Wireless Communication Systems @CS.NCTU

Lecture 8: Video – H261 Instructor: Kate Ching-Ju Lin (林靖茹)

Chap. 10.4 of "Fundamentals of Multimedia"

Outline

Introduction

- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

Introduction to H.261

- Video coding and decoding for the moving picture component of audiovisual services at the rates of p × 64 (kbps), where p ranges form 1 to 30
- Improve storage and transmission efficiency in ISDN (Integrated Service Digital Network)
 - considering a relatively low bitrate
- Belong to the following set of ITU recommendations
 - H.221, H230, H.242, H.261, H.320

Example: Recommendation H.320

Video Formats in H.261

Video format	Luminance image resolution	Chroma image resolution	Bitrate (Mbps) for 30fps	H.261 support
QCIF	176 x 144	88 x 72	9,1	required
CIF	352 x 288	176 x 144	36,5	optional

- Chroma subsampling: 4:2:0
- Compression ratio: about 100 to 300
- Designed for lowrate
 → QCIF is specified as required, while CIF is optional

Outline

- Introduction
- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

H.261 Frame Sequence

I-frame

- Independently coded
- Coded using a transform coding method, e.g., DCT (similar to JPEG), hence called intra-frame
- Spatial redundancy removal only

P-frame

- Not independent, coded using a forward predictive coding method
- Difference between frames are coded
- Both spatial and temporal redundancy removal

H.261 Frame Sequence (Cont.)

- Interval between pairs of I-frames is a variable
- Motion vectors are measured within a range of ±15 pixels, i.e., p=15
- A P-frame can be predicted by the preceding Ior P-frame

Outline

- Introduction
- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

Stage 1 -Reducing Temporal Redundancy

- Segment a frame into macroblocks
- Compensate motion and remove temporal redundancy
- Output energy is related to the degree of temporal redundancy
- This stage is inter-frame coding

Stage 2 -Reducing Spatial Redundancy

- Processing the difference frame (spatially correlated) from stage 1
- Usually using DCT coding
- This stage is intra-frame coder

These two stages together are hybrid coding

- Partition a frame into macroblocks
- Macroblocks is further partitioned into 8×8 blocks
- Adopt 4:2:0 chroma sampling
 - each macroblock is of 16 ×16 pixels for Y frames
 - each macroblock is of 8 × 8 pixels for Cb and Cr frames
- Apply DCT to code each 8 × 8 block
 - then go through quantization, zigzag scanning and entropy coding

- Coded based on motion compensation
 - For each macroblock, find the motion vector
 - Find the difference between the target MB and reference MB
 - → prediction error = difference macroblock

Example 2

- Coded based on motion compensation
 - For each macroblock, find the motion vector
 - Find the difference between the target MB and reference MB
 - → prediction error = difference macroblock

- Coded based on motion compensation
 - For each macroblock, find the motion vector
 - Find the difference between the target MB and reference MB
 - \rightarrow prediction error = difference macroblock
- Code the difference macroblock if the error is small enough
 - Difference MV usually has a much smaller entropy
- In fact, motion vector (MV) is not coded directly
- Instead, the difference between motion vectors (MVD) is coded
 - MVD = MV_{preceding} MV_{current}

Summary of Hybrid Coding

- Temporal redundancy
 - Removed by Motion Estimation/Compensation
- Spatial redundancy
 - Removed by Transform coding
- Statistic redundancy
 - Removed by Entropy coding (VLC)
 - Applied for both 8x8 blocks and motion vectors

Outline

- Introduction
- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

Quantization

- Does not use 8 × 8 quantization matrices (as in JPEG/MPEG)
- Instead, use a constant, called step_size, for all DCT coefficients
- **step_size** can be any one of the 31 even values from [2, 62]

$$\mathsf{QDCT} = \left\lfloor \frac{\mathsf{DCT}}{step_size} \right\rfloor$$

 However, for the DC coefficient, step_size is always set to 8

$$\mathsf{QDCT} = \mathsf{round}\left(\frac{\mathsf{DCT}}{step_size}\right)$$

Outline

- Introduction
- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

Coding Loop

- Encoder and decoder should maintain the same reference frames (quantized one!)
 - To avoid error propagation (error drift)

Encoding I-frame

- 1. Receive macroblocks from the I-frame
 - Go to DCT, Q, VLC and be output
- 4. Use Q^{-1} and IDCT to get to get the reconstructed frame
- 5. Combine with a zero input
- 6. Remain as I, stored in the frame buffer as the reference frame for the following Pframe

Why store the reconstructed I as the reference frame, instead of the original I?

Encoding P-frame

- 1. Receive macroblocks from the P-frame
 - Go to motion estimation
 - Find the motion vector best matching $\tilde{\mathbf{I}}$
 - Send the motion vector to VLC
- 2. Yield the best matching MB P'
- 3. Find the difference (prediction error) D = P - P'
 - Send the error D to DCT, Q and VLC
- 4. Also send D to Q and IDCT to reconstruct D
- 5. Find the reconstructed P-frame $\tilde{P} = P' + \tilde{D}$
- Store P in the frame buffer as the reference frame of the next P-frame

Encoding System

- Switching between intra- and inter-frame modes by a multiplexer
- "Coding control" controls **step_size** according to the buffer level

Decoding System

Outline

- Introduction
- Frame sequence
- Frame coding
- Quantization
- Encoder and decoder
- H.261 syntax

Coding Hierarchy

- Defined in the standard to ensure that the system can be interpreted universally
- Four-layer hierarchy
 - Picture layer: corresponding to one video frame (CIF or QCIF)
 - Group of block (GOB) layer: each is of 11×3 macroblocks (i.e., 176×48 pixels in luminance images), corresponding to 1/12 of CIF or 1/3 of QCIF
 - Macroblock layer: corresponding to 16×16 pixels of luminance (Y) and 8x8 of chrominance (Cb, Cr)
 - Block layer: corresponding to 8×8 pixels, coded by <u>DCT</u> and run-length coding

H.261 Video Bitstream

Blocks Arrangement

CIF (a) GOB arrangement in a picture

(c) block arrangement in a MB

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33

(b) macroblock arrangement in a GOB

Macroblock Type

Prediction	MQUANT	MVD	CBP	TCOEFF	VLC
Intra				x	0001
Intra	x			X	0000001
Inter			X	X	1
Inter	x		X	X	00001
Inter + MC		x			00000001
Inter + MC		x	X	X	0000001
Inter + MC	X	x	X	X	000000001
Inter + MC + FIL		x			001
Inter + MC + FIL		x	X	X	01
Inter + MC + FIL	x	X	X	X	000001

H.261

- Does not specify:
 - Preprocessing and post processing
 - The criteria for choosing the mode for coding a macroblock
 - The use of BCH (511,493) in the decoder
 - Motion estimation in the encoder
 - The quantizer decision levels
 - Rate-control algorithm
 - Frame-rate
- Specifies:
 - Bit-stream syntax and decoding
 - A macroblock should be forcibly updated at least once per every 132 times it is transmitted
 - For CIF, the number of bits created by coding any single picture must not exceed 256 kb; for QCIF, 64 kb
 - Hypothetical Reference Decoder (HRD)

Summary

Frame sequence

- Consist of I-frames and P-frames
- Frame coding
 - I-frames are coded similar to JPEG
 - P-frames are predicted by I-frames
- Quantization
 - Slightly different from JPEG
- Encoder and decoder
 - Code loop for implementing motion estimation and prediction
- H.261 syntax