
Lecture 2: Networking – Application Layer
[Computer Networking, Ch2]

Instructor: Kate Ching-Ju Lin (林靖茹)

Multimedia Communications
@CS.NCTU

Slides modified from
“Computer Networking: A Top-Down Approach” 6th Edition

Outline

• Principles of network applications

• Web and HTTP

• P2P Applications (later lecture)

• Video Streaming and CDN (later lecture)

• Socket programing with UDP and TCP

Some Network Applications

• e-mail
• web
• text messaging
• remote login
• P2P file sharing
• multi-user network

games
• streaming stored video

(YouTube, Hulu, Netflix)

• voice over IP (e.g.,
Skype)

• real-time video
conferencing

• social networking
• search
• …
• …

Creating a Network App
write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server software

communicates with browser
software

no need to write software for
network-core devices
• network-core devices do not

run user applications
• applications on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Architectures

• Application architecture is different from the
network architecture (five layer)

• Possible structure of applications:
• client-server

• Web, gmail, Facebook, etc
• peer-to-peer (P2P)

• BitTorrent, Skype, PPStream, etc

Client-Server Architecture
server:
• always-on host
• permanent IP address
• data centers for scaling

clients:
• communicate with server
• may be intermittently

connected
• may have dynamic IP

addresses
• do not communicate directly

with each other

client/server

Peer-to-Peer (P2P) Architecture
• No always-on server
• Intermittently connected hosts,

called peers (equally important)
• Arbitrary end systems directly

communicate
• Peers request service from

other peers, and provide service
in return to other peers

• J self scalability – new peers
bring new service capacity, as
well as new service demands

• Peers might change IP addresses
• complex management

peer-peer

Challenges of P2P Architecture
Why P2P is less common?
• ISP Friendly

• Most residential ISPs usually support asymmetrical
bandwidth, but P2P has high upstream demands,
which is not friendly to ISPs

• Security
• Hard to achieve due to the distributed nature of

P2P
• Incentives

• Need to convince peers to contribute their
bandwidth, storage and computation resource à
Human are selfish!

Processes Communicating
process: program running within a host
• within the same host, two processes communicate

using inter-process communication (defined by
OS)

• processes in different hosts communicate by
exchanging messages

client process: process that
initiates communication

server process: process that
waits to be contacted

• applications with P2P
architectures have
both client processes &
server processes

clients, servers

Sockets
• Process sends/receives messages to/from its

socket, an interface between the app and
transport layers

• Controls: 1) choice of the transport protocol; 2)
setup transmit-layer parameters, e.g., buffer size

• Socket analogous to door
• sending process pushes message out door, to the

door (socket) at receiving process

Internet

Controlled by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Addressing Processes
• identifier includes both IP

address and port
numbers associated with
process on host.

• example port numbers:
• HTTP server: 80
• mail server: 25

• to send HTTP message to
gaia.cs.umass.edu web
server:

• IP address: 128.119.245.12
• port number: 80

• to receive messages,
process must have
identifier

• host device has unique
32-bit IP address

• Q: does IP address of
host on which process
runs suffice for
identifying the
process?

• A: no, many
processes can be
running on same host

App-layer Protocol Defines
• Types of messages

exchanged,
• e.g., request, response

• Message syntax
• what fields in messages

& how fields are
delineated

• Message semantics
• meaning of information

in fields
• Rules for when and how

processes send &
respond to messages

Open protocols:
• defined in RFCs
• allows for

interoperability
• e.g., HTTP, SMTP

Proprietary protocols:
• e.g., Skype

What transport service does an app need?
Reliability
• some apps (e.g., file

transfer, web
transactions) require
100% reliable data
transfer

• some apps (e.g., audio)
can tolerate some loss

timing
• some apps (e.g., Internet

telephony, interactive
games) require low
delay to be “effective”

Throughput
• some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

• other apps (“elastic
apps”) make use of
whatever throughput
they get

security
• encryption, data

integrity, …

Transport Service Requirements

application

file transfer
e-mail

Web documents
real-time

audio/video
stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps -5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec
yes, few secs
yes, 100’s msec
yes and no

Transport Services for Apps
TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide timing,
minimum throughput
guarantee, security

• connection-oriented: setup
required between client
and server processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide:
reliability, flow control,
congestion control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is there
a UDP?

Application and Transport Protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Q: Something better than TCP and UDP or in-between TCP and UDP?

Outline

• Principles of network applications

• Web and HTTP

• P2P Applications (later lecture)

• Video Streaming and CDN (later lecture)

• Socket programing with UDP and TCP

Web and HTTP
First, a review…
• Web page consists of objects
• Object can be HTML file, JPEG image, Java

applet, audio file,…
• Web page consists of base HTML-file, which

includes several referenced objects
• Each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview
HTTP: HyperText Transfer Protocol
• Web’s application layer protocol

• Client/server model
• client: browser that

requests, receives,
(using HTTP protocol)
and “displays”Web objects

• server: Web server sends
(using HTTP protocol) objects
in response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP Overview (cont.)
• Uses TCP

• Client initiates TCP connection (creates socket) to
server, default port 80

• Server accepts TCP connection from client
• HTTP messages (application-layer protocol

messages) exchanged between browser (HTTP
client) and Web server (HTTP server)

• Reliable transmissions
• HTTP is “stateless”

• Server maintains no
information about past
client requests

protocols that maintain
“state” are complex!
§ past history (state) must

be maintained
§ if server/client crashes,

their views of “state” may
be inconsistent, must be
reconciled

aside

HTTP Connections

non-persistent HTTP
• at most one object sent

over TCP connection
• connection then closed

• downloading multiple
objects required multiple
TCP connections

persistent HTTP
• multiple objects can be

sent over single TCP
connection between
client and server

• the server closes a
connection when it isn’t
used for a certain time

• Default mode

User-Server Interaction: Cookies

• HTTP is stateless, but what if the server wants to
keep information, e.g., user ID?

