
Homework 2: adaptive-rate video streaming
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Task: Step by Step
• Video encoder

• Read the profile of adaptive video rate
• Modify the H.64 example code to configure the rates 

accordingly
• Traffic shaper

• User tc to control the bandwidth of the s-d link
• Streaming server

• Build a UDP socket
• Send the compressed video file to the destination
• Perform rate control (send K bits every 50ms)

• Streaming client
• Build a UDP socket
• Received UDP packets and pad ‘0’ for lost packets
• Log the time-stamps of the first and last packet

• PSNR estimation
• Use FFMpeg to calculate the average PSNR 3



client.cpp

Task: Diagram
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Per frame encoding

• The encoding flow is frame by frame
• Adaptive video rate (example)

• Initial with: 2048 kbps
• Reconfig to 1024 kbps at 20s (Assume fps is 24.)
• Reconfig to 512 kbps at 40s
• Reconfig to 128 kbps at 60s

• Note: the unit of bandwidth is bytes/sec in tc(8), 
while the unit of video rate in h264 bits/sec
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Rate Configuration Profile

0       2048
20      1024
40      512
60      128
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videorate.txt

tcbw.txt

0 128 0       256
20     128
40     64
60     16
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Streaming Server
• Convert the mp4 video to the yuv (raw) video

$ ffmpeg -i sample.mp4 -f rawvideo -vcodec rawvideo -
pix_fmt yuv420p sample.yuv

• Shape the bandwidth using TC
• For each video file, the server should try different 

bandwidth profiles
• Send a packet every 50 msec

• The size of a packet should be determined 
according to the average video rate

• For example, if the video rate is 128kbps, the 
packet size per 50ms should be
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128 * 106 * 0.05 (bits)

FFMpeg commands: See the readme file README.md



Streaming Client
• Track lost packets

• For each lost packet, insert ‘0’ bits to the received bit-
stream

• Save the received bits as a video file 
sample.h264

• Log the time-stamps of the first and last received 
packet

• Log the sequence numbers of the lost packets
• User FFMpeg to create a container

$ ffmpeg -i source.h264 -c:v copy -f mp4 
myOutputFile.mp4

• Use FFMpeg to calculate the PSNR of the received 
video file

$ ffmpeg -i input_video.mp4 -i reference_video.mp4 -
filter_complex "psnr" "output_video.mp4"
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Shell Script

# First encode and output sample h264
# Launch server in background

# Launch control.sh in background

# Launch client
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streaming.sh

Run ./streaming.sh

# Write a tc flow match the profile
# ..

# ..

control.sh



Makefile
• CXX = g++
• INCLUDE_DIR = ./include
• SRC_DIR = ./src
• OBJ_DIR = ./obj
• CFLAGS = -std=c++11 -g -O2 -Wunused-result

• PROG = x264_encode server client 

• all: $(PROG)

• %: $(SRC_DIR)/%.cpp
• $(CXX) -o $@ $(CFLAGS) $< -lx264 

• clean:
• rm -rf $(PROG)
• # It will work fine as you place your code in src directory.
• # Please submit with it!
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• PSNR
• Playout duration: timelast – timefirst

• figure

Output
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Submission and Due
• Submit the following files as a compressed file 
hw2_yourID.zip to mmcom.nctu@gmail.com by 
May. 31 23:59
• Makefile
• Shell scripts (streaming.sh and control.sh) running 

all your code (may need to add sleep if necessary)
• ./streaming.sh[videorate.txt]

• ./control.sh [tcbw.txt]

• Source and output files
• x264_encode.cpp, server.cpp, client.cpp

• 1-2 page report (report.pdf) including your 
results/figures and a short discussion
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Grading
• Shell script: 10%
• encoder: 25%
• Streaming server: 25%
• Streaming client: 25%
• Report: 15%
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