Multimedia Communications @CS.NCTU

Lecture 14: Wireless Basics

Instructor: Kate Ching-Ju Lin (林靖茹)

Outline

- SNR and capacity
- Channel fading and path loss
- Modulation and coding scheme
- Rate adaptation
- Wireless multicasting

SNR

Wireless channel

received signal transmitted signal

$$y = x + n$$
noise

Signal-to-noise ratio (SNR)

$$\frac{\text{Power of the signal}}{\text{Power of the noise}} = \frac{\mathbb{E}[x^2]}{\mathbb{E}[n^2]} = \frac{P}{N_0}$$

Unit of the power: watt

SNR in decibels

$$\begin{split} P_{\text{dBm}} &= 10 \log_{10} P \\ N_{\text{dBm}} &= 10 \log_{10} N_0 \\ \Rightarrow & SNR_{\text{dB}} = 10 \log_{10} \frac{P}{N_0} \\ &= 10 log_{10} P - 10 \log_{10} N_0 \\ &= P_{\text{dBm}} - N_{\text{dBm}} \end{split}$$

- dBm: unit of power
- dB: unit of power difference
- Example: noise = -90dBm, signal = -70 dBm
 - $SNR_{dB} = -70dBm (-90dBm) = 20dB$
- Why using decibel?
 - Many signals have a wide dynamic ranges

SINR

Signal-to-noise-plus-interference ratio

$$\label{eq:SINR} \begin{split} \text{SINR} &= \frac{P}{I + N_0} \\ \text{SINR}_{\text{dB}} &= 10 \log_{10} \frac{P}{I + N_0} \end{split}$$

Example: if there exist two interferers

$$\begin{split} y &= x + i_1 + i_2 + n \\ \Rightarrow \text{SINR} &= \frac{\mathbb{E}[x^2]}{\mathbb{E}[(i_1 + i_2 + n)^2]} \\ &= \frac{\mathbb{E}[x^2]}{\mathbb{E}[i_1^2] + \mathbb{E}[i_2^2] + \mathbb{E}[n^2]} \quad \text{If i_1, i_2, n are i.i.d} \end{split}$$

Channel Capacity

- Derived by Claude E. Shannon during World War II
- Assume that we have an additive white Gaussian noise (AWGN) channel with bandwidth B Hz

Capacity (bit/s) =
$$B \log_2(1 + SNR)$$

- Also known as Shannon capacity
- SNR is expressed as a power ratio, not in decibel (dB)

Outline

- SNR and capacity
- Channel fading and path loss
- Modulation and coding scheme
- Rate adaptation
- Wireless multicasting

Channel fading

- Coherence time
 - The time over which a propagating wave may be considered coherent
- Fading
 - Variation of attenuation of a signal due to environmental dynamics, such as time, location, radio frequency and/or multi-path propagation
- Slow and fast fading
 - <u>fast fading</u>: if the coherence time is much shorter than the delay requirement of the application
 - <u>slow fading</u>: if the coherence time is longer.

Channel Fading

- Fast fading usually caused by
 - High mobility (Doppler spread)
 - Multipath effects

- Slow fading usually caused by
 - Small/slow mobility
 - Shadowing (signal power fluctuates due to obstacles)

Path Loss

 Signal attenuation as the wave propagates over the air

$$\begin{aligned} \text{PL} &= \frac{P_{\text{rx}}}{P_{\text{tx}}} \\ \Rightarrow & P_{\text{rx, dBm}} = P_{\text{tx, dBm}} + \text{PL}_{\text{dB}} \end{aligned}$$

- Example: assume the transmit power is 15dBm and the path loss is -90 dB
 - What is the receive power?
 - \rightarrow 15dBm + (-90dB) = -75dBm
 - What is the SNR if noise level is -90dBm?
 - \rightarrow -75dBm (-90dBm) = 15dB

Simple Path Loss Model

Friis transmission equation

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2$$

- Gt: gain of the transmit antenna
- Gr: gain of the receive antenna
- d: distance between the transmitter and receiver
- λ: wavelength (= light speed/frequency)

Free-Space Path Loss model

 Only consider the loss resulting from the line-ofsight (LOS) path

Two-ray Ground-Reflection Model

 Only consider the losses from the LOS path and the path reflected by the ground

Outline

- SNR and capacity
- Channel fading and path loss
- Modulation and coding scheme
- Rate adaptation
- Wireless multicasting

Modulation

From Wikipedia:

The process of varying one or more properties of a periodic <u>waveform</u> with a modulating signal that typically contains information to be transmitted.

Example 1

= bit-stream?

(a) 10110011 (b) 00101010 (c) 10010101

Example 2

= bit-stream?

(a) 01001011 (b) 00101011 (c) 11110100

Example 3

= bit-stream?

