Wireless Communication Systems @CS.NCTU

Lecture 10: H.263 and H.263+

Instructor: Kate Ching-Ju Lin (林靖茹)

Chap. 10.4 of "Fundamentals of Multimedia" http://media.ee.ntu.edu.tw/courses/dvt/15F/

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

ITU-T Very Low Bit Rate Video Coding

- Developed for video conferencing on Public Switched Telephone Networks (PSRN)
- ITU-T SG15/LBC Near Term:
 - Started in Nov. 1993
 - Near-term: H.263: PSTN, 10 to 24 kb/s
 - Long-term: Joint work with MPEG-4, H.26L
- Optimized at bitrate < 22 kb/s (overall < 28.8 kb/s)
- Technical elements finalized in March 1995
- TMN5 (Test Model Near-term)
 - 3-4 dB higher PSNR than H.261 at < 64kb/s for all ITU test sequences
 - 30% saving compared with MPEG1 SM3 at 512 kb/s for "football" at CIF resolution

Video Formats in H.263

Video format	Luminance image resolution	Chroma image resolution	Bitrate (Mbps) for 30fps (uncompressed)	Bitrate (Kbps) for 30fps (compressed)
Sub-QCIF	128 x 96	64 x 48	4.4	64
QCIF	176 x 144	88 x 72	9.1	64
CIF	352 x 288	176 x 144	36.5	256
4CIF	704 x 576	352 x 288	146	512
16CIF	1408 x 1152	704 x 576	583.9	1024

• H.261 only supports QCIF and CIF

H.263: Syntax Structure

- Picture Layer
- Group-of-Block (GOB) Layer
 - A GOB comprises k*16 lines (k=1 for sub-QCIF, QCIF, and CIF; k=2 for 4CIF; k=4 for 16CIF)

	0
	1
← QCIF	2
	3
	4
	5
	6
	7
	8

- Macroblock Layer:
 - A macroblock covers 16x16 luminance pixels area
 - Usually contains 6 blocks except for PB-frame mode (12 blocks instead)
- Block Layer: Each block contains 8x8 pixels

H.263 Video Encoder

Differences Between H.261 and H.263

- Source Formats: H.263 supports 5 while H.261 supports 2
- Motion Compensation Accuracy: Half-pixel accuracy (range -16 to 15.5) for H.263
- Loop Filter: None in H.263 while optional in H.261
- Motion Vector Predictor:
 - H.263: Median value of the three candidate motion vectors (MV1-3)
 - H.261: Motion vector of the preceding macroblock (MV1)

Differences Between H.261 and H.263

- Entropy Coding of DCT Coefficients:
 - H.263: (LAST, RUN, LEVEL)
 - H.261: (RUN, LEVEL) and EOB
- Four negotiable options:
 - Unrestricted Motion Vector
 - Advanced Prediction Mode
 - Syntax-based Arithmetic coding
 - PB-frame mode

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

Motion Vector Prediction

- MV: current motion vector
- MV1: Previous motion vector
- MV2: Above motion vector
- MV3: Above right motion vector
- Find difference motion vectors from the neighboring predictions
- Instead of coding the MV (u, v), the error vector (δu , δv) is coded
- How to find the error vector?

$$u_p = \mathsf{median}(u_1, u_2, u_3)$$

 $v_p = \mathsf{median}(v_1, v_2, v_3)$
 $\Rightarrow (\delta u, \delta v) = (u - u_p, v - v_p)$

Motion Vector Prediction

- MV: current motion vector
- MV1: Previous motion vector
- MV2: Above motion vector
- MV3: Above right motion vector

Picture of GoB border

Half-Pixel Prediction

- H.263 reduces prediction error by supporting half-pixel prediction
- Bilinear Interpolation
 - A and a: values at full-pixel positions and half-pixel position, respectively
 - searching range becomes [-16, 15.5]

