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Enhancing Person Identification for Smart Cities:
Fusion of Video Surveillance and Wearable
Device Data based on Machine Learning

Jia-Ming Liang, Member, IEEE , Shashank Mishra, Chun-Che Wu

Abstract— For smart cities, video surveillance has been widely
used for security and management purposes. In video surveillance,
a fundamental challenge is person identification (PID), which in-
volves promptly tagging individuals in videos with their IDs. Using
RFID and fingerprint/iris/face recognition is a possible solution.
However, the identification results are highly related to environmen-
tal factors, such as line of sight, lighting conditions, and distance.
Fingerprint/face recognition also has privacy concerns. In this work,
we show how to achieve immediate PID through two sensor data
sources: (i) human objects and their pixel locations retrieved from
videos and (ii) user trajectory data retrieved from wearable devices
through indoor localization. By fusing these pixel trajectories and
indoor trajectories, we demonstrate an enhancing-vision capability in the sense that PID can be achieved on surveillance
videos even when no clear human biological features are seen. Two types of fusion are proposed: (i) similarity-based and
(ii) machine learning-based. We have developed lightweight prototyping with off-the-shelf equipment and validated our
results through extensive experiments. The performance evaluation showed that our system has an accuracy of up to
92% for person identification.

Index Terms— Internet of Things (IoT), localization, machine learning, sensor fusion, video surveillance.

I. INTRODUCTION

FOR smart cities, surveillance systems have been widely
used in streets, factories, and public areas [1], [2]. Track-

ing particular persons in a surveillance video usually takes a
lot of manpower if objects in the video are not properly tagged.
We call this problem person identification (PID). PID has long
been achieved using RFID and fingerprint/iris/face recognition.
However, RFID is limited by antenna coverage1 and has little
sense of source direction; fingerprint/iris recognition [4], [5]
requires close contact with special devices; face recognition
[6], [7] requires high-resolution facial images. To continuously
identify a person in a surveillance region, the above solutions
are not feasible. In addition, a lot of environmental factors,
such as line of sight, view angle, lighting, and distance, need
to be considered.

In this work, we assume that users are tagged by wearable
devices, which are quite popular these days [8], [9]. Wearables
are usually equipped with communication modules and lots
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1Generally, the coverage of passive RFID with common frequency is ranged
from 10 cm to 1.5 m [3].
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Fig. 1. Our PID scenario.

of sensors, such as Bluetooth, accelerometer, and gyroscope.
This allows us to capture user IDs, behaviors, and conduct
indoor positioning at the same time. Based on this observation,
we propose a fusion technique that combines sensors and
video information to achieve PID for surveillance purposes. It
integrates surveillance cameras and users’ wearable devices, as
shown in Fig. 1. An indoor localization system consisting of
beacons is deployed in the surveillance region (e.g., lobby,
living room, or interaction zone) with some cameras. The
employees wear provided wearable devices, such as badges,
for personal identification. Each wearable has a unique ID.
Through image recognition, it is possible to capture human
objects in surveillance videos and their pixel locations. On
the other hand, the locations of wearables can also be tracked



2

through the localization system. After some transformation,
this location information may present some correlation. Hence,
we can tag the IDs of wearable devices to human objects in
videos, thus achieving PID.

In order to correlate video and wearable sensor data, we
propose two types of fusion algorithms: (i) similarity-based
and (ii) machine learning-based. For the first type, three
schemes of information are proposed: Euclidean distance, non-
linear distance, and non-linear distance with angular similarity.
For the second type, the following solutions are explored: Sup-
port Vector Machine (SVM), Random Forest, and XGBoost.
By quantifying correlations as similarity scores, we have
developed a pairing mechanism to associate human objects
with their respective IDs. Once paired, the IDs (PID) can be
displayed on the screen. A practical system has been imple-
mented, and comprehensive experiments have been conducted
to evaluate the accuracy of this tagging process. When there
are two people walking in the environment, the accuracy is
up to 92%. With more complex scenarios and interleaving
trajectories, the accuracy can still be maintained up to 82%
∼ 85%. As a result, we demonstrate an enhancing-vision
capability in the sense that PID can be achieved on surveillance
videos even when no clear human biological features are seen.
Note that our scheme can co-work with other recognition
solutions, such as face recognition, to improve accuracy, but
this is out of the scope of this paper.

The rest of this paper is organized as follows. Section
II reviews related works. Section III introduces our system
model. Section IV describes our fusion and pairing algorithms.
The evaluation results are presented in Section V. Section VI
draws some conclusions.

