Multimedia Communications
@CS.NCTU

Lecture 3: Networking — TCP/UDP
[Computer Networking, Ch3]

Instructor: Kate Ching-Ju Lin (M)

Slides modified from
“Computer Networking: A Top-Down Approach” 6th Edition

Chapter 3: Transport Layer

our goals:

* Understand principles * Learn about Internet
behind transport layer fransport layer protocols:
SEIvICEs. . UDP: connectionless

« multiplexing, transport

demultiplexing « TCP: connection-oriented
 reliable data fransfer reliable transport
« flow control « TCP congestion control

« congestion control

Outline

* Transport-layer services
« Multiplexing and demultiplexing
« Connectionless transport: UDP

« Connection-oriented transport: TCP
« Segment structure
« Reliable data transfer
« Flow control
« Connection management

« Congestion Control

Transport Services and Protocols

application
transport

* Provide logical communicafion s
between app processes
running on different hosts

* Transport protocols run in end
systems

« send side: breaks app messages

INto segments, passes to network
layer

* recv side: reassembles segments
iINfo messages, passes to app
layer

* Available transport protocols

- TCP and UDP

Transport vs. Network Layer

- Network layer: - household analogy: ——
* logical communication 12 kids in Ann’s house
between hosts sending letters to 12 kids in
.« Host-to-host Bill's house:
* hosts = houses
* processes = kids
* Transport layer: - app messages = letters in
 logical communication envelopes
between processes relies | « transport protocol = Ann
on, enhances, network and Bill who demux to in-
layer services house siblings
+ End-to-end (process-to- * network-layer profocol =

process) postal service

Internet Transport Protocols

» Reliable, in-order delivery:

application
TCP netoR wCRhesroe
y data'in
 congestion conftrol) network
= 7 netwq data link —
« acknowledgement data i VS'Cali S
Q. U (=
* flow control | -
«E ph
» connection setup Qq network g
. S data link S
» Unreliable, unordered e o XN
1 . |data link
delivery: UDP TR A
« no-frills extension of “best- 3 Cata e
" network
effort” IP > - dﬁta_linr
- physica
« Send as many as possible «g lé,
g e

» Services not available:
« delay guarantees
« bandwidth guarantees

BHE

a ation
d DO

networ
datalink
physical

Outline

« Transport-layer services
* Multiplexing and demultiplexing
« Connectionless transport: UDP

« Connection-oriented transport: TCP
« Segment structure
« Reliable data transfer
« Flow control
« Connection management

« Congestion Control

Multiplexing/Demultiplexing

- multiplexing at sender; —

handle data from mulfiple
sockets, add transport header
(later used for demultiplexing)

appliciation

application

_ demulfiplexing af receiver: —

use header info to deliver
received segments to correct

socket (unique proc ID)

Tmnspl? net VOT
network E:' link
| nk 'I phy{i¢h
q physical
-~

application

| |“ -I
TrcmsEp)H

netwafk
link
physiggl

How Demultiplexing Works?

« Host receives IP datagrams

« each datagram has source IP
address, destination IP address

« each datagram carries one
transport-layer segment

« each segment has source,
destination port number

* host uses IP addresses & port
numbers to direct segment
to appropriate socket

32 bits

source port #| dest port #

other header fields

Application data
(payload)

TCP/UDP segment format

Outline

« Transport-layer services
« Multiplexing and demultiplexing
» Connectionless transport: UDP

« Connection-oriented transport: TCP
« Segment structure
« Reliable data transfer
« Flow control
« Connection management

« Congestion Control

UDP: User Datagram Protocol [RFC 748]

“No frills,” “bare bones”
Internet fransport
protocol

“Best effort” service, UDP
segments may be:
* |ost
« delivered out-of-order
to app
« Connectionless:

* No handshaking
between UDP sender,
receiver

« each UDP segment
handled independently
of others

* Pros:
* low latency

* NO state - support more
users

« smaller packet header

« UDP use:

« sfreaming multimedia apps
(loss tolerant, rate sensitive)

« DNS
« SNMP
* Reliable transfer over UDP:

« add reliability at
application layer via error
recovery

UDP: Segment Header

32 bits

src port #

checksum

length “~

application data
(payload)

UDP segment format

length, in bytes of

UDP segment,
including header

why is there a UDPe

* NO connection
establishment (which can
add delay)

