Wireless Communication Systems ＠CS．NCTU

Lecture 10：H． 263 and H．263＋ Instructor：Kate Ching－Ju Lin（林靖茹）

Chap． 10.4 of＂Fundamentals of Multimedia＂ http：／／media．ee．ntu．edu．tw／courses／dvt／15F／

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

ITU-T Very Low Bit Rate Video Coding

- Developed for video conferencing on Public Switched Telephone Networks (PSRN)
- ITU-T SG15/LBC Near Term:
- Started in Nov. 1993
- Near-term: H.263: PSTN, 10 to 24 kb/s
- Long-term: Joint work with MPEG-4, H.26L
- Optimized at bitrate $<22 \mathrm{~kb} / \mathrm{s}$ (overall $<28.8 \mathrm{~kb} / \mathrm{s}$)
- Technical elements finalized in March 1995
- TMN5 (Test Model Near-term)
- 3-4 dB higher PSNR than H. 261 at < $64 \mathrm{~kb} / \mathrm{s}$ for all ITU test sequences
- 30% saving compared with MPEG1 SM3 at $512 \mathrm{~kb} / \mathrm{s}$ for "football" at CIF resolution

Video Formats in H. 263

Video format	Luminance image resolution	Chroma image resolution	Bitirate (Mbps) for 30fps (uncompressed)	Bitrate (Kbps) for 30fips (compressed)
Sub-QCIF	128×96	64×48	4.4	64
QCIF	176×144	88×72	9.1	64
CIF	352×288	176×144	36.5	256
4 CIF	704×576	352×288	146	512
16 CIF	1408×1152	704×576	583.9	1024

- H. 261 only supports QCIF and CIF

H.263: Syntax Structure

- Picture Layer
- Group-of-Block (GOB) Layer
- A GOB comprises $k^{*} 16$ lines ($k=1$ for sub-QCIF, QCIF, and CIF; $k=2$ for $4 \mathrm{CIF} ; k=4$ for 16 CIF)

- Macroblock Layer:
- A macroblock covers 16x16 luminance pixels area
- Usually contains 6 blocks except for PB-frame mode (12 blocks instead)
- Block Layer: Each block contains $8 x 8$ pixels

H. 263 Video Encoder

Differences Between H. 261 and H. 263

- Source Formals: H. 263 supports 5 while H. 261 supports 2
- Motion Compensation Accuracy: Half-pixel accuracy (range - 16 to 15.5) for H. 263
- Loop Filter: None in H. 263 while optional in H. 261
- Motion Vector Predictor:
- H. 263 : Median value of the three candidate motion vectors (MV1-3)
- H. 261 : Motion vector of the preceding macroblock (MVI)

Differences Between H. 261 and H. 263

- Entropy Coding of DCT Coefficients:
- H.263: (LAST, RUN, LEVEL)
- H.261: (RUN, LEVEL) and EOB
- Four negotiable options:
- Unrestricted Motion Vector
- Advanced Prediction Mode
- Syntax-based Arithmetic coding
- PB-frame mode

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

Motion Vector Prediction

	$M V 2$	$M V 3$
$M \vee 1$	$M V$	

- MV: current motion vector
- MV1: Previous motion vector
- MV2: Above motion vector
- MV3: Above right motion vector
- Find difference motion vectors from the neighboring predictions
- Instead of coding the MV (u, v), the error vector ($\delta u, \delta v$) is coded
- How to find the error vector?

$$
\begin{aligned}
& u_{p}=\operatorname{median}\left(u_{1}, u_{2}, u_{3}\right) \\
& v_{p}=\operatorname{median}\left(v_{1}, v_{2}, v_{3}\right) \\
& \Rightarrow(\delta u, \delta v)=\left(u-u_{p}, v-v_{p}\right)
\end{aligned}
$$

Motion Vector Prediction

- MV: current motion vector
- MV1: Previous motion vector
- MV2: Above motion vector
- MV3: Above right motion vector

Picture of GoB border

Half-Pixel Prediction

- H. 263 reduces prediction error by supporting half-pixel prediction
- Bilinear Interpolation
- A and a: values at full-pixel positions and half-pixel position, respectively
- searching range becomes [-16, 15.5]

${ }^{\mathrm{A}} \times{ }_{a}$	x^{B}	\times Integer pixel position O Half pixel position
${ }^{\circ}$		$\begin{aligned} & a=A \\ & b=(A+B+1) / 2 \end{aligned}$
	\times	$c=(A+C+1) / 2$
C	D	$d=(A+B+C+D+2) / 4$

