hidden terminals exist

Primary Detection in Whitespaces

Secondary transmitters should sense for primary transmissions before channel use

Traditional nodes may still interfere during transmissions

Primary Detection in Whitespaces

Secondary transmitters should sense for primary transmissions before channel use

Full-duplex nodes can sense and send at the same time

Network Congestion and Fairness

Network Congestion and Fairness

Without full-duplex:

I/n bandwidth for each node in network, including AP
 Downlink Throughput = I/n Uplink Throughput = (n-I)/n

With full-duplex:

AP sends and receives at the same time

Downlink Throughput = I Uplink Throughput = I

Reducing Round-Trip Time

Outline

- What's full-duplex
- Self-Interference Cancellation
- Full-duplex and Half-duplex Co-existence
- Full-duplex relaying

Self-Interference Cancellation

Challenge 1: self-interference is much stronger than wanted signals, i.e., $|H_{self}|^2 \gg |H|^2$

Challenge 2: hard to learn real H_{self}

Self-Interference Cancellation

- Analog interference cancellation
 - RF cancellation (~25dB reduction)
 - Active
- Digital interference cancellation
 - Baseband cancellation (~15dB reduction)
 - Active
- Antenna cancellation
 - Passive

What Makes Cancellation Non-Ideal?

Transmitter and receiver phase noise

LNA (low-noise amplifier) and Mixer noise figure
 Noise figure (NF) is the measure

• Tx/Rx nonlinearity

ADC quantization error

Self-interference channel

of degradation of SNR caused by

components in a RF chain

Analog Cancellation

Why important?

- Before digital cancellation, we should avoid saturating the Low Noise Amplifier and ADC
- Eg., Tx power = 20 dBm and LNA with a saturation level -25dB → at least need -45 dB of analog cancellation

Major drawback

- Need to modify the radio circuitry
- Should be added after RF down-converter but before the analog-to-digital converter, usually not accessible

Analog Cancellation

- Objective is to achieve exact 0 at the Rx antenna
- Cancellation path = negative of interfering path
- These techniques need analog parts

Digital Cancellation

- Cancel interference at baseband
- Conceptually simpler requires no new "parts"
- Useless if interference is too strong (ADC bottleneck)

How Digital Cancellation Works?

- Assume only Tx is transmitting
 - → Tx receives self-interference

Estimate the self-channel

- When Rx starts transmitting
 - → Tx now receives

Cancel self-interference by

Digital Cancellation for OFDM

Cancel for each subcarrier separately

$$Y_{\mathsf{rx}}[k] \approx Y[k] - \hat{H}[k]_{\mathsf{tx,tx}} X_{\mathsf{tx}}[k] = H_{\mathsf{rx,tx}}[k] X_{\mathsf{rx}}[nk] + n$$

- But, can't just perform cancellation in the frequency domain → Why ?
 - Hard to do iFFT → Cancellation → FFT in real-time
- How can we do digital cancellation for each subcarrier in the time-domain?
 - See FastForward [Sigcomm'14]

Combine RF/Digital Cancellation

Antenna Cancellation

- Separate the antennas such that the two signals become deconstructive
 - The distance different = $\lambda/2$

~30dB self-interference cancellation combined with analog/digital cancellation → 70 dB

Antenna Cancellation: Block Diagram

Performance

Impact of Bandwidth

A $\lambda/2$ offset is precise for one frequency not for the whole bandwidth

WiFi $(2.4G, 20MHz) => \sim 0.26$ mm precision error

Bandwidth v.s. SIC Performance

Outline

- What's full-duplex
- Self-Interference Cancellation
- Full-duplex and Half-duplex Co-existence
- Full-duplex relaying

Full-Duplex Radios

- Transmit and receive simultaneously in the same frequency band
- Suppress self-interference (SI) [Choi et al. 2010, Bharadia et al. 2013]

Three-Node Full-Duplex

- Commodity thin clients might only be half-duplex
- Inter-client interference (ICI)
 - Uplink transmission interferes downlink reception

Access Control for 3-Node FD

- ICI might degrade the gain of full-duplex
 - Appropriate client pairing is required
 - Always enabling full-duplex may not good due to inter-client interference
 - Switch adaptively between full-duplex and halfduplex