(a) 11010100

(b) 00101011

(c) 01010011

(d) 11010100 or 00101011

Types of Modulation

Amplitude ASK

Frequency FSK

Phase PSK

Modulation

Map bits to signals

Demodulation

Map signals to bits

Types of Modulation

$$s(t) = A\cos(2\pi f_c t + \phi)$$

- Amplitude
 - M-ASK: Amplitude Shift Keying
- Frequency
 - M-FSK: Frequency Shift Keying
- Phase
 - M-PSK: Phase Shift Keying
- Amplitude + Phase
 - M-QAM: Quadrature Amplitude Modulation

Phase Shift Keying (PSK)

- A bit stream is encoded in the phase of the transmitted signal
- Simplest form: Binary PSK (BPSK)

• '1'
$$\to \phi = 0$$
, '0' $\to \phi = \pi$

Constellation Points for BPSK

- '1' $\to \phi = 0$
- $cos(2\pi f_c t + 0)$ = $cos(0)cos(2\pi f_c t)$ $sin(0)sin(2\pi f_c t)$ = $s_i cos(2\pi f_c t) - s_Q sin(2\pi f_c t)$

'1' → 1+0i

• '0'
$$\rightarrow \phi = \pi$$

• $cos(2\pi f_c t + \pi)$ = $cos(\pi)cos(2\pi f_c t)$ - $sin(\pi)sin(2\pi f_c t)$ = $s_i cos(2\pi f_c t) - s_o sin(2\pi f_c t)$

$$(s_1, s_Q) = (-1, 0)$$

 $(0) \rightarrow -1 + 0i$

Demodulate BPSK

- Map to the closest constellation point
- Quantitative measure of the distance between the received signal s' and any possible signal s
 - Find |s'-s| in the I-Q plane

Demodulate BPSK

- Decoding error
 - When the received signal is mapped to an incorrect symbol (constellation point) due to a large error
- Symbol error rate
 - P(mapping to a symbol s_i , $j\neq i \mid s_i$ is sent)

Given the transmitted symbol s₁

 \rightarrow incorrectly map s' to $s_0=(-1+0)\rightarrow$ '0', when the error is too large

SNR of BPSK

SNR: Signal-to-Noise Ratio

$$SNR = \frac{|s|^2}{n^2} = \frac{|s|^2}{|s' - s|^2}$$

$$= \frac{|1 + 0i|^2}{|(a + bi) - (1 + 0i)|^2}$$

$$SNR_{dB} = 10 \log_{10}(SNR)$$

- Example:
 - Say Tx sends (1+0i) and Rx receives (1.1 0.01i)
 - SNR?
- Bit error rate: $P_b = Q(\sqrt{\frac{E_b}{N_0}})$

Quadrature PSK (QPSK)

- Use 2 degrees of freedom in I-Q plane
- Represent two bits as a constellation point
 - Rotate the constellations by $\pi/2$
 - Demodulation by mapping the received signal to the closest constellation point
 - Double the bit-rate
- No free lunch:
 - Higher error probability (Why?)

Quadrature PSK (QPSK)

- Maximum power is bounded
 - Amplitude of each constellation point should still be 1

Bits	Symbols
'00'	$1/\sqrt{2}+1/\sqrt{2}i$
'01'	$-1/\sqrt{2}+1/\sqrt{2}i$
'10'	$1/\sqrt{2}-1/\sqrt{2}i$
'11'	-1/√2-1/√2i

• Bit error rate:

$$P_b = 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \left[1 - \frac{1}{2}Q\sqrt{\frac{2E_b}{N_0}}\right]$$

Higher Error Probability in QPSK

- For a particular error *n*, the symbol could be decoded correctly in BPSK, but not in QPSK
 - Why? Each sample only gets half power

Trade-off between Rate and SER

- Trade-off between the data rate and the symbol error rate
- Denser constellation points
 - More bits encoded in each symbol
 - Higher data rate
- Denser constellation points
 - Smaller distance between any two points
 - Higher decoding error probability

Quadrature Amplitude Modulation

- Change both amplitude and phase
- $s(t) = A\cos(2\pi f_c t + \phi)$

Bits	Symbols
'1000'	s ₁ =3a+3ai
'1001'	s ₂ =3a+ai
'1100'	s ₃ =a+3ai
'1101'	s ₄ =a+ai

expected power: $E[|s_i|^2] = 1$

64-QAM: 64 constellation points, each with 8 bits

M-QAM BER versus SNR

Modulation in 802.11

- 802.11a
 - 6 mb/s: BPSK + ½ code rate
 - 9 mb/s: BPSK + 3/4 code rate
 - 12 mb/s: QPSK + ½ code rate
 - 18 mb/s: QPSK + 3/4 code rate
 - 24 mb/s: 16-QAM + ½ code rate
 - 36 mb/s: 16-QAM + 3/4 code rate
 - 48 mb/s: 64-QAM + 3/3 code rate
 - 54 mb/s: 64-QAM + 3/4 code rate
- FEC (forward error correction)
 - k/n: k-bits useful information among n-bits of data
 - Decodable if any k bits among n transmitted bits are correct