Outline

- Introduction
- Motion Compensation
- Optional modes
- H. $263+$

H. 263 Optional Modes

- Unrestricted Motion Vector Mode (Annex D)
- MVs are allowed to point outside (outside pixels obtained from boundary repetition extension)
- Larger ranges: [-31.5, 31.5] instead of [-16, 15.5]
- Syntax-Based Arithmetic Coding Mode (Annex E)
- Provide about 5\% bit rate reduction and rarely used
- Advanced Prediction Mode (Annex F)
- Allow 4 motion vectors per MB, one for each 8×8 block
- Overlapped block motion compensation (OBMC) for luminance
- Allow MVs point outside of picture
- Reduce blocking artifacts and increase subjective picture quality
- PB-Frames Mode (Annex G) (similar to dual-prime motion estimation)
- Double the frame rate without significant increase in bit rate

Unrestricted Motion Vector Mode

- Motion vectors are allowed to point outside the picture
- Outside referenced pixels are extended from closest boundary pixels

- Extended motion vector range from $[-16,15.5]$ to $[-31.5$, 31.5], with the following restrictions, depending on its predictor (P):
- If $31.5>=P>=16.5, \quad 31.5>=M V>=0$
- If $16>=P>=-15.5, P+15.5>=M V>=-16+P$
- If $-16>=P>=-31.5, \quad 0>=M V>=-31.5$
- Size of each MV stays the same

Syntax-based Arithmetic Coding Mode

- Haffman coding encodes a symbol to a fixed, integral number of bits
- By using arithmetic coding, we can allow fractional number of bits
- In syntax-based arithmetic coding (SAC) mode, all variable-length coding operations are replaced with arithmetic coding

Advanced Prediction Mode

- Allow 4 motion vectors per MB (each block in MV has a motion vector)
- Also calculate differential motion vector (DMV)
- Motion vectors are differentially coded with a predictor as

Median(MV1, MV2, MV3)

- More MV overhead but better prediction
- The chrominance MV is the sum of 4 MVs divided by 8

PB-Frames Mode

- A PB-frame consists of 2 pictures being coded as one unit

- In a PB-frame, a MB consists of 6 P-blocks and 6 Bblocks
- Double the frame rate but does not increase the data rate much
\rightarrow How? Leverage dual-prime prediction

PB-Frames Mode

- MV for the luminance P-block: same as usual
- MV for the luminance B-block: dual-prime prediction, which finds MV by interpolation and differential coding
- difference is relatively small

$M V_{F}=\left(T_{B} \times M V\right) / T R_{D}+M V_{D}$
$M V_{B}=\left(\left(T_{B}-T R_{D}\right) \times M V\right) / T R_{D} \quad$ if $M V_{D}$ is equal to 0 $M V_{B}=M V_{F}-M V \quad$ if $M V_{D}$ is unequal to 0

Where MV: the motion vector for the P-block
MV_{D} : the delta motion vector given by MVDB
MV_{F} : forward motion vector (from previous P-picture)
MV_{B} : backward motion vector (from current P-picture)
TR_{D} : Temporal Reference Difference for the P-picture
TR_{B} : Temporal Reference for the B-picture

- For chrominance B-blocks, MV is the average of 4 MVs of the Y

Outline

- Introduction
- Motion Compensation
- Optional modes
- H.263+

H.263+ Standard

- Official name: H. 263 Version 2 approved in Jan. 1998
- Backward Compatible with H. 263 Version 1: H. 263 is one of many modes in H.263+
- Objectives:
- Broaden the range of applications
- Improve compression efficiency
- Custom Source Format (picture size, aspect ratio, clock frequency)
- Scalability
- Modified Unrestricted Motion Vector Mode
- 12 new optional modes

Some Important Options

- Refine the unrestricted motion vector mode
- Use Reversible Variable Length Coding (RVLC) to encode the difference motion vectors for minimizing the impact of transmission error
- Extend the range of MV to $[-256,256]$
- The GOB layer is replaced by a slice structure
- A slice contains a variable number of macroblocks
- The shape of a slice is no need to be rectangular
- Implement temporal, SNR and spatial scalability
- Improve the PB-frame mode
- B-frame does not have to be derived from the forward $M V$ of $P \rightarrow$ Can be generated independently
- Apply deblocking filter in the coding loop
- Reduce blocking effects to the edge boundaries

Difference between H. 263 and H.263+

H. 263	H.263+
Picture Size	
Sub-QCIF, QCIF, CIF, 4CIF, 16CIF	Sub-QCIF, QCIF, CIF, 4CIF, 16CIF, Custom Picture Size
Scalability	
Fix	Scalable (Temporal, SNR, Spatial)
Frame Format	
I, P, PB	I, P, PB, Improved PB, B, EI, EP
Frame Rate	
30 frames/second	15 ~ 1800 frames/second
Composition of Picture	
GOB	GOB, Slice
Macroblock Size	
16x16	$16 \times 16,32 \times 32$
Block Size	
8x8	$8 \times 8,16 \times 16$
Maximum Range of Motion Vector	
[-31.5, 31.5]	Unlimited