« simple: no connection
state at sender, receiver

« small header size

* NO congestion control:
UDP can blast away as fast
as desired

detect “errors” in transmitted segment

* Sender * Receiver
« freat segment « compute checksum of
contents, including received segment
header fields, as » check if computed
sequence of 16-bit checksum equals
infegers checksum field value
+ checksum: addition * NO - error detected
(one's complement * YES - no error detected.
sum) of segment But maybe errors
contents ;ﬂc?rne’rheless? More
ater

« sender pufts
checksum value into
UDP checksum field

Internet Checksum: Example

example: add two 16-bit integers

11T100110011T00110
11T010101010101001

wropc:round@1o111o1110111011

sum

1 11101110111 100
checksum 0100010001T000O0T11

Nofe: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Outline

« Transport-layer services
« Multiplexing and demultiplexing
« Connectionless transport: UDP

 Connection-oriented transport. TCP
« Segment structure
« Reliable data fransfer
« Flow control
« Connection management

« Congestion Control

What is Reliable Data Transfer?

* Important in application, transport, link layers
« top-10 list of important networking topics!

send |ng receiver
rocess process
reliable c:hcnnnel)j

application
layer

fransport
layer

(a) provided service

» Characteristics of unreliable channel will
determine complexity of reliable data fransfer
protocol (rdt)

What is Reliable Data Transfer?

* Important in application, transport, link layers
« top-10 list of important networking topics!

send |ng receiver
rocess process
reliable c:hcnnnel)j

application
layer

fransport
layer

Junrelioble Chonnel)i

(a) provided service (b) service implementation

» Characteristics of unreliable channel will
determine complexity of reliable data fransfer
protocol (rdt)

What is Reliable Data Transfer?

* Important in application, transport, link layers
« top-10 list of important networking topics!

send |ng receiver
rocess process
reliable c:hcmhel)j

application
layer

rdt send()

reliable data

transfer protocol transfer protocol
(sending side) (receiving side)

udt send ()i [packet | [packet| Irdt rev()

deliver data()
reliable data

fransport
layer

Junreliable ohonnel)i

(a) provided service (b) service implementation

» Characteristics of unreliable channel will
determine complexity of reliable data fransfer
protocol (rdt)

TCP: Overview rrcs: 793,1122,1323, 2018, 2581

 Full duplex data: * Point-to-point:
« bi-directional data flow * one sender, one
IN same connection receiver
* MSS: maximum segment - Reliable, in-order
size byte steam:
- Connection-oriented: . no “message
- Three-way handshaking boundaries”
(exchange of control - Pipelined:
msgs) inifs sender, « TCP congestion and

receiver state before
data exchange

* Flow conirolled:

e sender will not
overwhelm receiver

flow conftrol set
window size

TCP Segment Structure

32 bits

URG: urgent data

source port #| dest port #

(generally not used)\
ACK: ACK #

. seqguence number

valid

PSH: push data now
(generally not used) —

RST, SYN, FIN:—

ackpowledgement number
Peef REIF| receive windo

C sum Urg data pointe

O@x/ variable length)

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

TCP Seq. Numbers, ACKs

e Sequence numbers:

« byte stream “number” of
first byte in segment’s
data

« Acknowledgements:

« seq # of next byte
expected from other side

« cumulative ACK
Q: how receiver handles
out-of-order segments

- A: TCP spec doesn’ t say, - up
to implementor

outgoing segment from sender

source port# | destport#
| sequence umber |8
acknowledgement number
rwnd
checksum urg pointer
window size N
[g
sender sequence number space
sent sent, not- usable not
ACKed yet ACKed but not usable

(“in-flight”) yet sent

iIncoming segment to sender

source port#

destport#

A

sequence number
acknowledgement number|

rwnd

checksum

urg pointer

TCP Seq. Numbers, ACKs

Host A Host B
—
User -

types ‘C" ——_ c
Seq=42, ACK=79, data= ‘C’ host ACKs receipt
H\‘ of ‘C’, echoes

/ back ‘C’

Seq=79, ACK=43, data= ‘C’

host ACKs

receipt
of echoed ‘C’ m:@, ACK=80
, =60

simple telnet scenario

TCP Round Trip Time, Timeout

Q: how to set TCP Q: how to estimate RTTe
fimeout value? * SampleRTT: measured
 longer than RTT, but RTT time from segment
varies fransmission until ACK
* OO short: premafure receipt

timeout, unnecessary
retransmissions

* fo0o long: slow reaction
to segment loss

* ignore retransmissions
* SampleRTT will vary,
want estimated RTT
“smoother”

