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Chapter 3: Transport Layer

our goals: 
• Understand principles 

behind transport layer 
services:

• multiplexing, 
demultiplexing

• reliable data transfer
• flow control
• congestion control

• Learn about Internet 
transport layer protocols:

• UDP: connectionless 
transport

• TCP: connection-oriented 
reliable transport

• TCP congestion control



Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• Connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control



Transport Services and Protocols

• Provide logical communication
between app processes 
running on different hosts

• Transport protocols run in end 
systems 

• send side: breaks app messages 
into segments, passes to network 
layer

• recv side: reassembles segments 
into messages, passes to app 
layer

• Available transport protocols
• TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical



Transport vs. Network Layer

• Network layer: 
• logical communication 

between hosts
• Host-to-host

• Transport layer: 
• logical communication 

between processes relies 
on, enhances, network 
layer services

• End-to-end (process-to-
process)

12 kids in Ann’s house 
sending letters to 12 kids in 
Bill’s house:
• hosts = houses
• processes = kids
• app messages = letters in 

envelopes
• transport protocol = Ann 

and Bill who demux to in-
house siblings

• network-layer protocol = 
postal service

household analogy:



Internet Transport Protocols
• Reliable, in-order delivery: 

TCP
• congestion control 
• acknowledgement
• flow control
• connection setup

• Unreliable, unordered 
delivery: UDP

• no-frills extension of “best-
effort” IP

• Send as many as possible

• Services not available: 
• delay guarantees
• bandwidth guarantees
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Multiplexing/Demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket (unique proc ID)

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4

transport

application

physical
link
network

P3



How Demultiplexing Works?

• Host receives IP datagrams
• each datagram has source IP 

address, destination IP address

• each datagram carries one 
transport-layer segment

• each segment has source, 
destination port number 

• host uses IP addresses & port 
numbers to direct segment 
to appropriate socket

source port # dest port #

32 bits

Application data 
(payload)

other header fields

TCP/UDP segment format
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UDP: User Datagram Protocol [RFC 768]
• “No frills,” “bare bones”

Internet transport 
protocol

• “Best effort” service, UDP 
segments may be:

• lost
• delivered out-of-order 

to app
• Connectionless:

• no handshaking 
between UDP sender, 
receiver

• each UDP segment 
handled independently 
of others

• Pros:
• low latency
• no state à support more 

users
• smaller packet header 

• UDP use:
• streaming multimedia apps 

(loss tolerant, rate sensitive)
• DNS
• SNMP

• Reliable transfer over UDP: 
• add reliability at 

application layer via error 
recovery



src port # dst port #

32 bits

application data 
(payload)

UDP segment format

length checksum

length, in bytes of 
UDP segment, 

including header

UDP: Segment Header

• no connection 
establishment (which can 
add delay)

• simple: no connection 
state at sender, receiver

• small header size
• no congestion control: 

UDP can blast away as fast 
as desired

why is there a UDP?



UDP Checksum

• Sender
• treat segment 

contents, including 
header fields,  as 
sequence of 16-bit 
integers

• checksum: addition 
(one’s complement 
sum) of segment 
contents

• sender puts 
checksum value into 
UDP checksum field

• Receiver
• compute checksum of 

received segment
• check if computed 

checksum equals 
checksum field value

• NO - error detected
• YES - no error detected. 

But maybe errors 
nonetheless? More 
later ….

Goal: detect “errors” in transmitted segment



Internet Checksum: Example

example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result
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What is Reliable Data Transfer?
• Important in application, transport, link layers

• top-10 list of important networking topics!

• Characteristics of unreliable channel will 
determine complexity of reliable data transfer 
protocol (rdt)
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• Important in application, transport, link layers
• top-10 list of important networking topics!

• Characteristics of unreliable channel will 
determine complexity of reliable data transfer 
protocol (rdt)

What is Reliable Data Transfer?



