
Lecture 5: Compression
Instructor: Kate Ching-Ju Lin (林靖茹)
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Chap. 7-8 of “Fundamentals of Multimedia”
Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15F/



Outline

• Concepts of data compression

• Lossless Compression

• Lossy Compression

• Quantization
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Why compression?
• Audio, image, and video require huge storage 

and network bandwidth if not compressed
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Application uncompressed compressed
Audio conference 64kbps 16-64kbps
Video conference 30.41Mbps 64-768kbps
Digital video on CD-ROM (30fps) 60.83Mbps 1.5-4Mbps
HDTV (59.94fps) 1.33Gbps 20Mbps

Remove redundancy!



Compression Concepts
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Compression Concepts
• Source Coding

• Also known as data compression
• The objective is to reduce the size of messages
• Achieved by removing redundancy
• Entropy encoding: minimize the size of messages 

according to a probability model
• Channel Coding

• Also known as error correction
• Repetition codes, parity codes, Reed-Solomon 

codes, etc.
• Ensure the decoder can still recover the original 

data even with errors and (or) losses
• Should consider the probability of errors happening 

during transmission (e.g., random loss or burst loss)
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Considerations for Compression

• Lossless vs. Lossy
• Quality vs. bit-rate
• Variable bit rate (VBR) vs. constant bit rate 

(CBR)
• Robustness 

• Combat noisy channels
• Complexity 

• Encoding and decoding efficiency
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Compression Performance
• Compression ratio =
• Signal quality

• Signal-to-noise ratio 

• Peak-Signal-to-noise ratio

• Mean Opinion Score (MOS)
• very annoying, annoying, slightly annoying, perceptible 

but not annoying, imperceptible

• Goal:
• Higher signal quality with higher compression ratio
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Compression Technologies
• Statistical redundancy

• Lossless compression
• Also known as entropy coding
• Build on the probabilistic characteristics of signals

• Perceptual redundancy 
• Lossy compression
• Lead to irreversible distortion 
• Complex and depends on context or applications
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Information Theory
• Consider an information source with alphabet 

S = {s1, s2, …, sn}, the self-information contained 
in si is defined as

where pi is teh probability that symbol si in S 
will occur

• Key idea of variable length coding
• Frequent symbols à represented by less bits
• Infrequent symbols à represented by more bits
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i(si) = log2
1

pi

Low probability pi à Large amount of information
High probability pi à Small amount of information



Information Theory - Entropy
• Entropy η of an information source

• Expected self-information of the whole source

• Measure the disorder of a system à more entropy, 
more disorder

• Greater entropy when the distribution is flat
• Smaller entropy when the distribution is more peaked

• Shannon’s theory: best lossless compression generates 
an average number of bits equal to entropy
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Properties of Compression
• Unique decodable

• Encode: y = f(x)
• Decode: x = f-1(y) à there exists only a single solution
• A code is not unique decodable 

if f(xi) = f(xj) = y for some xi ≠ xj

• Instantaneous code
• Also called prefix-free code or prefix code
• Any codeword cannot be the prefix of any other 

codeword, i.e., yi not the prefix of yj for all yi ≠ yj

• Why good? 
• When a message is sent, the recipient can decode the 

message unambiguously from the beginning
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x: symbol
y: codeword



Properties – Examples

• Non-unique decodable

• Non-Instantaneous code
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s1 = 0
s2 = 01
s3 = 11
s4 = 00

0011 could be s4s3 or s1s1s3

s1 = 0
s2 = 01
s3 = 011
s4 = 11

Coded sequence: 0111111 …. 11111
s4

à Decode until receiving all bits



Outline

• Concepts of data compression

• Lossless Compression

• Lossy Compression

• Quantization
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Lossless Compression
• Commonly known as entropy coding
• Algorithms

• Huffman coding
• Adaptive Huffman coding
• Arithmetic coding
• Run-length coding
• Golomb and Rice coding
• DPCM
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Huffman Coding
• Proposed by David A. Huffman in 1952
• Adopted in many applications, such as fax 

machines, JPEG and MPEG
• Bottom-up manner: build a binary coding tree

• left branches are coded 0
• right branches are coded 1

• High-level idea
• Each leaf node is a symbol
• Each path is a codeword
• Less frequent symbol 
à longer codeword path
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Huffman Coding

