
Multimedia Communications
@CS.NCTU

Lecture 3: Networking – TCP/UDP
[Computer Networking, Ch3]

Instructor: Kate Ching-Ju Lin (林靖茹)

Slides modified from
“Computer Networking: A Top-Down Approach” 6th Edition

Chapter 3: Transport Layer

our goals:
• Understand principles

behind transport layer
services:

• multiplexing,
demultiplexing

• reliable data transfer
• flow control
• congestion control

• Learn about Internet
transport layer protocols:

• UDP: connectionless
transport

• TCP: connection-oriented
reliable transport

• TCP congestion control

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• Connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

Transport Services and Protocols

• Provide logical communication
between app processes
running on different hosts

• Transport protocols run in end
systems

• send side: breaks app messages
into segments, passes to network
layer

• recv side: reassembles segments
into messages, passes to app
layer

• Available transport protocols
• TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport vs. Network Layer

• Network layer:
• logical communication

between hosts
• Host-to-host

• Transport layer:
• logical communication

between processes relies
on, enhances, network
layer services

• End-to-end (process-to-
process)

12 kids in Ann’s house
sending letters to 12 kids in
Bill’s house:
• hosts = houses
• processes = kids
• app messages = letters in

envelopes
• transport protocol = Ann

and Bill who demux to in-
house siblings

• network-layer protocol =
postal service

household analogy:

Internet Transport Protocols
• Reliable, in-order delivery:

TCP
• congestion control
• acknowledgement
• flow control
• connection setup

• Unreliable, unordered
delivery: UDP

• no-frills extension of “best-
effort” IP

• Send as many as possible

• Services not available:
• delay guarantees
• bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical network

data link
physical

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• Connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

Multiplexing/Demultiplexing

process

socket

use header info to deliver
received segments to correct
socket (unique proc ID)

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical
link
network

P2P1

transport

application

physical
link
network

P4

transport

application

physical
link
network

P3

How Demultiplexing Works?

• Host receives IP datagrams
• each datagram has source IP

address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

• host uses IP addresses & port
numbers to direct segment
to appropriate socket

source port # dest port #

32 bits

Application data
(payload)

other header fields

TCP/UDP segment format

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• Connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

UDP: User Datagram Protocol [RFC 768]
• “No frills,” “bare bones”

Internet transport
protocol

• “Best effort” service, UDP
segments may be:

• lost
• delivered out-of-order

to app
• Connectionless:

• no handshaking
between UDP sender,
receiver

• each UDP segment
handled independently
of others

• Pros:
• low latency
• no state à support more

users
• smaller packet header

• UDP use:
• streaming multimedia apps

(loss tolerant, rate sensitive)
• DNS
• SNMP

• Reliable transfer over UDP:
• add reliability at

application layer via error
recovery

src port # dst port #

32 bits

application data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

UDP: Segment Header

• no connection
establishment (which can
add delay)

• simple: no connection
state at sender, receiver

• small header size
• no congestion control:

UDP can blast away as fast
as desired

why is there a UDP?

UDP Checksum

• Sender
• treat segment

contents, including
header fields, as
sequence of 16-bit
integers

• checksum: addition
(one’s complement
sum) of segment
contents

• sender puts
checksum value into
UDP checksum field

• Receiver
• compute checksum of

received segment
• check if computed

checksum equals
checksum field value

• NO - error detected
• YES - no error detected.

But maybe errors
nonetheless? More
later ….

Goal: detect “errors” in transmitted segment

Internet Checksum: Example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• Connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

What is Reliable Data Transfer?
• Important in application, transport, link layers

• top-10 list of important networking topics!

• Characteristics of unreliable channel will
determine complexity of reliable data transfer
protocol (rdt)

• Important in application, transport, link layers
• top-10 list of important networking topics!

• Characteristics of unreliable channel will
determine complexity of reliable data transfer
protocol (rdt)

What is Reliable Data Transfer?

• Important in application, transport, link layers
• top-10 list of important networking topics!

• Characteristics of unreliable channel will
determine complexity of reliable data transfer
protocol (rdt)

What is Reliable Data Transfer?