TCP: Overview RFCs: 793,1122,1323, 2018, 2581

• Full duplex data:
• bi-directional data flow 

in same connection
• MSS: maximum segment 

size

• Connection-oriented: 
• Three-way handshaking 

(exchange of control 
msgs) inits sender, 
receiver state before 
data exchange

• Flow controlled:
• sender will not 

overwhelm receiver

• Point-to-point:
• one sender, one 

receiver

• Reliable, in-order 
byte steam:

• no “message 
boundaries”

• Pipelined:
• TCP congestion and 

flow control set 
window size



TCP Segment Structure

source port # dest port #

32 bits

application
data 
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum
(as in UDP)



TCP Seq. Numbers, ACKs

• Sequence numbers:
• byte stream “number” of 

first byte in segment’s 
data

• Acknowledgements:
• seq # of next byte 

expected from other side
• cumulative ACK

Q: how receiver handles 
out-of-order segments
• A: TCP spec doesn’t say, - up 

to implementor
source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not 
yet sent

not 
usable

window size N

sender sequence number space 

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender



User 
types‘C’

host ACKs
receipt 

of echoed‘C’

host ACKs receipt 
of‘C’, echoes 
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP Seq. Numbers, ACKs



TCP Round Trip Time, Timeout

Q: how to set TCP 
timeout value?

• longer than RTT, but RTT 
varies

• too short: premature 
timeout, unnecessary 
retransmissions

• too long: slow reaction 
to segment loss

Q: how to estimate RTT?
• SampleRTT: measured 

time from segment 
transmission until ACK 
receipt

• ignore retransmissions
• SampleRTT will vary, 

want estimated RTT 
“smoother”

• average several recent
measurements, not just 
current SampleRTT



RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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sampleRTT
EstimatedRTT

time (seconds)

exponential weighted moving average (EWMA): 
RTT = (1-a) * RTT  + a * SampleRTT

TCP Round Trip Time, Timeout

• exponential weighted moving average
• influence of past sample decreases exponentially fast
• typical value: a = 0.125



TCP Round Trip Time, Timeout
• Q: what value should be used for TCP’s timeout 

interval? 
• timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT à larger safety 
margin

retransmission timeout interval: 
TimeoutInterval = RTT  + 4 * DevRTT

estimated RTT “safety margin”

RTT deviation: 
DevRTT = (1 - b)*DevRTT + b * |SampleRTT - RTT |
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TCP Reliable Data Transfer
• TCP creates rdt service on top of IP’s unreliable 

service
• pipelined segments
• cumulative acks
• single retransmission timer

• Retransmissions triggered by
• timeout events
• duplicate acks

• Let’s initially consider simplified TCP sender
• ignore duplicate acks
• ignore flow control, congestion control



TCP Sender Events:
data rcvd from app:
• create segment with 

seq #
• seq # is byte-stream 

number of first data 
byte in  segment

• start timer if not 
already running 

• think of timer as for 
oldest unacked
segment

• expiration interval: 
TimeOutInterval

timeout:
• retransmit segment 

that caused timeout
• restart timer
ack rcvd:

• if ack acknowledges 
previously unacked
segments

• update what is known 
to be ACKed

• start timer if there are  
still unacked segments



TCP Sender (Simplified)

wait
for 
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked
segment with smallest seq. #
start timer

timeout

if (y > SendBase) { 
SendBase = y 
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer 

} 

ACK received, with ACK field value y 



TCP: Retransmission Scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

tim
eo

ut

tim
eo

ut



X

cumulative ACK

Host BHost A

ACK=100

Seq=120,  15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP: Retransmission Scenarios

Seq=92, 8 bytes of data



TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. #.
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next 
segment, send ACK

immediately send single 
cumulative ACK, ACKing both 
in-order segments 

immediately send duplicate 
ACK, indicating seq. # of next 
expected byte

immediate send ACK, provided 
that segment starts at lower end 
of gap



TCP Fast Retransmit

• Time-out period often 
relatively long:

• long delay before resending 
lost packet

• Detect lost segments via 
duplicate ACKs

• Sender often sends many 
segments back-to-back

• If segment is lost, there will 
likely be many duplicate 
ACKs

if sender receives 3 
ACKs for same data
(“triple duplicate 
ACKs”), immediately
resend unacked
segment with smallest 
seq #
§ likely that unacked

segment lost, so don’t 
wait for timeout

TCP fast retransmit



X

fast retransmit after sender receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut
 

ACK=100
ACK=100
ACK=100

TCP Fast Retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data
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TCP Flow Control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by 
transmitting too much, too fast

flow control



buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process• Why? guarantees receive buffer 
will not overflow

• Receiver “advertises” free 
buffer space by including 
rwnd value in TCP header of 
receiver-to-sender segments

• RcvBuffer size set via socket 
options (typical default is 4096 bytes)

• many operating systems 
auto-adjust RcvBuffer

• Sender limits the amount of unacked
(“in-flight”) data to receiver’s rwnd value 

receiver-side buffering

TCP Flow Control

LastByteSent – LastByteAcked ≤ rwnd How about UDP?
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Connection Management
• Before exchanging data, sender/receiver 

“handshake”,
• agree to establish connection (each knowing the other 

willing to establish connection)
• agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client 

application

network

Socket clientSocket =   
newSocket("hostname","port number");

Socket connectionSocket = 
welcomeSocket.accept();



Agreeing to Establish a Connection

Q: will 2-way handshake always 
work in network?