Existing Works

- Only allow hidden nodes to enable fullduplex [Sahai et al. 2011]
 - Favor only part of clients, e.g., hidden nodes
- Pair clients based on historical transmission success probability [Singh et al. 2011]
 - Statistics takes time and might not be accurate due to channel dynamics
- Schedule all the transmissions based on given traffic patterns [Kim et al. 2013]
 - Need centralized coordinator and expensive overhead of information collection

Our Proposal: Probabilistic-based MAC

- Flexible adaptation
 - Adaptively switch between full-duplex and half-duplex
- Fully utilizing of full-duplex gains
 - Assign a pair of clients a probability of fullduplex access
 - Find the probabilities so as to maximize the expected overall network throughput
- Distributed random access
 - Clients still contend for medium access based on the assigned probability in a distributed way

Candidate Pairing Pairs

- Full-duplex pairs
 - Only allows those with both clients with nonnegligible rates

$$\mathcal{C}_{\text{full}} \triangleq \{(i,j) : i, j \in \mathcal{N}, \ i \neq j, r_d^{(i,j)}, r_u^{(i,j)} > \epsilon\}$$

- Half-duplex virtual pairs
 - Let '0' denote the index of a virtual empty node

$$\mathcal{C}_{\text{half}} \triangleq \{(i,j) : i = 0 \text{ or } j = 0, r^{(i,j)} > \epsilon\}$$

All candidate pairs

$$\mathcal{C} \triangleq \mathcal{C}_{\text{full}} \cup \mathcal{C}_{\text{half}}$$

Assign each pair a probability p(i,j)

Linear Programming Model

$$\mathcal{P}_1$$
:

$$\max \sum_{(i,j)\in\mathcal{C}} p^{(i,j)} r^{(i,j)}$$

Expected total rate

$$\sum p^{(i,j)} \geq \eta_d^{(i)}, orall i \in \mathcal{N}$$
 Downlink fairness

$$j \in \{j: (i,j) \in \mathcal{C}\}$$

$$\sum p^{(i,j)} \ge \eta_u^{(j)}, \forall j \in \mathcal{N}$$

Uplink fairness

$$i{\in}\{i{:}(i{,}j){\in}\mathcal{C}\}$$

$$\sum_{(i,j)\in\mathcal{C}} p^{(i,j)} = 1$$

Sum probability

variables:
$$p^{(i,j)} \in \mathbb{R}_{\geq 0}, \forall (i,j) \in \mathcal{C}$$

Probabilistic Contention

AP selects downlink user i with probability

$$p_d^{(i)} = \sum_{j \in \{j: (i,j) \in \mathcal{C}\}} p^{(i,j)}$$

• Given downlink user *i*, uplink users adjust its priority by changing its contention window to

$$CW_u^{(i,j)} = \lceil 1/p_u^{(i,j)} \rceil$$
, where $p^{(i,j)}/p_d^{(i)}$

Outline

- What's full-duplex
- Self-Interference Cancellation
- Full-duplex and Half-duplex Co-existence
- Full-duplex relaying

Today's Wireless Networks

- Ideally, 802.11ac and 802.11n support up to 780 Mb/s and 150 Mb/s, respectively
- In reality, signals experience propagation loss

What Can We Do?

Increase capacity and coverage using relay

Traditional Half-Duplex Relaying

TX and RX in a time/frequency division manner

Improve SNR, but also halve the bandwidth

Full-Duplex Relaying!

Simultaneous TX and RX on the same frequency

Improve SNR without halving the bandwidth

1. Amplify-and-forward or Construct-and-forward

2. Demodulate-and-forward [DelayForward, MobiHoc'16]

Pros and Cons of Amplify-and-Forward

✓ Negligible processing delay at relay

X Also amplifying the noise at the relay

1. Amplify-and-forward or Construct-and-forward

Challenges: Mixed Symbols

- Demodulation takes a much longer time
 - Receive the whole symbol → FFT → demodulation
 → modulation → IFFT
- It's unlikely to fast forward within a CP interval

Inter-symbol interference at the destination

Need to recover from mixed symbols

How to Ensure Decodability?

Introduce delay to enable symbol-level alignment

 Structure of combined signals is analogous to convolutional code

→ Viterbi-type Decoding

Pros and Cons of Delay-and-Forward

✓ Negligible processing delay at relay

X Also amplifying the noise at the relay