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

• Full duplex data:
• bi-directional data flow

in same connection
• MSS: maximum segment

size

• Connection-oriented:
• Three-way handshaking

(exchange of control
msgs) inits sender,
receiver state before
data exchange

• Flow controlled:
• sender will not

overwhelm receiver

• Point-to-point:
• one sender, one

receiver

• Reliable, in-order
byte steam:

• no “message
boundaries”

• Pipelined:
• TCP congestion and

flow control set
window size

TCP Segment Structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

receive window

Urg data pointerchecksum
FSRPAUhead

len
not
used

options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum
(as in UDP)

TCP Seq. Numbers, ACKs

• Sequence numbers:
• byte stream “number” of

first byte in segment’s
data

• Acknowledgements:
• seq # of next byte

expected from other side
• cumulative ACK

Q: how receiver handles
out-of-order segments
• A: TCP spec doesn’t say, - up

to implementor
source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

User
types‘C’

host ACKs
receipt

of echoed‘C’

host ACKs receipt
of‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP Seq. Numbers, ACKs

TCP Round Trip Time, Timeout

Q: how to set TCP
timeout value?

• longer than RTT, but RTT
varies

• too short: premature
timeout, unnecessary
retransmissions

• too long: slow reaction
to segment loss

Q: how to estimate RTT?
• SampleRTT: measured

time from segment
transmission until ACK
receipt

• ignore retransmissions
• SampleRTT will vary,

want estimated RTT
“smoother”

• average several recent
measurements, not just
current SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

exponential weighted moving average (EWMA):
RTT = (1-a) * RTT + a * SampleRTT

TCP Round Trip Time, Timeout

• exponential weighted moving average
• influence of past sample decreases exponentially fast
• typical value: a = 0.125

TCP Round Trip Time, Timeout
• Q: what value should be used for TCP’s timeout

interval?
• timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT à larger safety
margin

retransmission timeout interval:
TimeoutInterval = RTT + 4 * DevRTT

estimated RTT “safety margin”

RTT deviation:
DevRTT = (1 - b)*DevRTT + b * |SampleRTT - RTT |

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

TCP Reliable Data Transfer
• TCP creates rdt service on top of IP’s unreliable

service
• pipelined segments
• cumulative acks
• single retransmission timer

• Retransmissions triggered by
• timeout events
• duplicate acks

• Let’s initially consider simplified TCP sender
• ignore duplicate acks
• ignore flow control, congestion control

TCP Sender Events:
data rcvd from app:
• create segment with

seq #
• seq # is byte-stream

number of first data
byte in segment

• start timer if not
already running

• think of timer as for
oldest unacked
segment

• expiration interval:
TimeOutInterval

timeout:
• retransmit segment

that caused timeout
• restart timer
ack rcvd:

• if ack acknowledges
previously unacked
segments

• update what is known
to be ACKed

• start timer if there are
still unacked segments

TCP Sender (Simplified)

wait
for
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked
segment with smallest seq. #
start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

TCP: Retransmission Scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

tim
eo

ut

tim
eo

ut

X

cumulative ACK

Host BHost A

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

TCP: Retransmission Scenarios

Seq=92, 8 bytes of data

TCP ACK Generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. #.
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next
segment, send ACK

immediately send single
cumulative ACK, ACKing both
in-order segments

immediately send duplicate
ACK, indicating seq. # of next
expected byte

immediate send ACK, provided
that segment starts at lower end
of gap

TCP Fast Retransmit

• Time-out period often
relatively long:

• long delay before resending
lost packet

• Detect lost segments via
duplicate ACKs

• Sender often sends many
segments back-to-back

• If segment is lost, there will
likely be many duplicate
ACKs

if sender receives 3
ACKs for same data
(“triple duplicate
ACKs”), immediately
resend unacked
segment with smallest
seq #
§ likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

X

fast retransmit after sender receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut

ACK=100
ACK=100
ACK=100

TCP Fast Retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

TCP Flow Control
application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process• Why? guarantees receive buffer
will not overflow

• Receiver “advertises” free
buffer space by including
rwnd value in TCP header of
receiver-to-sender segments

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems
auto-adjust RcvBuffer

• Sender limits the amount of unacked
(“in-flight”) data to receiver’s rwnd value

receiver-side buffering

TCP Flow Control

LastByteSent – LastByteAcked ≤ rwnd How about UDP?

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

Connection Management
• Before exchanging data, sender/receiver

“handshake”,
• agree to establish connection (each knowing the other

willing to establish connection)
• agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port number");

Socket connectionSocket =
welcomeSocket.accept();

Agreeing to Establish a Connection

Q: will 2-way handshake always
work in network?