A: No
• TCP is bidirectional connection
• Both sides randomly pick their initial 

sequence numbers

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)



2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminates

server
forgets x

connection 
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x req_conn(x)
ESTAB

ESTAB

acc_conn(x)

client 
terminates

ESTAB

choose x req_conn(x)
ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x

Agreeing to Establish a Connection

Connection terminated due to long delay



TCP 3-way Handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data received ACK(y) 

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN



TCP 3-way Handshake: FSM

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =   
newSocket("hostname","port #");

SYN(seq=x)

Socket connectionSocket = 
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

Λ



TCP: Closing a Connection
• Client, server each close their side of connection

• send TCP segment with FIN bit = 1
• Respond to received FIN with ACK

• on receiving FIN, ACK can be combined with own FIN

• Simultaneous FIN exchanges can be handled



FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP: Closing a Connection
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Congestion Example: Infinite Buffer

• Say both A and B send λin bytes/sec
• When λin exceeds R/2, the average number of queued packets in 

the router is unbounded à delay becomes infinite

260 CHAPTER 3 • TRANSPORT LAYER

simple one. Data is encapsulated and sent; no error recovery (for example, retrans-
mission), flow control, or congestion control is performed. Ignoring the additional
overhead due to adding transport- and lower-layer header information, the rate at
which Host A offers traffic to the router in this first scenario is thus !in bytes/sec.
Host B operates in a similar manner, and we assume for simplicity that it too is
sending at a rate of !in bytes/sec. Packets from Hosts A and B pass through a
router and over a shared outgoing link of capacity R. The router has buffers that
allow it to store incoming packets when the packet-arrival rate exceeds the outgo-
ing link’s capacity. In this first scenario, we assume that the router has an infinite
amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first
scenario. The left graph plots the per-connection throughput (number of bytes per
second at the receiver) as a function of the connection-sending rate. For a sending
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending
rate—everything sent by the sender is received at the receiver with a finite delay.
When the sending rate is above R/2, however, the throughput is only R/2. This upper
limit on throughput is a consequence of the sharing of link capacity between two
connections. The link simply cannot deliver packets to a receiver at a steady-state
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates,
they will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a
good thing, because the link is fully utilized in delivering packets to their destina-
tions. The right-hand graph in Figure 3.44, however, shows the consequence of
operating near link capacity. As the sending rate approaches R/2 (from the left), the
average delay becomes larger and larger. When the sending rate exceeds R/2, the

Host B

Unlimited shared
output link buffers

λin: original data

Host A Host DHost C

λout

Figure 3.43 ! Congestion scenario 1: Two connections sharing a single
hop with infinite buffers

Two connections share a link with infinite buffer 

λin

λ o
ut

R/2 λin
R/2Th

ro
ug

hp
ut

De
la

y

infinite buffer 



Congestion Example: Finite Buffer

• With retransmission, offered load becomes λ’in larger then λin
• Capacity wastes: 1) packet loss: retransmission, 2) timeout: 

unnecessary retransmissions

Two connections with finite buffer and retransmission enabled

λin

λ o
ut

R/2

loss

finite buffer 
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!in would be equal to !"in, and the throughput of the connection would be equal to
!in. This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, !"in (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of

Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data

Figure 3.45 ! Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers
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Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data
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TCP Congestion Control
• End-to-end control, rather then network-assisted 

control
• Idea: TCP sender determines the rate

• No congestion à increase the rate
• Congestion à reduce the rate

• Questions:
• How to limit the rate?
• How to determine whether there is congestion?
• How to change the rate?



TCP Congestion Control
• How to limit the rate?

