Wireless Communication Systems @CS.NCTU

Lecture 5: Compression Instructor: Kate Ching-Ju Lin (林靖茹)

Chap. 7-8 of "Fundamentals of Multimedia" Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15F/

Outline

- Concepts of data compression
- Lossless Compression
- Lossy Compression
- Quantization

Why compression?

• Audio, image, and video require huge storage and network bandwidth if not compressed

Application	uncompressed	compressed
Audio conference	64kbps	16-64kbps
Video conference	30.41Mbps	64-768kbps
Digital video on CD-ROM (30fps)	60.83Mbps	1.5-4Mbps
HDTV (59.94fps)	1.33Gbps	20Mbps
		1
	Remove redundancy!	

Compression Concepts

reconstructed

Compression Concepts

Source Coding

- Also known as data compression
- The objective is to reduce the size of messages
- Achieved by removing redundancy
- Entropy encoding: minimize the size of messages according to a probability model

Channel Coding

- Also known as error correction
 - Repetition codes, parity codes, Reed-Solomon codes, etc.
- Ensure the decoder can still recover the original data even with errors and (or) losses
- Should consider the probability of errors happening during transmission (e.g., random loss or burst loss)

Considerations for Compression

- Lossless vs. Lossy
- Quality vs. bit-rate
- Variable bit rate (VBR) vs. constant bit rate (CBR)
- Robustness
 - Combat noisy channels
- Complexity
 - Encoding and decoding efficiency

Compression Performance

- Compression ratio = $\frac{\text{size}_{\text{before}}}{\text{size}_{\text{after}}}$
- Signal quality
 - Signal-to-noise ratio $\mathrm{SNR} = 10 \log_{10}(\frac{\sigma_s^2}{\sigma_n^2})$
 - Peak-Signal-to-noise ratio $PSNR = 10 \log_{10}(\frac{\sigma_{peak}^2}{\sigma_n^2})$
 - Mean Opinion Score["](MOS)
 - very annoying, annoying, slightly annoying, perceptible but not annoying, imperceptible
- Goal:
 - Higher signal quality with higher compression ratio

Compression Technologies

Statistical redundancy

- Lossless compression
- Also known as entropy coding
- Build on the probabilistic characteristics of signals

Perceptual redundancy

- Lossy compression
- Lead to irreversible distortion
- Complex and depends on context or applications

Information Theory

Consider an information source with alphabet
 S = {s₁, s₂, ..., s_n}, the self-information contained in s_i is defined as

$$i(s_i) = \log_2 \frac{1}{p_i}$$

where p_i is teh probability that symbol s_i in S will occur

- Key idea of variable length coding
 - Frequent symbols \rightarrow represented by less bits
 - Infrequent symbols \rightarrow represented by more bits

Low probability $p_i \rightarrow Large$ amount of information High probability $p_i \rightarrow Small$ amount of information

Information Theory - Entropy

- \bullet Entropy η of an information source
 - **Expected** self-information of the whole source

$$\eta = H(S) = \sum_{i=1}^{n} p_i * i(s_i) = \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i}$$
$$= -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Measure the disorder of a system -> more entropy, more disorder
 - Greater entropy when the distribution is flat
 - Smaller entropy when the distribution is more peaked
- Shannon's theory: best <u>lossless</u> compression generates an average number of bits equal to entropy

Claude Elwood Shannon, "A mathematical theory of communication," Bell System Technical Journal, vol. 27, pp. 379-423 and 623-656, Jul. and Oct. 1948

Properties of Compression

Unique decodable

- Encode: y = f(x)
- Decode: $x = f^{-1}(y) \rightarrow$ there exists only a single solution
- A code is <u>not</u> unique decodable if $f(x_i) = f(x_j) = y$ for some $x_i \neq x_j$

x: symbol y: codeword

Instantaneous code

- Also called prefix-free code or prefix code
- Any codeword cannot be the prefix of any other codeword, i.e., y_i not the prefix of y_i for all $y_i \neq y_i$
- Why good?
 - When a message is sent, the recipient can decode the message unambiguously from the beginning

