Multimedia Communications @CS.NCTU

Lecture 15: Wireless Streaming

Instructor: Kate Ching-Ju Lin (林靖茹)

Unequal Protection

- Wireless channels are noisy
 - Channel coding is required to reduce the number of errors
 - Modulation should be selected properly
- Video compression algorithms
 - leverage layer coding, in which each layer is not equally important
 - are effective against a certain level of errors
- What's unequal protection (UEP)
 - Bits that are required (referred) by others
 - → more important → more protection
 - Bits that are NOT required (referred) by others
 - → less important → less protection

Technologies for Improving Reliability

Content-Aware FEC

• N/R FEC

- For every N bits of data, add redundancy and send out R bits (R-N bits are for error correction)
- Smaller N/R → more reliable
- Three classes
 - High priority: header and stuffing bits
 - Median priority: motion bits
 - Low priority: texture bits

• UEP FEC

- For example, (3/5, 2/3, 3/4) for (high, med, low)
 priority
- 3/5 < 2/3 < 3/4 ← give more bits to important info

BER of EEP and UEP

EEP 7/10-code vs. UEP (3/5, 2/3, 3/4) code

- Given channel with 10% BER, FEC effectively reduces BER
- EEP and UEP experience similar effective BER

PSNR of EEP and UEP

 Though EEP and UEP result in similar effectively BER, UEP achieves a higher PSNR

UEP for Scalable Coding

- I-frame is the reference of P-frames
- Importance: $I > P_1 > P_2 > P_3$

• Redundancy: $I > P_1 > P_2 > P_3$

I	ľ	P ₁	P' ₁	P ₂	P'2	P ₃	P' ₃
---	---	-----------------------	-----------------	----------------	-----	----------------	-----------------

Outline

- Unequal error protection
 - FEC-based solution
 - Modulation-based solution
 - Retransmission-based solution

Modulation-Assisted UEP

Exploit nonuniform QPSK to achieve UEP

M. Sajadieh, et. al., "Modulation-assisted unequal error protection over the fading channel," in *IEEE Transactions on Vehicular Technology*, vol. 47, no. 3, pp. 900-908, Aug 1998

9

Nonuniform QPSK

- $d_2 > d_1 \text{ as } \phi < \pi/4$
- BER(1st bit) < BER(2nd bit)

UEP using Nonuniform QPSK

 Partition bits into class 1 (more important) and class 2 (less important)

Outline

- Unequal error protection
 - FEC-based solution
 - Modulation-based solution
 - Retransmission-based solution

Recap

- Tx retransmits the frame when it does not receive ACK
- Retransmit the frame until the retry limit is reached

Retry Limit Adaptation

Increase the retry limit → enhance reliability

- Frame may still be lost if all reTx fail but the retry limit has been reached
- High priority bits → with a larger retry limit low priority bits → with a smaller retry limit
- Challenges:
 - A large retry limit might lead to buffer overflow → lose more frames
 - Tradeoff between delivery probability and buffer overflow rate

Qiong Li et. al., "Providing adaptive QoS to layered video over wireless local area networks through real-time retry limit adaptation," in IEEE Transactions on Multimedia, vol. 6, no. 2, pp. 278-290, Apr. 2004

Outline

- Unequal error protection
 - FEC-based solution
 - Modulation-based solution
 - Retransmission-based solution
- Wireless Video Multicasting

Wireless Video Multicast

Internet

streaming

video server

wireless router

((°)) wireless multicast

Heterogeneous Channel Conditions

Higher rates provide a higher throughput, but a shorter coverage range

Multicast Rate Adaptation

Adapt transmission bit-rates to dynamic channel conditions

- Leader-based scheme
- Collision due to concurrent feedback
- For reliable transmission

Y. Park, Y. Seok, N. Choi, Y. Choi, and J.-M. Bonnin, "Rate-Adaptive Multimedia Multicasting over IEEE 802.11 Wireless LANs," in Consumer Communications and Networking Conference, 2006 18

For Multicast Streaming?

Layered video coding

Differentiated video qualities

Playback deadline

Discarding frames after deadline

Differentiated-Quality Multicast

Goal:

 Differentiated quality matching their channel conditions

Challenges:

- Limited channel time
- Multiple bit-rates

Rate Scheduling Problem

Objective: Maximize video quality

$$\max PSNR_{total} = \sum_{m \in M} PRNR(m)$$

Subject to

 $PSNR(m) \ge PSNR_{\min}, \forall m \in M$ Min-quality guarantee

$$\sum_{f_k^n \in GOP^n} \frac{len(f_k^n)W_k^n}{r_k^n} \le T_{GOP^n} (1 - a_{bg}), \forall GOP^n \in G \text{ Deadline}$$

Clustering-based Rate Adaptation

1. Cluster Construction

Cluster users according heterogeneous channel conditions

2. Sample-based Rate Selection

Real-time sample channel quality

3. Rate Adaptation

Adapt rates to network dynamics

1. Cluster Construction

Cluster clients with similar link quality

Provide similar visual quality

Select cluster head

- Report channel visual quality
- Reduce feedback overhead

Estimate the overall visual quality

2. Sample-based Rate Selection

- Base frames
 - Fixed rate, dynamic size (n_b)
- Enhancement frames
 - Dynamic rate(r_e), best-effort size

2. Sample-based Rate Selection

- Sample 3 different rates (r_e) for enhancement frames
- Cluster heads report a mask of reception
 - Sender computes visual qualities

3. Rate Adaptation

Rate should be updated periodically

- Dynamic channel conditions
- Variable video bit-rates

3. Rate Adaptation

Detect the duplicated rate r_e for k continuous sampling intervals

periodically

Any of CHs reports that $PSNR_{static}(CH_i) < PSNR_{active}(CH_i) - \Delta$

Stop sampling; use the current selected rate

1. Adaptive state

Rather sample periodically than keep using a wrong rate

2. Adaptive state -> Stable state

Find duplicate samples

3. Stable state

- Keep using the current rate
- Track video quality by feedback
- Stable state -> Adaptive state

Detect that visual quality degrades by $\Delta PSNR$

3. Rate Adaptation

- Make a trade-off between <u>sampling</u> overhead and <u>feedback</u> overhead
 - Sampling overhead: transmit video frame at a unsuitable rate
 - Feedback overhead: transmit masks of reception

	Two-state		Periodical sampling		
Sampling overhead	607(kb)	6.9%	1.43(mb)	16.21%	
Feedback overhead	2.7(kb)	0.03(%)	1.8(kb)	0.02%	

CDF of Visual Quality

- 1. Clients perceive heterogeneous qualities
- 2. Most of clients obtain the minimum quality

Impact of Node Distribution

Adapt rate based on node distribution