A: No
• TCP is bidirectional connection
• Both sides randomly pick their initial

sequence numbers

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x req_conn(x)
ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x req_conn(x)
ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Agreeing to Establish a Connection

Connection terminated due to long delay

TCP 3-way Handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

TCP 3-way Handshake: FSM

closed

Λ

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
newSocket("hostname","port #");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

Λ

TCP: Closing a Connection
• Client, server each close their side of connection

• send TCP segment with FIN bit = 1
• Respond to received FIN with ACK

• on receiving FIN, ACK can be combined with own FIN

• Simultaneous FIN exchanges can be handled

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

TCP: Closing a Connection

Outline
• Transport-layer services
• Multiplexing and demultiplexing
• Connectionless transport: UDP
• connection-oriented transport: TCP

• Segment structure
• Reliable data transfer
• Flow control
• Connection management

• Congestion Control

Congestion Example: Infinite Buffer

• Say both A and B send λin bytes/sec
• When λin exceeds R/2, the average number of queued packets in

the router is unbounded à delay becomes infinite

260 CHAPTER 3 • TRANSPORT LAYER

simple one. Data is encapsulated and sent; no error recovery (for example, retrans-
mission), flow control, or congestion control is performed. Ignoring the additional
overhead due to adding transport- and lower-layer header information, the rate at
which Host A offers traffic to the router in this first scenario is thus !in bytes/sec.
Host B operates in a similar manner, and we assume for simplicity that it too is
sending at a rate of !in bytes/sec. Packets from Hosts A and B pass through a
router and over a shared outgoing link of capacity R. The router has buffers that
allow it to store incoming packets when the packet-arrival rate exceeds the outgo-
ing link’s capacity. In this first scenario, we assume that the router has an infinite
amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first
scenario. The left graph plots the per-connection throughput (number of bytes per
second at the receiver) as a function of the connection-sending rate. For a sending
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending
rate—everything sent by the sender is received at the receiver with a finite delay.
When the sending rate is above R/2, however, the throughput is only R/2. This upper
limit on throughput is a consequence of the sharing of link capacity between two
connections. The link simply cannot deliver packets to a receiver at a steady-state
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates,
they will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a
good thing, because the link is fully utilized in delivering packets to their destina-
tions. The right-hand graph in Figure 3.44, however, shows the consequence of
operating near link capacity. As the sending rate approaches R/2 (from the left), the
average delay becomes larger and larger. When the sending rate exceeds R/2, the

Host B

Unlimited shared
output link buffers

λin: original data

Host A Host DHost C

λout

Figure 3.43 ! Congestion scenario 1: Two connections sharing a single
hop with infinite buffers

Two connections share a link with infinite buffer

λin

λ o
ut

R/2 λin
R/2Th

ro
ug

hp
ut

De
la

y

infinite buffer

Congestion Example: Finite Buffer

• With retransmission, offered load becomes λ’in larger then λin
• Capacity wastes: 1) packet loss: retransmission, 2) timeout:

unnecessary retransmissions

Two connections with finite buffer and retransmission enabled

λin

λ o
ut

R/2

loss

finite buffer

262 CHAPTER 3 • TRANSPORT LAYER

!in would be equal to !"in, and the throughput of the connection would be equal to
!in. This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, !"in (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of

Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data

Figure 3.45 ! Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

262 CHAPTER 3 • TRANSPORT LAYER

!in would be equal to !"in, and the throughput of the connection would be equal to
!in. This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, !"in (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of

Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data

Figure 3.45 ! Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

262 CHAPTER 3 • TRANSPORT LAYER

!in would be equal to !"in, and the throughput of the connection would be equal to
!in. This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, !"in (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of

Finite shared output
link buffers

Host BHost A Host DHost C

λout

λin: original data

λ’in: original data, plus
retransmitted data

Figure 3.45 ! Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

No loss but timeoutR/2
R/3

λ o
ut

R/2

R/2

R/4

TCP Congestion Control
• End-to-end control, rather then network-assisted

control
• Idea: TCP sender determines the rate

• No congestion à increase the rate
• Congestion à reduce the rate

• Questions:
• How to limit the rate?
• How to determine whether there is congestion?
• How to change the rate?

TCP Congestion Control
• How to limit the rate?