• Algorithm
1. Sort all symbols according to their probabilities
2. Repeat until only one symbol left

a) Pick the two symbols with the smallest probabilities
b) Add the two symbols as childe nodes
c) Remove the two symbols from the list
d) Assign the sum of the children's probabilities to the 

parent
e) Insert the parent node to the list
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Huffman Coding – Example
Symbol Count Probability Code

A 15 0.375 0
B 7 0.175 100
C 7 0.175 101
D 6 0.150 110
E 5 0.125 111
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Huffman Coding – Pro and Cons
• Pros

• Unique decodable
• Prefix code
• Optimality:  average codeword length of a 

message approaches its entropy
à shown η ≤ E[L] ≤  η+1 

• Cons
• Every code has an integer bit length
• Why inefficient?

• If a symbol occurs very frequently
log2(1/p) close to 0 à but still need one bit
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Arithmetic Coding
• Usually outperform Huffman coding
• Encode the whole message as one unit
• High-level idea

• Each message is represented by an interval [a,b), 0
≤ a,b ≤ 1

• Longer message à shorter interval 
à more bits to represent a smaller real number

• Shorter message à longer interval
à less bits to represent a greater real number

• Example
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Symbol low high range
0 1.0 1.0

C 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036



Arithmetic Coding – Encoding
• Maintain a probability table

• Frequent symbol à larger range
• Need a terminator symbol $

• Algorithm: 
• Initialize low = 0, high = 1, range = 1
• Repeat for each symbol

• low = low + range * rangemin(symbol)
• high = low + range * rangemax(symbol)
• Range = high  - low

Symbol low high range
0 1.0 1.0

C 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

Sym probability range
A 0.2 [0, 0.2)
B 0.1 [0.2, 0.3)
C 0.2 [0.3, 0.5)
D 0.05 [0.5, 0.55)
E 0.3 [0.55, 0.85)
F 0.05 [0.85, 0.9)
$ 0.1 [0.9, 1)

Encode a message CAEE$



Arithmetic Coding – Encoding
• Illustration

21

1

0.2
0.3

0.5
0.55

0.85
0.9

A

B

C

D

E

F

$

0

A

B

C

D

E

F

$

0.3322

0.33184

A

B

C

D

E

F

$
0.3322

0.3286

A

B

C

D

E

F

$

0.334

0.322

A

B

C

D

E

F

$

0.34

0.3

A

B

C

D

E

F

$

0.5

0.3



Arithmetic Coding – Decoding

• Algorithm
• while not $

1. Find a symbol s so that
rangemin(s) ≤ value ≤ rangemax(s)

2. Output s
3. low = rangemin(s) 
4. high = rangemax(s)
5. range =high – low
6. value = (value – low) / range 
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Arithmetic Coding – Properties

• When the intervals shrink, we need very high-
precision number for encoding

• Might not be feasible

• Need a special terminator symbol $
• Need to protect $ in noisy channels
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Run-Length Coding
• Input sequence:

0,0,-3,5,0,-2,0,0,0,0,2,-4,0,0,0,1
• Run-length sequence:

(2,-3)(0,5)(1,-2)(4,2)(0,-4)(3,1)

• Many variations
• Reduce the number of samples to code
• Implementation is simple
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Number of zeros next non-zero value
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• Concepts of data compression

• Lossless Compression

• Lossy Compression

• Quantization
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Compression Technologies
• Statistical redundancy

• Lossless compression
• Also known as entropy coding
• Build on the probabilistic characteristics of signals

• Perceptual redundancy 
• Lossy compression
• Lead to irreversible distortion 
• Complex and depends on context or applications
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Rate-Distortion Function
• Numerical measure for signal quality 

• SNR
• PSNR

• How to evaluate the tradeoff between 
compression ratio and  signal quality?

• Rate-distortion function (D = 0 means lossless0

Source:http://jov.arvojournals.org/article.aspx
?articleid=2213283



Transform Coding
• Remove spatial redundancy 

• Spatial image data are transformed in to a different 
representation: transformed domain

• Make the image data easier to be compressed
• Transformation (T) itself does not compress data

• Compression is from quantization!

