
Homework 2: adaptive-rate video streaming

1

Multimedia Communications
@CS.NCTU

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

2

Task: Step by Step
• Video encoder

• Read the profile of adaptive video rate
• Modify the H.64 example code to configure the rates

accordingly
• Traffic shaper

• User tc to control the bandwidth of the s-d link
• Streaming server

• Build a UDP socket
• Send the compressed video file to the destination
• Perform rate control (send K bits every 50ms)

• Streaming client
• Build a UDP socket
• Received UDP packets and pad ‘0’ for lost packets
• Log the time-stamps of the first and last packet

• PSNR estimation
• Use FFMpeg to calculate the average PSNR 3

client.cpp

Task: Diagram

4

Start the server
socket

Read rate profile Start the client
socket

Control sending
rate

Connect to server

Receive and
record stream

Server Client

source.cpp

Run FFMPeg

Configure TC

Encoder

encode.cpp

Read rate profile

Adapt rate

Start sending
stream

Read rate profile

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

5

Per frame encoding

• The encoding flow is frame by frame
• Adaptive video rate (example)

• Initial with: 2048 kbps
• Reconfig to 1024 kbps at 20s (Assume fps is 24.)
• Reconfig to 512 kbps at 40s
• Reconfig to 128 kbps at 60s

• Note: the unit of bandwidth is bytes/sec in tc(8),
while the unit of video rate in h264 bits/sec

6

Rate Configuration Profile

0 2048
20 1024
40 512
60 128

7

videorate.txt

tcbw.txt

0 128 0 256
20 128
40 64
60 16

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

8

Streaming Server
• Convert the mp4 video to the yuv (raw) video

$ ffmpeg -i sample.mp4 -f rawvideo -vcodec rawvideo -
pix_fmt yuv420p sample.yuv

• Shape the bandwidth using TC
• For each video file, the server should try different

bandwidth profiles
• Send a packet every 50 msec

• The size of a packet should be determined
according to the average video rate

• For example, if the video rate is 128kbps, the
packet size per 50ms should be

9

128 * 106 * 0.05 (bits)

FFMpeg commands: See the readme file README.md

Streaming Client
• Track lost packets

• For each lost packet, insert ‘0’ bits to the received bit-
stream

• Save the received bits as a video file
sample.h264

• Log the time-stamps of the first and last received
packet

• Log the sequence numbers of the lost packets
• User FFMpeg to create a container

$ ffmpeg -i source.h264 -c:v copy -f mp4
myOutputFile.mp4

• Use FFMpeg to calculate the PSNR of the received
video file

$ ffmpeg -i input_video.mp4 -i reference_video.mp4 -
filter_complex "psnr" "output_video.mp4"

10

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

11

Shell Script

First encode and output sample h264
Launch server in background

Launch control.sh in background

Launch client

12

streaming.sh

Run ./streaming.sh

Write a tc flow match the profile
..

..

control.sh

Makefile
• CXX = g++
• INCLUDE_DIR = ./include
• SRC_DIR = ./src
• OBJ_DIR = ./obj
• CFLAGS = -std=c++11 -g -O2 -Wunused-result

• PROG = x264_encode server client

• all: $(PROG)

• %: $(SRC_DIR)/%.cpp
• $(CXX) -o $@ $(CFLAGS) $< -lx264

• clean:
• rm -rf $(PROG)
• # It will work fine as you place your code in src directory.
• # Please submit with it!

13

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

14

• PSNR
• Playout duration: timelast – timefirst

• figure

Output

15

time

bandwidth
video rate
packet lossx

x xx

Outline
• Tasks
• H.264 Encoding
• Video Streaming
• Shell script and Makefile
• Performance Evaluation
• Submission and Grading

16

Submission and Due
• Submit the following files as a compressed file
hw2_yourID.zip to mmcom.nctu@gmail.com by
May. 31 23:59
• Makefile
• Shell scripts (streaming.sh and control.sh) running

all your code (may need to add sleep if necessary)
• ./streaming.sh[videorate.txt]

• ./control.sh [tcbw.txt]

• Source and output files
• x264_encode.cpp, server.cpp, client.cpp

• 1-2 page report (report.pdf) including your
results/figures and a short discussion

17

Grading
• Shell script: 10%
• encoder: 25%
• Streaming server: 25%
• Streaming client: 25%
• Report: 15%

18

