
Homework 1: audio streaming over TCP/UDP

1

Multimedia Communications
@CS.NCTU

Outline
• Prerequisite
• Tasks
• Socket Programming
• Traffic Control
• Performance Evaluation
• Grading
• Summary

2

Prerequisite
• Quickly learn online how to write TCP or UDP

socket programming
• Server and client example with C sockets on Linux
• Linux Howtos: C/C++ -> Sockets Tutorial
• C Socket Programming for Linux: Example Code

• Install Linux systems (e.g., Ubuntu) and VM (optional)
(e.g., VirtualBox, VMware workstation(free))

• Make sure you have an operable microphone and
speaker

Outline
• Prerequisite
• Tasks
• Socket Programming
• Traffic Control
• Performance Evaluation
• Grading
• Summary

4

Task: Step by Step
• At server side, launch the shell script to configure

the tc setting for controlling the network condition
• At server side, read the wave file
• At both side, use TCP/UDP to deliver audio signal
• At receiver side, call aplay to real-time play the

received audio signal
• At receiver side, save and merge the received

packets as the output file ratexx_tcp/udp.wav
• For TCP, log the time-stamp of each received packet
• For UDP, drop the out-of-order packets and pad ‘0’ bits

for the lost packets
• Finally, evaluate the quality of the received signal

• For TCP, calculate the per=byte delay
• For UDP, calculate the PSNR 5

client.cpp

Task: Diagram

6

Start the server
socket

Read audio file

Start the client
socket

Start sending
stream

Connect to server

Receive and
record stream

Read and process
recorded audio

Server Client

source.cpp

readwav.cpp

Configure TC

Outline
• Prerequisite
• Tasks
• Traffic Control
• Socket Programming
• Performance Evaluation
• Tasks

7

Traffic Control
• User-space utility program used to configure

the Linux kernel packet scheduler
• Shape traffic by

• Shaping: limited the transmission rate (egress only)

• Scheduling: scheduling the packet to different
“class” (egress only)

• Policing: deal with reception traffic

• Dropping: If traffic exceeding a set bandwidth,
drop the packet (both ingress and egress)

Traffic Control: How to
• qdisc

• Short for “queueing discipline”
• It is elementary to understanding traffic control

• class
• Qdisc contains classes
• A qdisc may prioritize certain kinds of traffic by

dequeening from certain classes
• filter

• A filter is used by a classful qdisc to determine in
which class a packet will be enqueued.

Traffic Control: How to
• Use SHAPING to deal with transmission of traffic

Hint:

1. Using lo(localhost) network interface for this homework
2. Create one qdisc on lo interface
3. Create a class rule for it
4. Create filter

Reference :
http://lartc.org/lartc.html
https://puremonkey2010.blogspot.tw/2015/01/linux-tc-traffic-control.html
https://www.cyberciti.biz/faq/linux-traffic-shaping-using-tc-to-control-http-traffic/

Traffic Control: Tested Configuration
• Configuration 1:

• Bandwidth: htb rate 256kbps ceil 300kbps

• Configuration 2:
• Bandwidth: htb rate 196kbps ceil 200kbps

• Configuration 3:
• Bandwidth: htb rate 128kbps ceil 150kbps

11

Outline
• Prerequisite
• Tasks
• Traffic Control
• Socket Programming
• Performance Evaluation
• Submission and Grading

12

Socket Programming
• Write both TCP and UDP socket to test audio

streaming performance with different
transportation protocols
• Read the example codes

• Complete the part with the “TODO” tag

• Parameters:

• IP, Port: 127.0.0.1, 1024~65535

• Buffer size: 1024

Reference :
http://fanli7.net/a/caozuoxitong/Unix/20120625/175942.html

TCP Socket

socket()

bind()

listen()

accept()

server client
socket()

connect()

Block until client
connect

Start transmission
and reception

UDP Socket (connectionless)

socket()

bind()

socket()

bind()

sendto ()recvfrom()

recvfrom()sendto ()

server client

UDP Socket (connectionless)
• Why UDP dropped the packet

1. The sending rate exceeds the configured
bandwidth of traffic control

2. The transmission buffer or reception buffer is full
when you push packets
à Enlarge the socket buffer or slow down the
transmission rate (see example)

Outline
• Prerequisite
• Tasks
• Traffic Control
• Socket Programming
• Performance Evaluation
• Submission and Grading

17

How to Read Audio File
• Use libsndfile library

• Compile the example file

• Execute the binary file

18

% sudo apt-get install libsndfile1-dev

% g++ -w -o readwav readwav.c -lsndfile

% ./readwav wav_filename

For TCP: Delay
• Save the received bits as ratexx_tcp.wav
• Log the time-stamp of each received packet
• Let t1 be the time-stamp of the first packet
• Define delay = ti - t1 and save the delay

values as ratexx_tcp_delay.csv
• Plot the following figure (blue curve only) and

mark any packet experiencing a noticeable lag

19

constant bit
rate

transmission

time

variable
network

delay

client
reception

For UDP: PSNR
• Drop the out-of-order packets (check the sequence

number)
• Pad the lost packets as the same number of value ‘0’

• For example, if you receive p1, p2, p4, p3, p6, then save
p1, p2, p3, (000…0), (000...0), p6, where the number of 0 padded
will be the number of bits per packet

• You may need special process if the lost packets are the last ones
• Merge the packets and save as ratexx_udp.wav
• Use readwav.cpp to read audio samples and modify it to

calculate the PSNR

20

MSE =
1

N

N�1�

i=0

[r(i) � s(i)]2

PSNRdB = 10 � log10

�
MAX2

r

MSE

�

r(i): recorded samples
s(i): original samples
MAXr: the maximum amplitude
of the recorded audio

Performance Evaluation: Figure
• TCP

• UDP

21

0
5

10
15
20
25
30

1 5 10 20

UDP PSNR

PS
N

R
(d

B)

Bandwidth (MB/s)

time

Outline
• Prerequisite
• Tasks
• Traffic Control
• Socket Programming
• Performance Evaluation
• Submission and Grading

22

Task: Example Shell Scripts

configure tc to rate=$ARGV2
% sleep 1

if $ARGV1=tcp

./tcp_server
elseif $ARGV1=udp

./udp_server

if $ARGV1=tcp
./tcp_client | buffer | aplay
elseif $ARGV1=udp
./udp_client | buffer | aplay
./readwav wav_filename

23

server.sh

client.sh

Run server.sh before client.sh

Submission and Due
• Submit the following files as a compressed file
hw1_yourID.zip to mmcom.nctu@gmail.com by
Mar. 31 23:59
• Shell scripts (source.shand client.sh) running all

your code (may need to add sleep if necessary)
• ./source.sh [tcp/udp] [rate]
• ./client.sh [tcp/udp]

• Source and output files
• tcp_source.cpp, tcp_client.cpp
• udp_source.cpp, udp_client.cpp
• readwav.cpp
• ratexx_tcp.wav, ratexx_udp.wav
• ratexx_tcp.csv

• 1-2 page report (report.pdf) including your figures
and a short discussion

24

Grading
• Shell script: 10%
• TCP socket: 25%
• UDP socket: 25%
• Audio processing: 25%
• Report: 15%

25

Outline
• Prerequisite
• Tasks
• Traffic Control
• Socket Programming
• SOX Audio Signal Processing Library
• PSNR Calculation
• Tasks

26

SOX
• Install the library

• How to real-time play?

• Record the sound
• Use fork and exec in the client (already given in the

example code)

Reference : http://sox.sourceforge.net/sox.html

% sudo apt-get install sox

% ./udp_client | buffer | play –t wav –