Properties – Examples

Non-unique decodable

$$\begin{array}{r} s_1 = 0 \\ s_2 = 01 \\ s_3 = 11 \\ s_4 = 00 \end{array}
 \begin{array}{r} 0011 \\ 0011 \\ \end{array}$$

0011 could be s_4s_3 or $s_1s_1s_3$

Non-Instantaneous code

$$s_1 = 0$$

 $s_2 = 01$
 $s_3 = 011$
 $s_4 = 11$

 \rightarrow Decode until receiving all bits

Outline

- Concepts of data compression
- Lossless Compression
- Lossy Compression
- Quantization

Lossless Compression

- Commonly known as entropy coding
- Algorithms
 - Huffman coding
 - Adaptive Huffman coding
 - Arithmetic coding
 - Run-length coding
 - Golomb and Rice coding
 - DPCM

Huffman Coding

- Proposed by David A. Huffman in 1952
- Adopted in many applications, such as fax machines, JPEG and MPEG
- Bottom-up manner: build a **binary coding tree**
 - left branches are coded 0
 - right branches are coded 1
- High-level idea
 - Each leaf node is a symbol
 - Each path is a codeword
 - Less frequent symbol
 → longer codeword path

Huffman Coding

- Algorithm
 - 1. Sort all symbols according to their probabilities
 - 2. Repeat until only one symbol left
 - a) Pick the two symbols with the **smallest** probabilities
 - b) Add the two symbols as childe nodes
 - c) Remove the two symbols from the list
 - d) Assign the sum of the children's probabilities to the parent
 - e) Insert the parent node to the list

Huffman Coding – Example

Huffman Coding – Pro and Cons

- Pros
 - Unique decodable
 - Prefix code
 - Optimality: average codeword length of a message approaches its entropy
 → shown η ≤ E[L] ≤ η+1
- Cons
 - Every code has an integer bit length
 - Why inefficient?
 - If a symbol occurs very frequently log₂(1/p) close to 0 → but still need one bit

Arithmetic Coding

- Usually outperform Huffman coding
- Encode the whole message as one unit
- High-level idea

•

- Each message is represented by an interval [a,b), 0
 ≤ a,b ≤ 1
- Longer message → shorter interval
 → more bits to represent a smaller real number
- Shorter message → longer interval
 → less bits to represent a greater real number

Example	Symbol	low	high	range
•		0	1.0	1.0
	С	0.3	0.5	0.2
	A	0.30	0.34	0.04
	E	0.322	0.334	0.012
	E	0.3286	0.3322	0.0036
	\$	0.33184	0.33220	0.00036

Arithmetic Coding – Encoding

- Maintain a probability table
 - Frequent symbol \rightarrow larger range
 - Need a terminator symbol \$
- Algorithm:
 - Initialize low = 0, high = 1, range = 1
 - Repeat for each symbol
 - low = low + range * range_{min}(symbol)
 - high = low + range * range_{max}(symbol)
 - Range = high low

Sym	probability	range
А	0.2	[0, 0.2)
В	0.1	[0.2, 0.3)
С	0.2	[0.3, 0.5)
D	0.05	[0.5, 0.55]
Е	0.3	[0.55, 0.85)
F	0.05	[0.85, 0.9]
\$	0.1	[0.9, 1]

Encode a message CAEE\$

Symbol	low	high	range
	0	1.0	1.0
С	0.3	0.5	0.2
А	0.30	0.34	0.04
Е	0.322	0.334	0.012
Е	0.3286	0.3322	0.0036
\$	0.33184	0.33220	0.00036