Outline

- SNR and capacity
- Channel fading and path loss
- Modulation and coding scheme
- Rate adaptation
- Wireless multicasting

Bit-Rate Selection

throughput = $(1-PER_{r,SNR}) * r = (1-BER_{r,SNR})^N * r$ $r^* = arg max throughput_r$

Bit-Rate Selection

Adapt bit-rate to dynamic RSSI

Difficulties with Rate Adaptation

- Channel quality changes very quickly
 - Especially when the device is moving
- Can't tell the difference between
 - poor channel quality due to noise/interference/collision (high | noise |)
 - poor channel quality due to long distance (low |signal|)

Ideally, we want to decrease the rate due to low signal strength, but not interference/collisions

Types of Auto-Rate Adaptation

	Transmitter-based	Receiver-Based
SNR-based		RBAR, OAR, ESNR
ACK-based	ARF, AARF, ONOE	
Throughput-based	SampleRate, RRAA	
Partial packet		ZipTx
Soft information		SoftRate

802.11 MAC

- Start contention after the channel keeps idle for DIFS
- Avoid collisions via random backoff
- AP responds ACK if the frame is delivered correctly (i.e., passing the CRC check) → No NACK
- Retransmit the frame until the retry limit is reached

Prioritized Interframe Spacing

- Latency: SIFS < PIFS < DIFSPriority: SIFS > PIFS > DIFS
- SIFS (Short interframe space): control frames, e.g., ACK and CTS
- PIFS (PCF interframe space): CF-Poll
- DIFS (DCF interframe space): data frame

SampleRate – Tx-based Adaptation

- Default in Linux
- Periodically send packets at a randomlysampled bit-rate other than the current bit-rate
 - Let r* be the current best rate
 - After sending 10 packets at the best rate, send a packet at a randomly-sampled rate
 - Estimate the achievable throughput of the sampled rates

SampleRate – Throughput Estimation

- How to estimate the effective throughput of a rate?
 - Calculate the transmission time of a L-bit packet
 - Consider packet length (I), bit-rate (r), number of retries (n), backoff time

$$T_{tx}(r, n, l) = T_{\text{DIFS}} + T_{\text{back off}}(n) + (n+1)(T_{\text{SIFS}} + T_{\text{ACK}} + T_{\text{header}} + l/r)$$

 Select the rate that has the smallest measured average transmission time to deliver a L-bit packet

$$r^* = \min_r T_{tx}(r, n, L)$$

SampleRate

- Do not sample the rates that
 - Have failed four successive times
 - Are unlikely to be better than the current one
- Is thought of the most efficient scheme for static environments
 - SNR, and thereby BER and best rate, do not change rapidly over time
- Waste channel time for sampling if the channel is very stable

Outline

- SNR and capacity
- Channel fading and path loss
- Modulation and coding scheme
- Rate adaptation
- Wireless multicasting

Wireless Multicast

- Achieve a higher throughput
- Packets are randomly lost on a noisy wireless channel
- Link reliability decreases with the link distance
- Different receivers may lose different packets

Heterogeneous Channel Conditions

Higher rates provide a higher throughput, but a shorter coverage range

Rate Adaptation for Multicast

- Why it is difficult?
 - Can only assign a single rate to each packet
 - But the channel conditions of clients are different
- Possible Solutions
 - For reliable transmission: select the rate based on the worst node
 - For non-reliable transmission: provide clients heterogeneous throughput

Reliable Multicast Protocol

- Before rate adaptation, we should first ask:
 - How to efficiently collect ACK from multicast clients?
- Leader-based Protocol (LBP)
 - Select one of the receivers as the leader to reply ACK
 - Leader
 if receive successfully, send ACK
 otherwise, send NACK
 - Others
 if receive successfully, do nothing
 otherwise, send NACK
 - Retransmit if the AP receives any NACK

J. Kuri and S. Kasera, "Reliable Multicast in Multi-Access Wireless LANs," IEEE INFOCOM, Mar. 1999.

Rate Adaptation for <u>Data Multicast</u>

- Rate Adaptive Reliable Multicast (RAM)
 - Should pick the bit-rate based on the channel of the worst receiver
- Say we have three receivers A, B, and C
 - Each receiver feedbacks CTS at its optimal rate chosen based on its SNR
 - The AP detects the lowest rate by measuring the longest channel time occupied by CTS

AP	RTS		data]
Α		CTS		
В		CTS		ACK
Ċ.		CTS		·