# Wireless Communication Systems @CS.NCTU

Lecture 10: Rate Adaptation

Instructor: Kate Ching-Ju Lin (林靖茹)

### Agenda

- What is bit-rate adaptation?
- What are the challenges?
- Receiver-based bit-rate adaptation
- Transmitter-based bit-rate adaptation
- Bit-rate adaptation for multicast

### Bit-Rates in 802.11

| Bit- | 802.11                 | DSSS | Modulation | Bits   | Coding | Mega-   |
|------|------------------------|------|------------|--------|--------|---------|
| rate | Stan-                  | or   |            | per    | Rate   | Symbols |
|      | $\operatorname{dards}$ | OFDM |            | Symbol |        | per     |
|      |                        |      |            |        |        | second  |
| 1    | b                      | DSSS | BPSK       | 1      | 1/11   | 11      |
| 2    | b                      | DSSS | QPSK       | 2      | 1/11   | 11      |
| 5.5  | b                      | DSSS | CCK        | 1      | 4/8    | 11      |
| 11   | b                      | DSSS | CCK        | 2      | 4/8    | 11      |
| 6    | a/g                    | OFDM | BPSK       | 1      | 1/2    | 12      |
| 9    | a/g                    | OFDM | BPSK       | 1      | 3/4    | 12      |
| 12   | a/g                    | OFDM | QPSK       | 2      | 1/2    | 12      |
| 18   | a/g                    | OFDM | QPSK       | 2      | 3/4    | 12      |
| 24   | a/g                    | OFDM | QAM-16     | 4      | 1/2    | 12      |
| 36   | a/g                    | OFDM | QAM-16     | 4      | 3/4    | 12      |
| 48   | a/g                    | OFDM | QAM-64     | 6      | 2/3    | 12      |
| 54   | a/g                    | OFDM | QAM-64     | 6      | 3/4    | 12      |

# **Coding Rate**

- Avoid random errors
  - 1/2: Add 1x redundant bits
  - -3/4: Add 1/3x redundant bits
- Haven't solved the problem yet
  - Data input: 1, 1, 0, 1, 0, 1, 1, 0, ...
  - After encoding: 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, ....
  - Still one bit error → Suffer from burst errors

### Interleave and De-interleave



### Channel Quality vs. Bit-Rate

- When channels are very good
  - Encode more digital bits as a symbol
- When channels are noisy
  - Encode fewer data bits as a sample

Why is it affected by the channel quality?

### Error Probability vs. Modulations

### Given the same SNR



SNR =  $10\log 10 (|signal|^2/|noise|^2)$ 

Given the same SNR, decodable for BPSK, but un-decodable for QPSK

# SNR vs. BER (Bit Error Rate)



802.11 operating region 5dB

### SNR vs. PDR (Packet Delivery Ratio)

- In 802.11, a packet is received correctly if it passes the CRC check (all bits are correct)
  - Receive all or none
- Given a SNR value, BER and PDR change with bit-rates



 $PDR(r) = (1-BER(r))^n$ 

Throughput(r) = PDR(r) \* r

Throughput degrades quickly even with a small BER

### **Bit-Rate Selection**

 Given the SNR, select the optimal bit-rate that achieves the highest throughput

$$r^* = \arg\min_r \mathrm{PDR}(r) * r$$

Ideal case without considering the protocol overhead



### Difficulties with Rate Adaptation

- Channel quality changes very quickly
  - Especially when the device is moving
- Can't tell the difference between
  - poor channel quality due to noise/interference/collision (high | noise | )
  - poor channel quality due to long distance (low |signal|)

Ideally, we want to decrease the rate due to low signal strength, but not interference/collisions

# Types of Auto-Rate Adaptation

|                  | Transmitter-based | Receiver-Based  |
|------------------|-------------------|-----------------|
| SNR-based        |                   | RBAR, OAR, ESNR |
| ACK-based        | ARF, AARF, ONOE   |                 |
| Throughput-based | SampleRate, RRAA  |                 |
| Partial packet   |                   | ZipTx           |
| Soft information |                   | SoftRate        |