Arithmetic Coding – Encoding

• Illustration

21

Arithmetic Coding – Decoding

- Algorithm
 - while not \$
 - 1. Find a symbol s so that $range_{min}(s) \le value \le range_{max}(s)$
 - 2. Output s
 - 3. low = range_{min}(s)
 - 4. high = range_{max}(s)
 - 5. range = high low
 - 6. value = (value low) / range

Arithmetic Coding – Properties

- When the intervals shrink, we need very highprecision number for encoding
 - Might not be feasible
- Need a special terminator symbol \$
 - Need to protect \$ in noisy channels

Run-Length Coding

- Input sequence:
 0,0,-3,5,0,-2,0,0,0,0,2,-4,0,0,0,1
- Run-length sequence:
 (2,-3)(0,5)(1,-2)(4,2)(0,-4)(3,1)

Number of zeros next non-zero value

- Many variations
- Reduce the number of samples to code
- Implementation is simple

Outline

- Concepts of data compression
- Lossless Compression
- Lossy Compression
- Quantization

Compression Technologies

- Statistical redundancy
 - Lossless compression
 - Also known as entropy coding
 - Build on the probabilistic characteristics of signals

Perceptual redundancy

- Lossy compression
- Lead to irreversible distortion
- Complex and depends on context or applications

Rate-Distortion Function

- Numerical measure for signal quality
 - SNR
 - PSNR
- How to evaluate the tradeoff between compression ratio and signal quality?
 - Rate-distortion function (D = 0 means lossless0

Transform Coding

- Remove spatial redundancy
 - Spatial image data are transformed in to a different representation: transformed domain
 - Make the image data easier to be compressed
 - Transformation (T) itself does not compress data
 - Compression is from quantization!

Fourier Analysis

- Fourier showed that any periodic signal can be decomposed into an infinite sum of sinusoidal waveforms $_\infty$

$$f(x) = \sum_{u=0}^{\infty} F(u) \cos(uwx)$$

- <u>*nwx*</u> is the frequency component of the sinusoidal wave
- F(u) is the coefficient (weight) of a wave, cos(nwx)
- Why useful?
 - Most of natural signals consists of only a few dominant frequency components
 - Due to this **sparsity**, it is easier to compress the signals after transformation
 - Dropping weak components → distortion is small and hardly be detected by human eyes

FFT Example

http://68.media.tumblr.com/8ab71becbff0e242d0bf8d b5b57438ab/tumblr_mio8mkwT1i1s5nl47o1_500.gif

Fourier Analysis – Example

 Coefficient F(n) is the amplitude of its corresponding frequency component

Transformation Technologies

- Discrete cosine transform (DCT)
 - Usually applied to small blocks
 - JPEG, H26x, MPEG-x

- Discrete wavelet transform (DWT)
 - Usually applied to large images
 - JPEG 2000, MPEG-4 still texture

Discrete Cosine Transform (DCT)

- Image have discrete points \rightarrow DCT
 - Idea is similar to Fourier analysis

- Usually only the DC component (left-top) has a large amplitude
- High-frequency AC components are close to zero 34

2D-DCT Coefficients

Discrete Cosine Transform (DCT)

- Original signals is the linear combination of DC and different ACs basis functions
 - (DC: frequency = 0, AC_i : frequency i π)

$$\begin{array}{ll} \text{Time domain } & \text{DCT Frequency domain} \\ & f(\mathbf{i}) \implies F(\mathbf{U}) \\ F(u) = C(u) \sum_{x=0}^{N-1} f(x) \cos\left(\frac{(2x+1)u\pi}{2N}\right) \\ & , u = 0, 1, \cdots, N-1 \end{array} f(\mathbf{x}) \end{array}$$

