Wireless Communication Systems @CS.NCTU

Lecture 12: Soft Information

Instructor: Kate Ching-Ju Lin (林靖茹)

PPR: Partial Packet Recovery for Wireless Networks

ACM SIGOCMM, 2017

Kyle Jamieson and Hari Balakrishnan

CSAIL, MIT

What is Partial Packet Error?

Lots of packets lost due to collisions and noise in wireless networks

Can't receive non-colliding bits today!

Bits in a packet don't share fate

Many bits from corrupted packets are correct, but status quo receivers don't know which!

Three Key Questions

- 1. How does receiver know which bits are correct?
- 2. How does receiver know P2 is there at all?
- 3. How to design an efficient ARQ protocol?

Can Receiver Identify Correct Bits?

- Use physical layer (PHY) hints: SoftPHY
 - Receiver PHY has the information!
 - Pass this confidence information to higher layer as a hint
- SoftPHY implementation is PHY-specific; interface is PHY-independent
- Implemented for direct sequence spread spectrum (DSSS) over MSK and other modulations

Can We Leverage Soft Info?

PHY conveys uncertainty in each bit it delivers up

Direct Sequence Spread Spectrum

Transmitter:

Receiver:

- Demodulate MSK signal
- Decide on closest codeword to received (Hamming distance)
- Many 32-bit chip sequences are <u>not</u> valid codewords
- Codewords separated by at least 11 in Hamming distance
- 802.11 similar

SoftPHY Hint for Spread Spectrum

Hamming distance between received chips and decided-upon codeword

```
Receive: 111011010000111000011010110100010
```

 C_1 : 11101101100111000011010100010

→ SoftPHY hint is 2

 C_1 : 1110110110011100001101010010010

→ SoftPHY hint is 9

Three Key Questions

1. How does receiver know which bits are correct?

- 2. How does receiver know P2 is there at all?
- 3. How to design an efficient ARQ protocol?

Postamble decoding

Receiver Design with Postamble

- Codeword synchronization
 - Translate stream of chips to codewords
 - Search for postamble at all chip offsets

Three Key Questions

- How does receiver know which bits are correct?
- 2. How does receiver know P2 is there at all?

3. How to design an efficient ARQ protocol?

ARQ with partial packets

- ARQ today: correctly-received bits get resent
- PP-ARQ key idea: resend only incorrect bits

- Efficiently tell sender about what happened
 - Feedback packet

Labeling Bits "good" or "bad"

- Threshold test: pick a threshold η
 - Label codewords with SoftPHY hint > η "bad"
 - Label codewords with SoftPHY hint $\leq \eta$ "good"

Hamming distance

PP-ARQ protocol

- 1. Assuming hints correct, which ranges to ask for?
 - Dynamic programming problem
 - Forward and feedback channels

- Codewords are in fact correct or incorrect
 - Two possibilities for mistakes
 - Labeling a correct codeword "bad"
 - Labeling an incorrect codeword "good"

Implementation

Sender: telos tmote sky sensor node

- Radio: CC2420 DSSS/MSK (Zigbee)
- Modified to send postambles

Receiver: USRP software radio with 2.4 GHz RFX 2400 daughterboard

- Despreading, postamble synchronization, demodulation
- SoftPHY implementation

PP-ARQ: trace-driven simulation

Experimental design

• 25 senders

6 receivers

Live wireless testbed experiments

Senders transmit 101-byte
 packets, varying traffic rate

- Evaluate raw PPR throughput
- Evaluate SoftPHY and postamble improvements
- 0 50 100 feet
- Trace-driven experiments
 - Evaluate end-to-end PP-ARQ performance
 - Internet packet size distribution
 - 802.11-size preambles

PP-ARQ performance comparison

Packet CRC (no postamble)

- Fragmented CRC (no postamble)
 - Tuned against traces for optimal fragment size

Throughput Gain: 2.3-2.8x

PP-ARQ Retransmissions are Short

25% Gain over Fragmented

22

PP-ARQ Retransmissions are Short

Low PP-ARQ Feedback Overhead

Related work

- ARQ with memory [Sindhu, IEEE Trans. On Comm. '77]
 - Incremental redundancy [Metzner, IEEE Trans. On Comm. '79]
 - Code combining [Chase, IEEE Trans. On Comm. '85]
- Combining retransmissions
 - SPaC [Dubois-Ferrière, Estrin, Vetterli; SenSys '05]
- Diversity combining
 - Reliability exchanging [Avudainayagam et al., IEEE WCNC '03]
 - MRD [Miu, Balakrishnan, Koksal; MobiCom '05]
 - **SOFT** [Woo et al.; MobiCom '07]
- Fragmented CRC
 - **Seda** [Ganti et al.; SenSys '06], 802.11 fragmentation

Conclusion

- Mechanisms for recovering correct bits from parts of packets
 - SoftPHY interface (PHY-independent)
 - Postamble decoding
- PP-ARQ improves throughput 2.3–2.8× over the status quo
- PPR Useful in other apps, e.g. opportunistic forwarding