# Sync. ACK vs. Async ACK



### Synchronous ACK

- Sent immediately after SIFS as a control frame (defined in 802.11)
- Cost the minimum overhead
- Only know whether the packet is transmitted correctly

### Asynchronous ACK

- Sent as a data frame
- Cost additional overhead
- Can include more detailed information (e.g., error rate)

# Types of Auto-Rate Adaptation

|                  | Transmitter-based | Receiver-Based  |
|------------------|-------------------|-----------------|
| SNR-based        |                   | RBAR, OAR, ESNR |
| ACK-based        | ARF, AARF, ONOE   |                 |
| Throughput-based | SampleRate, RRAA  |                 |
| Partial packet   |                   | ZipTx           |
| Soft information |                   | SoftRate        |

**Properties** 

| Selected by Tx | Selected by Rx     |  |
|----------------|--------------------|--|
| Sync. ACK      | Async. ACK         |  |
| Less accurate  | Higher<br>overhead |  |

### **Rx-based Adaptation**

### Receiver Based Auto Rate (RBAR)

- The receiver measures the SNR of the RTS, and picks the optimal rate based on the SNR-to-rate lookup table
- Piggyback the selected rate in CTS

### Opportunistic Auto Rate (OAR)

- Similar to RBAR, but consider the channel coherence time
- If the channel is good, opportunistically send more packets since the channel time of each frame is short

#### Pros

 More accurate since the Rx can measure the up-to-date channel condition

#### • Cons

- Rely on asynchronous ACK, causing a higher overhead

### **Tx-based Adaptation**

### SampleRate

- Default in Linux

#### RRAA

- Robust Rate Adaption Algorithm

#### In common

- Probe the packets at a rate not used currently
- See if switching to another rate gives a higher throughput

#### Differences

- Switch the rate by estimating the effective throughput
- Switch the rate by measuring the packet loss rate

### SampleRate – Tx-based Adaptation

- Default in Linux
- Periodically send packets at a randomlysampled bit-rate other than the current bit-rate
  - Let r\* be the current best rate
  - After sending 10 packets at the best rate, send a packet at a randomly-sampled rate
  - Estimate the achievable throughput of the sampled rates



### SampleRate – Throughput Estimation

- How to estimate the effective throughput of a rate?
  - Calculate the transmission time of a L-bit packet
  - Consider packet length (I), bit-rate (r), number of retries (n), backoff time

$$T_{tx}(r, n, l) = T_{\text{DIFS}} + T_{\text{back off}}(n) + (n+1)(T_{\text{SIFS}} + T_{\text{ACK}} + T_{\text{header}} + l/r)$$

 Select the rate that has the smallest measured average transmission time to deliver a L-bit packet

$$r^* = \min_r T_{tx}(r, n, L)$$

### SampleRate

- Do not sample the rates that
  - Have failed four successive times
  - Are unlikely to be better than the current one
- Is thought of the most efficient scheme for static environments
  - SNR, and thereby BER and best rate, do not change rapidly over time
- Waste channel time for sampling if the channel is very stable

### RRAA – Tx-based Adaptation

- Robust Rate Adaption Algorithm
- Root causes of packet failures
  - Channel fading: mainly determined by the link distance
  - Random events: collisions, cross-technique interferenece (e.g., bluetooth or microwave)

#### Goal

- Robust against random loss: Should not switch the rate due to random channel variation
- Responsive to drastic channel changes: Should respond quickly to significant channel changes

S. Wong, H. Yang, S. Lu, V. Bharghavan, "Robust Rate Adaptation for 802.11 Wireless Networks," ACM MOBICOM, 2006

### RRAA

- Use short-term loss ratio to assess the channel
  - Probe a window of N frames at a bit-rate
  - Estimate the loss ratio

$$P = \frac{\text{\# lost frames}}{\text{\# transmitted frame}}$$



- Stay unchanged if the loss ratio is acceptable
  - $-P_{min} < P < P_{max}$
- Switch the rate to
  - A higher one if  $P < P_{min}$ : imply that the channel is good enough to try the higher rate
  - A lower one if  $P < P_{max}$ : imply that the channel is too bad to use the current rate