Time domain IDCT Frequency domain

$$F(\cup) \implies f(i)$$

$$f(x) = \sum_{u=0}^{N-1} C(u)F(u) \cos\left(\frac{(2x+1)u\pi}{2N}\right)$$

$$, x = 0, 1, \cdots, N-1$$

$$C(0) = \sqrt{\frac{1}{N}},$$

$$C(u) = 1, \forall u \neq 0 \qquad 36$$

2D-DCT

- Two-dimensional DCT
- Represent each block of image pixels as a weighted sum of 2D cosine functions (basis functions)

$$F(u,v) = \frac{2}{N}C(u)C(v)\sum_{i=0}^{N-1} f(x,y)\cos\frac{2\pi(2x+1)u}{4N}\cos\frac{2\pi(2y+1)v}{4N}$$
$$C(u), C(v) = \begin{cases} \sqrt{1/2}, u, v = 0\\ 1, \text{otherwise} \end{cases}$$

- Block size: N x N
- f(x,y): pixel value
- F(u,v): DCT coefficients

2D 8x8 DCT Basis Functions

An Example of Energy Distribution

- In frequency domain, bias distribution → small entropy → need only a few bits for compression
- Peak in the DC component
- Nearly 0 in high frequency components
 - Compress them!

Transformation Technologies

- Discrete cosine transform (DCT)
 - Usually applied to small blocks
 - JPEG, H26x, MPEG-x

Discrete wavelet transform (DWT)

- Usually applied to large images
- JPEG 2000, MPEG-4 still texture

Wavelet Transformation Concept

Consider both variable frequency and time resolutions

• DCT (or DFT) only has the same time and frequency resolution

Wavelet Transformation Concept

- Dynamic decomposition
 - Lower frequency subbands have finer frequency resolution and coarser time resolution
 - Suitable for natural images

2D-DWT

- High-level idea:
 - LL block: subsampled values (taking average)
 - Others: difference

Decomposition at level 2

Outline

- Concepts of data compression
- Lossless Compression
- Lossy Compression
- Quantization

Image Compression Framework

• Lossless:

Quantization

- Why need quantization?
 - Digital image
 - n bits to represent a digital sample → max number of different levels is m = 2ⁿ
- Real values are rounded to the nearest level
- Some information (precision) could be lost
 - Hopefully, we want those non-important parts are lost
- Usually the only lossy operation that removes perceptual irrelevancy
- Cannot be recovered
 - More bits \rightarrow Smaller quantization errors

Quantization Error

Coarser resolution

Quantization Resolution

Eight levels Smaller errors

Source: wikipedia 48

Quantization Methods

- Quantization distribution
 - Uniform quantization
 - Optimized non-uniform quantization
- Number of dimensions
 - Scalar quantization (one-dimensional input)
 - Vector quantization (multi-dimensional input)
 - Partition a vector into groups, each of which is represented by the same number of points (e.g., kmeans clustering)

Uniform Quantization with Dead-Zone

- Q: quantizer step size
- D: dead-zone size

- D is usually greater than or equal to Q
 - Larger D increases the number of signal values quantized to 0
 - The 0 index usually needs fewest bits to encode
 → adjusting D to get better rate-distortion optimization
- If $D = Q \rightarrow$ degenerate to normal uniform quantization

Optimized Non-uniform Quantization

- Optimization Criterion: Expectation of Distortion
 - Sometimes with a constraint of maximal bit-rate (very complex)
- Designed according to a mathematical model or real (training) data
- Example of quantizer from training data

• : Reconstructed value point, usually the centroid

SQNR

• Signal-to-Quantization-Noise Ratio

$$\begin{array}{l} \mbox{maximum amplitude } 2^{n-1} \\ \hline \mbox{maximum quantization noise, e.g., } 1/2 \\ \Rightarrow 20 \log_{10} \left(\frac{2^{n-1}}{1/2} \right) \end{array}$$

Summary

Concepts of data compression

- Trade off between rate and distortion
- Statistical and perceptual redundancy

Lossless Compression

- Entropy coding
- Bounded by the information amount of a source

Lossy Compression

- Transform coding
- Coding in the domain with a higher entropy
- Easier to compact the insignificant copmonents

Quantization

• Unavoidable losses in digital signals