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

H.263 Optional Modes

- Unrestricted Motion Vector Mode (Annex D)
 - MVs are allowed to point outside (outside pixels obtained from boundary repetition extension)
 - Larger ranges: [-31.5, 31.5] instead of [-16, 15.5]
- Syntax-Based Arithmetic Coding Mode (Annex E)
 - Provide about 5% bit rate reduction and rarely used
- Advanced Prediction Mode (Annex F)
 - Allow 4 motion vectors per MB, one for each 8x8 block
 - Overlapped block motion compensation (OBMC) for luminance
 - Allow MVs point outside of picture
 - Reduce blocking artifacts and increase subjective picture quality
- PB-Frames Mode (Annex G) (similar to dual-prime motion estimation)
 - Double the frame rate without significant increase in bit rate

Unrestricted Motion Vector Mode

Motion vectors are allowed to point outside the picture

Outside referenced pixels are extended from closest boundary

pixels

 Extended motion vector range from [-16, 15.5] to [-31.5, 31.5], with the following restrictions, depending on its predictor (P):

• If
$$31.5 \ge P \ge 16.5$$
, $31.5 \ge MV \ge 0$

• If
$$16 \ge P \ge -15.5$$
, $P + 15.5 \ge MV \ge -16 + P$

• If
$$-16 \ge P \ge -31.5$$
, $0 \ge MV \ge -31.5$

Size of each MV stays the same

Syntax-based Arithmetic Coding Mode

- Haffman coding encodes a symbol to a fixed, integral number of bits
- By using arithmetic coding, we can allow fractional number of bits
- In syntax-based arithmetic coding (SAC) mode, all variable-length coding operations are replaced with arithmetic coding

Advanced Prediction Mode

- Allow 4 motion vectors per MB (each block in MV has a motion vector)
 - Also calculate differential motion vector (DMV)
 - Motion vectors are differentially coded with a predictor as

- More MV overhead but better prediction
- The chrominance MV is the sum of 4 MVs divided by

PB-Frames Mode

 A PB-frame consists of 2 pictures being coded as one unit

- In a PB-frame, a MB consists of 6 P-blocks and 6 Bblocks
- Double the frame rate but does not increase the data rate much
 - → How? Leverage dual-prime prediction

PB-Frames Mode

- MV for the luminance P-block: same as usual
- MV for the luminance B-block: dual-prime prediction, which finds MV by interpolation and differential coding
 - difference is relatively small

 For chrominance B-blocks, MV is the average of 4 MVs of the Y

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

H.263+ Standard

- Official name: H.263 Version 2 approved in Jan. 1998
- Backward Compatible with H.263 Version 1: H.263 is one of many modes in H.263+
- Objectives:
 - Broaden the range of applications
 - Improve compression efficiency
- Custom Source Format (picture size, aspect ratio, clock frequency)
- Scalability
- Modified Unrestricted Motion Vector Mode
- 12 new optional modes

Some Important Options

- Refine the unrestricted motion vector mode
 - Use Reversible Variable Length Coding (RVLC) to encode the difference motion vectors for minimizing the impact of transmission error
 - Extend the range of MV to [-256, 256]
- The GOB layer is replaced by a slice structure
 - A slice contains a variable number of macroblocks
 - The shape of a slice is no need to be rectangular
- Implement temporal, SNR and spatial scalability
- Improve the PB-frame mode
 - B-frame does not have to be derived from the forward
 MV of P → Can be generated independently
- Apply deblocking filter in the coding loop
 - Reduce blocking effects to the edge boundaries

Difference between H.263 and H.263+

H.263	H.263+			
Picture Size				
Sub-QCIF, QCIF, CIF, 4CIF, 16CIF	Sub-QCIF, QCIF, CIF, 4CIF, 16CIF,			
	Custom Picture Size			
Scalability				
Fix	Scalable (Temporal, SNR, Spatial)			
Frame Format				
I, P, PB	I, P, PB, Improved PB, B, EI, EP			
Frame Rate				
30 frames/second	$15 \sim 1800$ frames/second			
Composition of Picture				
GOB	GOB, Slice			
Macroblock Size				
16x16	16x16, 32x32			
Block Size				
8x8	8x8, 16x16			
Maximum Range of Motion Vector				
[-31.5, 31.5]	Unlimited			