• track a variable, congestion window, called cwnd
à Unacked packets cnanot exceed cwnd

• How to determine whether there is congestion?
• Buffer overflow leads to losses
• How to detect? 1) timeout, or 2) receiving 3 dup-ACK

• How to change the rate?
• Arrival of ACK indicates ”nothing wrong”
• Missing ACK implies congestion
• Use ACKs to trigger an increase in cwndà self clocking

Q: how to adjust the value of cwnd?

LastByteSent – LastByteAcked ≤ min(rwnd,cwnd) 

rate ≈  cwnd / RTT



Bandwidth Probing 
Key idea of TCP’s congestion control
• Keep increasing the rate (value of cwnd) in 

response to arriving ACKs
• Decrease the rate (value of cwnd) if loss event 

occurs

TCP’s congestion control algorithm [RFC 5681]
• Slow start
• Congestion avoidance 
• Fast recovery Kids request for goodies

• More and more until the 
parents finally say “NO”

• Back off  a bit 

analogy



TCP Congestion Control
• sender increases transmission rate (window size), 

probing for usable bandwidth, until loss occurs
• How?

• additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
•

Additive Increase Multiplicative Decrease (AIMD)
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AIMD saw tooth 
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time



TCP’s Achievable Rate

• sender limits transmission:

• cwnd is dynamic, function of 
perceived network congestion

TCP sending rate:
• roughly: send cwnd

bytes, wait RTT for ACKS, 
then send more bytes

last byte
ACKed sent, not-yet 

ACKed
(“in-flight”)

last byte 
sent

cwnd

LastByteSent-
LastByteAcked <

cwnd

sender sequence number space 

rate ≈ cwnd
RTT

(bytes/sec)



TCP Slow Start 
• when connection begins, 

increase rate 
exponentially until first loss 
event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing 
cwnd for every ACK 
received

• summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

R
TT

Host B

time



Detecting, Reacting to Loss
Depend on how we define a “loss” event
• Loss indicated by timeout:

• cwnd set to 1 MSS; 
• begin the slow start process anew à cwnd grows 

exponentially
• switch to the congestion-avoidance mode when cwnd = 

threshold à ssthresh = cwnd/2; increase cwnd linearly

• Loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of delivering some 

segments 
• enter the fast recovery state à cwnd is cut in half window 

then grows linearly
• TCP Tahoe always sets cwnd to 1 (timeout or 3 

duplicate acks)



Recap
• Congestion Avoidance (CA)

• When Cwnd is approaching the level of congestion (i.e., 
a timeout event), we should increase Cwndmore 
conservatively
à grow linearly, instead of exponentially

• Use  a threshold called ssthresh to determine whether 
to enter the CA mode by setting ssthresh = Cwnd/2

• Fast Recovery (FR)
• Cwnd is increased by 1 MSS for every duplicate ACK 

received for the missing segment that caused TCP to 
enter the fast-recovery state

• Recommended, but not required
• TCP Tahoe: unconditionally set Cwnd = 1 and restart 

slow start
• TCP Reno: halve Cwnd and then increase Cwnd linearly



Q: when should the exponential increase switch to 
linear? 

A: when cwnd gets to 1/2 of its value before timeout

Implementation:
• variable ssthresh
• on loss event, 
ssthresh is set to 1/2 
of cwnd just before 
loss event

From Slow Start to Congestion Avoidance



TCP Congestion Control

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!



TCP Average Throughput
• avg. TCP thruput as function of window size, 

RTT?
• ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg thruput = 34
W
RTT bytes/sec



• fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should 
have average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP Fairness

TCP connection 2



Why is TCP Fair?
Simple example: two competing sessions
• additive increase gives slope of 1, as throughout 

increases
• multiplicative decrease decreases throughput 

proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



Fairness (more)
Fairness and UDP
• multimedia apps often 

do not use TCP
• do not want the rate 

throttled by congestion 
control

• instead use UDP:
• send audio/video at 

constant rate, tolerate 
packet loss

• Fairness between TCP 
and UDP? (later 
lecture)

Fairness, parallel TCP 
connections
• application can open 

multiple parallel 
connections between 
two hosts

• web browsers do this 
• e.g., link of rate R with 9 

existing connections:
• new app asks for 1 TCP, 

gets rate R/10
• new app asks for 11 TCPs, 

gets R/2 



Summary
• Principles behind transport layer services:

• multiplexing, demultiplexing
• reliable data transfer
• flow control
• congestion control

• Instantiation, implementation in the 
Internet

• UDP
• TCP