# RRAA - Parameter Configuration

- P<sub>max</sub>: Maximum tolerable loss threshold
  - the effective throughput of the current rate should be no worse than the loss-free throughput at a lower rate

$$(1 - P_{\text{max}}^r) \frac{l}{T_{rx}(r, n, l)} = \frac{l}{T_{rx}(r - 1, n = 1, l)}$$

$$\Rightarrow P_{\text{max}}^r = 1 - \frac{T_{rx}(r, n, l)}{T_{rx}(r - 1, n = 1, l)}$$

- P<sub>min</sub>: Opportunistic rate Increase threshold
  - Harder to predict because we do not know how good is good enough
  - Heuristic:  $P_{\min} = P_{\max}^{r+1}/\beta, \beta = 2$
- Window size N
  - Long enough to capture the minimum probability  $P_{min}$

### Rate Adaptation for Multicast



- Why it is difficult?
  - Can only assign a single rate to each packet
  - But the channel conditions of clients are different
- Possible Solutions
  - For reliable transmission: select the rate based on the worst node
  - For non-reliable transmission: provide clients heterogeneous throughput

### Reliable Multicast Protocol

- Before rate adaptation, we should first ask:
  - How to efficiently collect ACK from multicast clients?
- Leader-based Protocol (LBP)
  - Select one of the receivers as the leader to reply ACK
  - Leader

if receive successfully, send ACK otherwise, send NACK

- Others

if receive successfully, do nothing otherwise, send NACK

Retransmit if the AP receives any NACK

J. Kuri and S. Kasera, "Reliable Multicast in Multi-Access Wireless LANs," IEEE INFOCOM, Mar. 1999.

24

# Rate Adaptation for <u>Data Multicast</u>

- Rate Adaptive Reliable Multicast (RAM)
  - Should pick the bit-rate based on the channel of the worst receiver
- Say we have three receivers A, B, and C
  - Each receiver feedbacks CTS at its optimal rate chosen based on its SNR
  - The AP detects the lowest rate by measuring the longest channel time occupied by CTS



# Rate Adaptation for Video Multicast

- Video codec usually allows some losses
  - Receive more frames -> better video quality
  - Receive less frame → lower video quality
- No need to receive everything
  - No need to be constrained by the channel of the worst receiver
- One would expect a video quality proportional to its channel condition, i.e., differential QoS
  - Higher SNR → better video quality
  - Lower SNR → lower video quality

J. Villalon et. Al., "Cross-Layer Architecture for Adaptive Video Multicast Streaming over Multirate Wireless LANs," IEEE JSAC, vol. 25, no. 4, pp. 699-711, May 2007.

# Rate Adaptation for Video Multicast

- H-ARSM (Hybrid Auto Rate Selection Mechanism)
- Mainly consider two video layers: base layer and enhancement layer

Heuristic; not really optimizing for QoS/QoE

### **Design principles**

- Guarantee a minimum video quality
  - Ensure that everyone reliably gets the base layer
  - Again, send at the rate according to the worst receiver
- Pick a more aggressive rate for the enhancement layer
  - Use the next higher rate if there exist one (or more)
     receivers with an SNR above the threshold of that rate

### Recent Proposals

### ZipTx

K. Lin, N. Kushman and D. Katabi, "Harnessing Partial Packets in 802.11 Networks," ACM MOBICOM, 2008

Exploit partial packets with consideration of bit-rate adaptation

#### SoftRate

M. Vutukuru, H. Balakrishnan and K. Jamieson, "Cross-Layer Wireless Bit Rate Adaptation," ACM SIGCOMM, 2009

Exploit soft information to improve selection accuracy

#### FARA

H. Rahul, F. Edalat, D. Katabi and C. Sodini, "Frequency-Aware Rate Adaptation and MAC Protocols," ACM MOBICOM, 2009

Adapt the bit-rate for every OFDM subcarrier

#### • ESNR

D. Halperin, W. Hu, A. Sheth and D. Wetherall, "Predictable 802.11 Packet Delivery from Wireless Channel Measurements", ACM SIGCOMM, 2010

Consider frequency selective fading