II. RELATED WORK

Wearable devices have become personalized and these de-
vices can be considered as unique IDs of users. Several studies
have focused on indoor positioning and tracking [10]–[16].
The works [10], [11] use inertial sensors to detect user paces.
The studies [12]–[16] integrate wireless signal strength and a
variety of sensors to conduct indoor positioning. The works
[17]–[20] consider RFID signals integrated with a variety
of sensors. Image information is studied in [21], [22]; they
combine wireless signal strength and image information to
improve positioning accuracy and conduct person identifica-
tion. However, the signal strength may drift over time and
objects in images obtained by background subtraction will
suffer from the shadowing effect. The work [23] combines
RFID and image information to instantly track mice and their
IDs in a test box. It is also based on background subtraction,
and its accuracy can be improved by increasing the density of
the antenna, which incurs much cost. The work [24] proposes
a WiFi RTT based indoor positioning system that relies on
inertial sensor readings for walk motion tracking. However,
WiFi signals would be more prone to drift than Bluetooth over
time, which may accumulate and reduce location accuracy.
The work [25] utilizes optical camera communication with
LED arrays for multi-person monitoring. This approach is
susceptible to limitations in range. The work [26] uses par-
ticle swarm optimization with signal propagation for mobile

device positioning. While this scheme can improve accuracy,
it can be computationally expensive, especially for real-time
applications.

Information fusion has also been intensively studied re-
cently. The study [27] determines the moving directions of
two people through RFID and cameras. When the surveillance
environment enlarges, more RFID antennas are needed. In
[28], an RFID tag is attached to a target object and a camera is
used to detect any moving object. The object can be recognized
when it passes through a pre-defined RFID reader. The accu-
racy highly depends on antenna density, which also requires a
higher cost. In the study [29], an object identification system
is proposed leveraging surveillance camera data to identify
objects. Work [30] presents a fusion approach designed for
IoT devices and video objects, utilizing data captured from
cameras. Reference [31] proposes a novel approach for video
prediction based on data gathered from wearable inertial
devices. Reference [32] proposes a fusion system consisting
of an RFID reader and cameras on a robot platform to track
people in the scene. A hybrid system with a Kinect camera
and RFID for determining the standing area of a person
is proposed in [33]. Reference [34] applies the Synthetic
Aperture Radar technology to detect people. It then achieves
PID by matching with Kinect skeleton information. The work
[35] also achieves PID through Kinect skeleton and inertial
information. Limited by Kinect, these works can only track
people within the limited range (i.e., 4.5 meters in maximum)
[36]. The work [37] proposes an indoor positioning system
using visible light beacons and a device’s camera for pose
reconstruction. However, this method relies on clear visibility
between the camera and beacons. The work [38] tackles
inaccurate tracking data in multi-camera people tracking sys-
tems by using clustering. While this approach improves data
quality, it might not be suitable for real-time applications with
high processing demands. Additionally, clustering algorithm
struggles with situations where people are very close together.
Our goal is to break the above limitation. Table I summarizes
the comparison of existing works.

III. SYSTEM MODEL

Our system architecture is shown in Fig. 2. Each wearable
device has inertial sensors and a Bluetooth interface2. Each
wearable device runs a positioning algorithm, which collects
nearby Bluetooth beacons’ signals and combines inertial sen-
sor data to compute its location. The trajectory information
is then sent back to the fusion server. Each camera also con-
tinuously captures videos and transmits them, through RTSP
streaming, to the fusion server for retrieving human bounding
boxes. These bounding boxes also form trajectories. Our fusion
server combines these data and finds their correlation. Finally,
bounding boxes are tagged with user IDs, and the results
can be visualized on a screen. We use YOLO3 (You only

2The Bluetooth technology, also known for its lower cost [39] and extended
range [40], is prevalent in smart wearables [41].

3YOLO is well-known for its speed, simplicity, and real-time effectiveness
[42]. Its single-stage detection directly predicts bounding boxes and class
probabilities, simplifying implementation [43]. Thus, it can balance between
accuracy and speed makes it ideal for real-time applications [44].
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TABLE I
COMPARISON OF EXISTING SYSTEMS.

