Wireless Communication Systems @CS.NCTU

Lecture 10: Rate Adaptation

Frequency-Aware Rate Adaptation (MobiCom'09)

Lecturer: Kate Ching-Ju Lin (林靖茹)

Motivation

- The bandwidth supported in 802.11 is getting wider
 - 20MHz in 802.11a/b/g
 - 40MHz in 802.11n
 - 80-160MHz in 802.11ac
- 802.11 adopts OFDM, which partitions the wideband channel to subcarrier
- Frequency-selective fading
 - Different subcarriers experience independent fading due to the multipath effect
 - Different frequencies exhibit very different SNRs
 - But the transmitter can assign one rate to the entire band

Frequency Diversity

- The SNRs of different frequencies can differ by as much as 20dB
- Different receivers prefer different frequencies

Key Features of FARA

- Allow a receiver to measure the SNR of each sub-channel
- Instead of assigning the same rate to the entire band, allows each sub-channel to pick the optimal rate matching its SNR

SNR-based Adaptation

Minimum Required SNR	Modulation	Coding
<3.5 dB	Suppress subband	
3.5 dB	BPSK	1/2
5.0 dB	BPSK	3/4
5.5 dB	4-QAM	1/2
8.5 dB	4-QAM	3/4
12.0 dB	16-QAM	1/2
15.5 dB	16-QAM	3/4
20.0 dB	64-QAM	2/3
21.0 dB	64-QAM	3/4

- Maintain a SNR-to-rate lookup table
- The sender transmits few symbols at the lowest bit-rate for all sub-channels
- The receiver selects the highest rate for each subchannel corresponding to the SNR of that sub-channel
 - Discard the sub-channels if SNR is too low to support the lowest rate

Rx-based Adaptation

- The receiver is in charge of
 - Measuring the channel
 - Selecting the rate
 - Responding to the AP
- To decrease the feedback overhead, embed the rate information in ACK
- Perform some optimization to reduce the size of the embedded information

FARA in Frequency-Aware MAC

- Further combine FARA with the frequency-aware MAC protocol to leverage frequency diversity
- Instead of communicating with one receiver at a time, serve N (2-5) receivers concurrently
 - Randomly select N receivers with queued packets
 - Assign each sub-channel to a proper receiver
 - All the N receivers occupy the entire band

Performance

Compare with SampleRate in 20MHz and 100MHz channel

Throughput gain is especially large as the band is wider

Wireless Communication Systems @CS.NCTU

Lecture 10: Rate Adaptation

Predictable 802.11 Packet Delivery from Wireless Channel Measurements (SIGCOMM'10)

Kate Ching-Ju Lin (林靖茹)

Motivation

- Again, different frequencies experience different channel condition → frequency-selective
- Why not FARA?
 - Need hardware modification

Traditional SNR-based Adaptation

- SNR-based rate adaptation is usually inaccurate because we
 - Assume frequency-flat fading
 - Select the bit-rate based on "average SNR" across subcarriers
- However, this will over-estimate the channel quality because
 - A packet will fail to pass the CRC check even if only a few bits are in error due to frequency-selective fading

Traditional model: Packet SNR

 Traditional theory well maps the channel condition (SNR) to the corresponding bit-error rate (BER)

- e.g.,
$$BER = Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right) = Q(\sqrt{2SNR})$$
 in BPSK

- But, this only work for a narrow band channel
- The average SNR over all sub-carriers is not a good representation of a wideband channel
 - Why? The channel condition is not a linear function
 - The losses in a few subcarriers would lead to packet errors

Traditional model: Packet SNR

- Packet SNR: Average power of a link / Noise power
- Due to frequency-selective fading, a link could have a higher packet SNR, but also have a high bit-error rate

Effective SNR (ESNR)

- Can we find a metric that can be used to
 - Represent a wideband channel
 - Estimate the BER of the whole packet
 - → Effective SNR (ESNR)
- Average SNR vs. Effective SNR
 - Total power of a link vs. Useful power of a link

Effective SNR (ESNR)

Benefits

- Can accurately estimate the packet delivery rate of packets
- Pick a single bit-rate that maximizes the packet delivery rate or the effective throughput in a wideband channel
- How to calculate?
 - Reuse the theoretical channel model derived in the textbook
 - Find the expected BER of a link
 - Then, convert it back to the effective SNR

```
narrow-band SNR ← → narrow-band BER effective SNR ← → packet BER
```

Effective BER and Effective SNR

 First calculate the average BER of a selected modulation k across all subcarriers i

$$BER_{eff,k} = \frac{1}{N} \sum BER_k(SNR_i)$$

Convert it back to the effective SNR

$$ESNR_k = BER_k^{-1}(BER_{eff,k})$$

Modulation	Bits/Symbol (k)	$\mathrm{BER}_k(\rho)$
BPSK	1	$Q\left(\sqrt{2\rho}\right)$
QPSK	2	$Q\left(\sqrt{ ho}\right)$
QAM-16	4	$\frac{3}{4}Q\left(\sqrt{ ho/5}\right)$
QAM-64	6	$\frac{7}{12}Q\left(\sqrt{\rho/21}\right)$

 BER_{k}^{-1} (): the inverse function BER_{k} ()

ESNR-based Rate Adaptation

- ESNR can be thought of the equivalent SNR of a wideband flat-fading channel
- Hence, now we are able to use ESNR to find the optimal rate by looking up the SNR-to-rate mapping table