« average several recent
measurements, Not just
current SampleRTT

TCP Round Trip Time, Timeout

exponential weighted moving average (EWMA):.
RTT = (1-a) * RTT + a * SampleRTT

« exponential weighted moving average

 influence of past sample decreases exponentially fast
» typical value: v =0.125

RTT: gaia.cs.umass.edu to fantasia.eurecgm.fr

300

2 1 S 1 f M

O

O

o

£

=

AZREY ¢ sampleRTT
EstimatedRTT

100

1 ‘8 1‘5 ‘22 29 56 2‘.3 éO &")7 é4 ‘71 7‘8 éS 552 59 1‘06
time (seconds)
[

TCP Round Trip Time, Timeout

« Q: what value should be used for TCP's timeout
infervale

« timeoutinterval: EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT - larger safety
margin

retransmission timeout interval:
Timeoutinterval = RTT + 4 * DevRTT

estimated RTT “safety margin”

RTT deviation:
DevRTT = (1 -b)*DevRTT + b * | SampleRTT - RTT |

Outline

* Transport-layer services
« Multiplexing and demultiplexing
« Connectionless transport: UDP

« connection-oriented transport: TCP
« Segment structure
 Reliable data transfer
« Flow control
« Connection management

« Congestion Control

TCP Reliable Data Transfer

« TCP creates rdt service on top of IP's unreliable
service

« pipelined segments
« cumulative acks
* single retfransmission timer
e Retransmissions triggered by
« timeout events
« duplicate acks
« Let’s initially consider simplified TCP sender

 ignore duplicate acks
* ignore flow control, congestion conftrol

« create segment with e refransmit segment
seq # that caused timeout

* Seq # IS byfte-stream « restart timer
number of first data

byte in segment « if ack acknowledges

» start timer if not previously unacked
already running segments
* think of timer as for « update what is known
oldest unacked to be ACKed
segment

e start timer if there are

* expirafion inferval: still unacked segments
TimeOutInterval

TCP Sender (Simplified)

datareceived from application above
create segment, seq. #: NextSegNum

passsegment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (fimer currently not running)
L N) start timer
NextSegNum = InitialSegNum /~ Walit
SendBase = InitialSegNum for
event

timeout

retransmit not-yet-acked

segment with smallest seq. #
start timer

ACK received, with ACK field value y

if (y >SendBase) {
SendBase =y

/* SendBase-1:last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start fimer

else stop timer

}

TCP: Retransmission Scenarios

Host A Host B
e —— s
I seq f
eq=92, 8 bytes of dara
5 R
o) vl
) ACK=100
£ X
\
Seq=92, 8 bytes of data
\
ACK=100

lost ACK scenario

Host A Host B
% V

SendBase=92

/

Seq=92, 8 bytes of data

Seg=100, 20 bytes of data

ACK= 1(/

ACK=120

Seq=92, 8
bytes of data

/

ACK=120

/

— fimeout —

SendBase=100
SendBase=120

SendBase=120

premature timeout

TCP: Retransmission Scenarios

Host A Host B
e — s — g
\
Seqg=92, 8 bytes of data
\ \

Seqg=100, 20 b;’rsesgo’ro
ACK=100
X< /

/ACK=120
\
Seqg=120, 15 bytes of data

[N

——timeout —

cumulative ACK

TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver

TCP receiver action

arrival of in-order segment with
expected seq #. All data up to
expected seqg # already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next
segment, send ACK

arrival of in-order segment with
expected seqg #. One other
segment has ACK pending

immediately send single
cumulative ACK, ACKing both
in-order segments

arrival of out-of-order segment
higher-than-expect seq. #.
Gap detected

immediately send duplicate
ACK, indicating seq. # of next
expected byte

arrival of segment that
partially or completely fills gap

immediate send ACK, provided
that segment starts at lower end

of gap

TCP Fast Retransmit

» Time-out period often _ TCP fast retransmit ——

relatively long: | if sender receives 3
* long delay before resending ACKs for same data

lost packet (“triple duplicate
ACKs”), immediately
« Detect lost segments via resend unacked
duplicate ACKs segment with smallest

seq #

« Sender often sends many - likely that unacked
segments back-to-back segment lost, so don’ 1

 |If segment is lost, there will wait for fimeout
likely be many duplicate
ACKs

TCP Fast Retransmit

Host A Host B

B S
|
|7 Seg=92, 8 bytes of data

\Seq=lOOWITQ
\X

5

8 V
kS ACK 10

N /A\CK 100

“Seqg=100, 20 bytes of dafta

]

v v

fast retfransmit after sender receipt of triple duplicate ACK

* Transport-layer services
* Mulfiplexing and demultiplexing
« Connectionless transport: UDP