28

X Y
original domain transformed domain

⟹T

Greater entropy

Need mores bits

Smaller entropy

Need less bits



Fourier Analysis
• Fourier showed that any periodic signal can be 

decomposed into an infinite sum of sinusoidal 
waveforms

• nwx is the frequency component of the sinusoidal wave
• F(u) is the coefficient (weight) of a wave, cos(nwx)

• Why useful?
• Most of natural signals consists of only a few dominant 

frequency components
• Due to this sparsity, it is easier to compress the signals 

after transformation
• Dropping weak components à distortion is small and 

hardly be detected by human eyes
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FFT Example
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http://68.media.tumblr.com/8ab71becbff0e242d0bf8d
b5b57438ab/tumblr_mio8mkwT1i1s5nl47o1_500.gif



Fourier Analysis – Example
• Coefficient F(n) is the amplitude of its 

corresponding frequency component
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Transformation Technologies

• Discrete cosine transform (DCT)
• Usually applied to small blocks
• JPEG, H26x, MPEG-x

• Discrete wavelet transform (DWT)
• Usually applied to large images
• JPEG 2000, MPEG-4 still texture
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Discrete Cosine Transform (DCT)
• Image have discrete points à DCT

• Idea is similar to Fourier analysis

• Usually only the DC component (left-top) has a 
large amplitude

• High-frequency AC components are close to zero
34
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2D-DCT Coefficients
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• Original signals is the linear combination of DC 
and different ACs basis functions

• (DC: frequency = 0, ACi: frequency iπ)

Discrete Cosine Transform (DCT)
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2D-DCT
• Two-dimensional DCT
• Represent each block of image pixels as a weighted 

sum of 2D cosine functions (basis functions)
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• Block size: N x N
• f(x,y): pixel value
• F(u,v): DCT coefficients



2D 8x8 DCT Basis Functions
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An Example of Energy Distribution
• In frequency domain, bias distribution à small 

entropy à need only a few bits for compression
• Peak in the DC component
• Nearly 0 in high frequency components

• Compress them!

time-domain 
pixel values frequency-domain response
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⟹
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Transformation Technologies

• Discrete cosine transform (DCT)
• Usually applied to small blocks
• JPEG, H26x, MPEG-x

• Discrete wavelet transform (DWT)
• Usually applied to large images
• JPEG 2000, MPEG-4 still texture
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Wavelet Transformation Concept
• Consider both variable frequency and time

resolutions

• DCT (or DFT) only has the same time and 
frequency resolution

41



• Dynamic decomposition
• Lower frequency subbands have finer frequency 

resolution and coarser time resolution
• Suitable for natural images
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Wavelet Transformation Concept



2D-DWT
• High-level idea:

• LL block: subsampled values (taking average)
• Others: difference
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• Concepts of data compression

• Lossless Compression

• Lossy Compression

• Quantization
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Image Compression Framework
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Quantization
• Why need quantization?

• Digital image
• n bits to represent a digital sample à max number of 

different levels is m = 2n

• Real values are rounded to the nearest level
• Some information (precision) could be lost 

• Hopefully, we want those non-important parts are lost
• Usually the only lossy operation that removes 

perceptual irrelevancy
• Cannot be recovered 

• More bits à Smaller quantization errors
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Quantization Resolution

48Source: wikipedia
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Quantization Methods

• Quantization distribution
• Uniform quantization
• Optimized non-uniform quantization

• Number of dimensions
• Scalar quantization (one-dimensional input)
• Vector quantization (multi-dimensional input)

• Partition a vector into groups, each of which is 
represented by the same number of points (e.g., k-
means clustering)
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Uniform Quantization with Dead-Zone  
• Q: quantizer step size
• D: dead-zone size

• D is usually greater than or equal to Q
• Larger D increases the number of signal values quantized 

to 0
• The 0 index usually needs fewest bits to encode
à adjusting D to get better rate-distortion optimization

• If D = Q à degenerate to normal uniform 
quantization
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Optimized Non-uniform Quantization

• Optimization Criterion: Expectation of Distortion
• Sometimes with a constraint of maximal bit-rate (very 

complex)

• Designed according to a mathematical model or 
real (training) data

• Example of quantizer from training data
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: Reconstructed value point,
usually the centroid



SQNR
• Signal-to-Quantization-Noise Ratio
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Summary
• Concepts of data compression

• Trade off between rate and distortion
• Statistical and perceptual redundancy

• Lossless Compression
• Entropy coding
• Bounded by the information amount of a source 

• Lossy Compression
• Transform coding
• Coding in the domain with a higher entropy
• Easier to compact the insignificant copmonents

• Quantization
• Unavoidable losses in digital signals
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