• track a variable, congestion window, called cwnd
à Unacked packets cnanot exceed cwnd

• How to determine whether there is congestion?
• Buffer overflow leads to losses
• How to detect? 1) timeout, or 2) receiving 3 dup-ACK

• How to change the rate?
• Arrival of ACK indicates ”nothing wrong”
• Missing ACK implies congestion
• Use ACKs to trigger an increase in cwndà self clocking

Q: how to adjust the value of cwnd?

LastByteSent – LastByteAcked ≤ min(rwnd,cwnd)

rate ≈ cwnd / RTT

Bandwidth Probing
Key idea of TCP’s congestion control
• Keep increasing the rate (value of cwnd) in

response to arriving ACKs
• Decrease the rate (value of cwnd) if loss event

occurs

TCP’s congestion control algorithm [RFC 5681]
• Slow start
• Congestion avoidance
• Fast recovery Kids request for goodies

• More and more until the
parents finally say “NO”

• Back off a bit

analogy

TCP Congestion Control
• sender increases transmission rate (window size),

probing for usable bandwidth, until loss occurs
• How?

• additive increase: increase cwnd by 1 MSS every
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
•

Additive Increase Multiplicative Decrease (AIMD)

cw
nd

:T
C

P
se

nd
er

co

ng
es

tio
n

w
in

do
w

 si
ze

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP’s Achievable Rate

• sender limits transmission:

• cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
• roughly: send cwnd

bytes, wait RTT for ACKS,
then send more bytes

last byte
ACKed sent, not-yet

ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked <

cwnd

sender sequence number space

rate ≈ cwnd
RTT

(bytes/sec)

TCP Slow Start
• when connection begins,

increase rate
exponentially until first loss
event:

• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing
cwnd for every ACK
received

• summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
TT

Host B

time

Detecting, Reacting to Loss
Depend on how we define a “loss” event
• Loss indicated by timeout:

• cwnd set to 1 MSS;
• begin the slow start process anew à cwnd grows

exponentially
• switch to the congestion-avoidance mode when cwnd =

threshold à ssthresh = cwnd/2; increase cwnd linearly

• Loss indicated by 3 duplicate ACKs: TCP RENO
• dup ACKs indicate network capable of delivering some

segments
• enter the fast recovery state à cwnd is cut in half window

then grows linearly
• TCP Tahoe always sets cwnd to 1 (timeout or 3

duplicate acks)

Recap
• Congestion Avoidance (CA)

• When Cwnd is approaching the level of congestion (i.e.,
a timeout event), we should increase Cwndmore
conservatively
à grow linearly, instead of exponentially

• Use a threshold called ssthresh to determine whether
to enter the CA mode by setting ssthresh = Cwnd/2

• Fast Recovery (FR)
• Cwnd is increased by 1 MSS for every duplicate ACK

received for the missing segment that caused TCP to
enter the fast-recovery state

• Recommended, but not required
• TCP Tahoe: unconditionally set Cwnd = 1 and restart

slow start
• TCP Reno: halve Cwnd and then increase Cwnd linearly

Q: when should the exponential increase switch to
linear?

A: when cwnd gets to 1/2 of its value before timeout

Implementation:
• variable ssthresh
• on loss event,
ssthresh is set to 1/2
of cwnd just before
loss event

From Slow Start to Congestion Avoidance

TCP Congestion Control

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

TCP Average Throughput
• avg. TCP thruput as function of window size,

RTT?
• ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W
• avg. thruput is 3/4W per RTT

W

W/2

avg thruput = 34
W
RTT bytes/sec

• fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck
router
capacity R

TCP Fairness

TCP connection 2

Why is TCP Fair?
Simple example: two competing sessions
• additive increase gives slope of 1, as throughout

increases
• multiplicative decrease decreases throughput

proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (more)
Fairness and UDP
• multimedia apps often

do not use TCP
• do not want the rate

throttled by congestion
control

• instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

• Fairness between TCP
and UDP? (later
lecture)

Fairness, parallel TCP
connections
• application can open

multiple parallel
connections between
two hosts

• web browsers do this
• e.g., link of rate R with 9

existing connections:
• new app asks for 1 TCP,

gets rate R/10
• new app asks for 11 TCPs,

gets R/2

Summary
• Principles behind transport layer services:

• multiplexing, demultiplexing
• reliable data transfer
• flow control
• congestion control

• Instantiation, implementation in the
Internet

• UDP
• TCP