« connection-oriented transport: TCP

« Segment sfructure
* Reliable data transfer

« Connection management
« Congestion Control

TCP Flow Control

applicatio
application may rOCess
remove data from o
TCP socket buffers [] c_;rzp_hgc;_’r!on
TCP socket O3
receiver buffers
... Slower than TCP y
receiver is delivering ——
(senderis sending) ICP
code
]
—— flow control P
code
receiver controls sender, so T D
sender won't overflow | LY s
receiver’s buffer by frdm sendet
transmitting too much, too fast :
receiver protocol stack

« Whye guarantees receive buffer to application process

will not overflow FIT
« Receiver “advertises’ free Rchuffe,I buffered data
buffer space by including T

rwnd value in TCP header of rwnd

free buffer space
receiver-to-sender segments

™

 RevBuffer size setvia socket I
options (typical default is 4096 bytes) TCP segment payloads
* many operating systems receiver-side buffering

auto-adjust RevBuffer

« Sender limits the amount of unacked
(“in-flight”) data to receiver’'s rwnd value

LastByteSent - LastByteAcked < rwnd How about UDP?2

Outline

* Transport-layer services
« Multiplexing and demultiplexing
« Connectionless transport: UDP

« connection-oriented transport: TCP
« Segment structure
« Reliable data fransfer
« Flow control
« Connection management

« Congestion Control

Connection Management

« Before exchanging data, sender/receiver
“handshake”,

« agree to establish connection (each knowing the other
wiling to establish connection)

- agree on connection parameters

application application
l|:|l l|:|l

connection state: ESTAB connection state: ESTAB
connection variables: connection Variables:

seq # client-to-server seq # client-to-server

server-to-client server-to-client
rcvBuffer size rcvBuffer size
at server,client at server,client
'J network network ﬁ
- | : ! :
Socket clientSocket = Socket connectionSocket =

newSocket ("hostname" , "port number") ; welcomeSocket.accept() ;

Agreeing to Establish a Connection

2-way handshake:

i
] Q: will 2-way handshake always
"~ Let'stalk _ work in network?
_——®ESTAB
R
A: No
« TCP is bidirectional connection
% Eﬂ « Both sides randomly pick their initial
choose x TTeq_comn(x) sequence numbers
—8 ESTAB

acc_conn(x)
ESTAB &

Agreeing to Establish a Connection

2-way handshake failure scenarios:

choose X choose x
\req_conn(>_<L‘ \req_conn(>_<L.
/ ESTAB /0 ESTAB
retransmit acc_conn(x) retransmit acc_conn(X)
req_conn(x) - req_conn(x) -
ESTAB ESTAB €<__
reg_conn(x) data(x+ 1)\-. accept
— retransmit data(x+1)
data(x+1) ™\
| _ connection _ | | _ connection |
client ~ xcompletes |server client X completes | gerver
terminates forgets x : 1
g terminates req_conn(x) forgets x
half open connection! . ESTAB
no client! ESTAB
() data(x+1) accept
data(x+1)

Connection tferminated due to long delay

TCP 3-way Handshake

client state

LISTEN
choose init segnum, x
! send TCP SYN msg
SYNSENT
v received SYNACK(x)
ESTAB indicates serverislive;

send ACK for SYNACK;
this segment may contain
client-to-server data

g

gy
\
SYNbit=1, Seg=x

/

SYNbit=1, Seg=y
ACKbit=1; ACKnum=x+1

—

\

ACKbit=1, ACKnum=y+1]
\

choose initsegnum, y

send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates clientis live

server stafe

LISTEN

SYN RCVD

v

ESTAB

TCP 3-way Handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;

A Socket clientSocket =
SYN(x) v newSocket ("hostname", "port #") ;
SYNACK (seg=y, ACKnum=x+1)
create new socket for SYN(seg=x)

communication back to clien

1 ‘,

‘ ‘ SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnUM=y+1)

TCP: Closing a Connection

e Client, server each close their side of connection
« send TCP segment with FIN bit = 1
» Respond to received FIN with ACK