• Use cookies!
• Track user activity (e.g., interests of pro

• Four components
1. a header in the HTTP response message
2. a header in the HTTP request message
3. a cookie file kept on the users’ browser
4. a back-end database at the Web site

User-Server Interaction: Cookies

eBay, since Susan has visited that site in the past. As Susan continues to browse the
Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line
that includes the identification number in the HTTP request. Specifically, each of
her HTTP requests to the Amazon server includes the header line:

Cookie: 1678

2.2 • THE WEB AND HTTP 109

Client host Server host

usual http request msg

usual h
ttp res

ponse

Set-coo
kie: 16

78

usual http request msg
cookie: 1678

usual h
ttp res

ponse m
sg

usual http request msg
cookie: 1678

usual h
ttp res

ponse m
sg

Time

One week later

ebay: 8734

Server creates
ID 1678 for user

Time

Cookie file

Key:

amazon: 1678
ebay: 8734

amazon: 1678
ebay: 8734

Cookie-specific
action

access

access

entry in backend
database

Cookie-specific
action

Figure 2.10 ! Keeping user state with cookies

Web Caching
• Also called proxy server, a server keeping copies of

recently requested objects
• If the browser configures a proxy server,

1. the request will be first re-directed to the Web cache
2. if hits, the proxy returns the objects
3. if misses, the proxy creates a new connection to the

origin server
4. the proxy stores a copy, and forwards it to the client

HTTP request

HTTP response

HTTP request

HTTP response

client proxy origin server

Web Caching (cont.)
• Typically installed by an ISP

• Why needed?
• closer, reducing the response time
• sharing loading, reducing Web traffic

• Q: What is the disadvantage?
• experience even longer latency if the proxy does not

cache the objects

• Q: What is the practical challenge?
• need to determine what objects should be kept if the

storage is nearly full

Outline

• Principles of network applications

• Web and HTTP

• P2P Applications (later lecture)

• Video Streaming and CDN (later lecture)

• Socket programing with UDP and TCP

Socket Programming
• Goal:

• learn how to build client/server applications that
communicate using sockets

• Socket:
• door between application process and end-end-

transport protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket Programming
• Two socket types for two transport services

• UDP: unreliable datagram
• TCP: reliable, byte stream-oriented

• Port Number
• open protocols (FTP, HTTP, …): follow RFC
• Proprietary applications: avoid using well-known ports

• Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters to

uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its

screen

Socket Programming with UDP

• UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address

and port number to each packet (typically down
by OS)

• receiver extracts sender IP address and port
number from received packet

• UDP: transmitted data may be lost or received
out-of-order

• Application viewpoint:
• UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/Server Socket Interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Example App: UDP Client

Example App: UDP Server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Socket Programming with TCP
• Client must contact server

• server process must first be running
• server must have created socket (door) that welcomes

client’s contact
• Client contacts server by

• creating TCP socket, specifying IP address, port number
of server process

• When client creates socket, client TCP establishes
connection to server TCP

• When contacted by client, server TCP creates new
socket for server process to communicate with that
particular client

• allows server to talk with multiple clients
• source port numbers used to distinguish clients (more in

Ch. 3)

TCP provides reliable, in-order byte-stream transfer (“pipe”)
between client and server

Client/Server Socket Interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Client/Server Socket Interaction: TCP

into but also receives bytes from its socket; similarly, the server process not only
receives bytes from but also sends bytes into its connection socket.

We use the same simple client-server application to demonstrate socket program-
ming with TCP: The client sends one line of data to the server, the server capitalizes
the line and sends it back to the client. Figure 2.30 highlights the main socket-related
activity of the client and server that communicate over the TCP transport service.

TCPClient.py

Here is the code for the client side of the application:

164 CHAPTER 2 • APPLICATION LAYER

Client process Server process

Client
socket

Welcoming
socket

Three-way handshake

Connection
socket

bytes
bytes

Figure 2.29 ! The TCPServer process has two sockets

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Example App: TCP Client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Example App: TCP Server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1) // max # of clients, at least 1
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()
// connectionSocket dedicated to a particular user

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Summary

• Principles of network applications

• Web and HTTP

• Will introduce HTTP streaming in later lectures

• Socket programing with UDP and TCP

• Homework 1: Socket programming over UDP/TCP
for audio delivery

Mini-Assignment
• Wireshark lab: HTTP

• Trace log as connecting to:
http://people.cs.nctu.edu.tw/~katelin/courses/mmnet17

• Trace log as connecting to:
https://www.youtube.com/watch?v=JqcmkLux0z8

• Instruction
• https://wiki.wireshark.org/Hyper_Text_Transfer_Proto

col
• Tip of filtering: Find the IP and set ”ip.dst ==

DST_ADDR”