« onreceiving FIN, ACK can be combined with own FIN
« Simultaneous FIN exchanges can be handled

TCP: Closing a Connection

client state q E
ESTAB e —
| clientSocket.close()\F”\Ib.Jr]
FIN_WAIT_1 cannolonger It=1, seq=x
send but can q\
receive data —
! ACKbit=1; ACKnum=x+1
FIN WAIT 2 wait forserver le—"
0 B close
/
v A)_Nbi’rﬂ , Seqg=y
TIMED_WAIT —
L TSE
ACKbit=1; ACKnum=y+1
timed wait —
for 2*max
segment lifetime
CLOSED _l,

server state

CLOSE_WAIT

can still
send data

can no longer
send data

ESTAB

LAST ACK

CLOSED

Outline

* Transport-layer services
« Multiplexing and demultiplexing
« Connectionless transport: UDP

« connection-oriented transport: TCP
« Segment structure
« Reliable data transfer
« Flow control
« Connection management

« Congestion Control

Congestion Example: Infinite Buffer

Two connections share a link with infinite buffer

Ain: Original data Aout
Host A / Host B Host C / Host D

@ o [D @ X 4 D
= =
= =<
L — J

infinite buffer

« Say both A and B send A\, bytes/sec
« When A\, exceeds R/2, the average number of queued packets in
the router is unbounded -2 delay becomes infinite

Delay

R/2

Throughput
)\ouf

Congestion Example: Finite Buffer

Two connections with finite buffer and retransmission enabled

L A, original data, plus
Ain: original data retransmitted data

Host A / / Host B Host C / Host D
¢/ ® rY N
= E E "
= =_—
— =

T finite buffer

« With retransmission, offered load becomes A';, larger then A,
« Capacity wastes: 1) packet loss: retfransmission, 2) fimeout:
unnecessary retransmissions

loss 1R/2 No loss but timeout 1R /2 i

)\ouf
)\ouT

TCP Congestion Contirol

« End-to-end conftrol, rather then network-assisted
control

 |dea: TCP sender determines the rate
« No congestion - increase the rate
« Congestion 2 reduce the rate

« Questions:
 How to limit the ratee

« How to determine whether there is congestion?
« How to change the rate?¢

TCP Congestion Contirol

e How to Iimit the rate?¢

« frack a variable, congestion window, cadlled ewnd
- Unacked packets cnanot exceed cwnd

LastByteSent — LastByteAcked £ min (rwnd, cwnd)

rate = cwnd / RTT

 How to determine whether there is congestione
« Buffer overflow leads to losses
« How to detecte 1) fimeout, or 2) receiving 3 dup-ACK
« How to change the rate?
« Amval of ACK indicates "nothing wrong”
« Missing ACK implies congestion

» Use ACKs to trigger an increase in ewnd -2 self clocking
Q: how to adjust the value of ewnd?

Bandwidth Probing

Key idea of TCP's congestion control

« Keep increasing the rate (value of ewnd) In
response to arriving ACKs

« Decrease the rate (value of ewnd) if loss event
OCCUIs

TCP's congestion control algorithm [RFC 5681]
 Slow start

, , — analogy
« Congestion avoildance

. Fast recovery Kids request for goodies

 More and more until the
parents finally say “NO”
« Back off a bit

TCP Congestion Contirol

» sender increases fransmission rate (window size),
probing for usable bandwidth, until loss occurs

 How?
Additive Increase Multiplicative Decrease (AIMD)

« additive increase: increase ecwnd by 1 MSS every
RTT until loss detected

« nmulfiplicative decrease: cut ewnd in half after loss

. additively increase window size ...

® ... until loss occurs (then cut window in half)

3
AIMD saw footh g S J
. . C
behavior: probing 3 -

forbandwidth &5
=0
T O
-
5O

fime

TCP’s Achievable Rate

sender sequence number space
je—— cwnd —>|

last byte Iast byte
ACKed
(“in-flight™)

e sender limits fransmission:

LastByteSent-
LastByteAcked

cwnd

* cwnd is dynamic, function of
perceived network congestion

TCP sending rate:

« roughly: send cwnd
bytes, wait RTT for ACKS,
then send more bytes

rate =

cwnd (bytes/sec)

TCP Slow Start

HostA Host B
- when connection begins, | E
increase rate =
exponentially until first loss é W
event: T

* inifially ewnd =1 MSS

* double ewnd every RTT

« done by incrementing /

cwnd for every ACK Ur segments
received

« summary: inifial rate is
slow but ramps up
exponentially fast time

Detecting, Reacting to Loss

Depend on how we define a “loss” event

» Loss indicated by timeout:
 cwndset to 1 MSS;

* begin the slow start process anew - cwnd Qrows
exponentially

« switch to the congestion-avoidance mode when cwnd =
threshold > ssthresh = cwnd/2;increase cwnd linearly

» Loss indicated by 3 duplicate ACKs: TCP RENO

« dup ACKs indicate network capable of delivering some
segments

« enter the fast recovery state 2 ewndis cutin half window
then grows linearly
« TCP Tahoe always sets ewndto 1 (timeout or 3
duplicate acks)

When cwnd is approaching the level of congestion (i.e.,
a timeout event), we should increase Cwnd more
conservatively

- grow linearly, instead of exponentially

Use a threshold called ssthresh 1o determine whether
to enter the CA mode by sefting ssthresh = Cwnd/2

Cwndis increased by 1 MSS for every duplicate ACK
received for the missing segment that caused TCP to
enter the fast-recovery state

Recommended, but not required

TCP Tahoe: unconditionally set Cwnd = 1 and restart
slow start

TCP Reno: halve cwnd and then increase Cwnd linearly

From Slow Start to Congestion Avoidance

Q: when should the exponential increase switch to
ineare
A: when ewnd gets to 1/2 of its value before timeout

14—

TCP Reno

124

10
ssthresh

Congestion window
(in segments)

Implementation:
e variable ssthresh
0 | | | | | | | | | | | | | | |

°OH|OSSGVQHT, 01 2 3 4 5 6 7 8 9 10111213 14 15
ssthreshissetto 1/2 Transmission round

of ewnd |just before
loss event

TCP Congestion Contirol

) new ACt <25
duplicate ACK L, cwnd = cwnd *MSS_ » (MSS/cwnd)
dupACKcount++ NeWACK dupACKcount=0

m cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount=0

/)transmit new segment(s), as allowed
cwnd > ssthresh

A

A

cwnd =1 MSS
ssthresh =64 KB
dupACKcount=0

v

d
<

'0:) timeout
¢ $))resh= dr2
</ 52/ esh=cun duplicate ACK
(timeout dupACKcount=0 dupACKcount++
esh sh=cwnd’2 _ A retransmit missing segment 4
cwnd = 1 MSS
dupACKcount=0 2o
retransmit missing segment (
timeout
ssthresh=cwnd/2 1
cwnd =1 New ACK
dupACKcount=0 d=ssthresh
dupACKcount==3 retransmit missing segment d?JVF\)IRC_KcS:gu nrte=SO dupACKcount==3
ssthresh=cwnd/2 ssthresh=cwnd/2
cwnd = ssthresh +3 cwnd = ssthresh +3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

TCP Average Throughput

* avg. TCP thruput as function of window size,

RTTe

 ignore slow start, assume always data to send

* W: WINAOW SIZ€ (measured in bytes) Where 10ss OCCurs
« avg. window size (# in-flight bytes) is % W
* avg. thruput is 3/4W per RTT

avg thruput =

3IW
4 RTT bytes/sec

W 4

TCP Fairness

» fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

4

<

bottleneck
\ \q/ router

TCP connecf‘i'on 2 capacity R

H

Simple example: two competing sessions
- additive increase gives slope of 1, as throughout

Increqases
« mulfiplicative

decrease decreases throughput

proporfionally

Connection 2 throughput g

equal bandwidth share

/

,»~loss:decrease window by factor of 2
ongestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Fairness (more)

Fairness and UDP

* multimedia apps often
do not use TCP

 do not want the rate
throttled by congestion
conftrol

e instead use UDP:

« send audio/video at
constant rate, tolerate
packet loss

« Fairness between TCP
and UDPe (later
lecture)

Fairness, parallel TCP
connections

« application can open
multiple parallel
connections between
twoO hosts

e web browsers do this

« .g., link of rate R with 9
existing connections:

 new app asks for 1 TCP,
gets rate R/10

 new app asks for 11 TCPs,
gets R/2

* Principles behind transport layer services:
« multiplexing, demulfiplexing
* reliable data transfer
* flow conirol
« congestion control

* Instantiation, implementation in the
Internet
 UDP
« TCP