Ref. & Year Techniques/Methods Equipment Cost /
Computational Cost

Features Data Types

SOD MOD PID OMD IL Camera Wearable
Device Beacon

[23] 2023 Computer Vision High / High ✓ × × ✓ ✓ ✓ ✓ ×
[27] 2021 Deep Learning High / High ✓ × × ✓ × ✓ ✓ ×
[32] 2021 Waving Action Moderate / High ✓ × × × ✓ ✓ × ×
[33] 2019 Deep Learning High / High ✓ × × × ✓ × ✓ ×

[34] 2021 Multi-Angle Synthetic
Aperture High / High ✓ × × × ✓ × × ×

[35] 2018 Data Fusion Moderate / Moderate ✓ ✓ ✓ × ✓ ✓ ✓ ×

Proposed Scheme ML and Similarity
Based Data Fusion Moderate / Moderate ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SOD: Single object detection; MOD: Multi object detection; PID: Person identification; OMD: Object movement detection; IL: Indoor localization.
Note: Systems with ’High’ equipment and computational costs, requiring significant hardware resources and complex processing capabilities. Systems
with ’Moderate’ costs generally use less resource-intensive methods, integrating multiple data sources without relying on high-end computational power.
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Fig. 2. System Architecture.

look once) [45] to retrieve human objects from each image4.
Bounding boxes mark human objects. Each bounding box is
first converted to a pixel coordinate. For example, in a top-
view shot5 as shown in Fig. 3, we can use the head position in
a bounding box as a user’s location. From continuous images,
a user’s walking trajectory can be combined with continuous
bounding boxes. SORT (Simple, online, and real-time tracking
of multiple objects in a video sequence) [46] is used here to
connect bounding boxes.

To convert a pixel coordinate to the surveillance region, we
take advantage of the fact that the positions of our beacons
can also be seen in the videos, as shown in Fig. 3. We can use
them as reference points for the conversion. At time point t,
the location of the j-th bounding box (head position) captured
by the camera is denoted as Lv

j (t) = (xv
j (t), y

v
j (t)), j = 1...n.

There may be multiple cameras in the same surveillance
region. The coordinates of the bounding boxes of an individual
person captured by these cameras may not be consistent. We
first group bounding boxes from cameras with a distance
threshold. Bounding boxes classified as the same person are
then averaged to get their physical coordinates.

4It can mitigate the shadowing effect caused by background subtraction.
5If the camera is not positioned directly above (i.e., if it is tilted), the pixel

coordinates of the image can still be obtained through simple conversion.

TABLE II
NOTATIONS AND DESCRIPTION

Notations Description

Θlow Lowest normalized distance
Θhigh Highest normalized distance
DistED Euclidean distance of two locations
fi The i-th feature of trajectory
Lv
j (t) Location of the j-th personnel bounding box at time t

Ls
i (t) Location of the i-th wearable device at time t

xv
i (t) The x-th coordinate of location at time t of the j-th

bounding box
yvi (t) The y-th coordinate of location at time t of the j-th

bounding box
k The same coordinates for person and wearable device
Simx(Ls

i , L
v
j ) Similarity score between wearable device location Ls

i
and person location Lv

j for any fusion algorithm x

d(Ls
i (k), L

v
j (k)) The distance similarity of wearable device location Ls

i
and bounding box location Lv

j at coordinate k

a(Ls
i (k), L

v
j (k)) The angular similarity of wearable device location Ls

i
and bounding box location Lv

j at coordinate k

USx(Ls
i ) Uniqueness score of wearable device location Ls

i for
any fusion algorithm x

V ar(·) The variation of a set of values
Ws Sliding window
D Number of times
P Set of outcome pairs of schemes
ED Euclidean Distance
ND Non-linear distance
NA Non-linear distance with Angle
ML Machine learning
MOTA Multi-Object Tracking Accuracy

Fig. 3. Bounding boxes and coordinate conversion.

Wearable devices are carried by users. We design a wearable
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Fig. 4. (a) Wearable device and (b) BLE beacon.

device in a badge form, which has a Raspberry PI, inertial
measurement components, and a Bluetooth module, as shown
in Fig. 4(a). We apply the indoor positioning algorithm [47]
to get badges’ locations. BLE beacons, as shown in Fig. 4(b),
are placed in the surveillance region. When a user moves,
his walking patterns and displacements are tracked. Then, the
positioning algorithm combines step information and beacon
signal strengths by a particle filter algorithm to predict the
user’s trajectory (refer to [47] for details). At time point t, the
location of the i-th badge is denoted as Ls

i (t) = (xs
i (t), y

s
i (t)),

i = 1...m.
Legal persons who walk around the environment will

carry our badges. These badges contribute trajectories:
Ls
1, L

s
2, ..., L

s
m. On the other hand, cameras also generate user

trajectories: Lv
1, L

v
2, ..., L

v
n. Note that m may not be equal to

n. The data fusion server calculates the correlation between
these two sets. When a high correlation is found between
Ls
i and Lv

j , a pair (Ls
i , L

v
j ) is coupled, which means that

the person corresponding to the bounding box of Lv
j is the

person corresponding to the wearable device Ls
i . Then we can

synchronously display the ID on the person’s bounding box in
the visualization screen. For a user not carrying a badge, no
correlation may be found, which will be marked as ’unknown’.
Table II summarized the notations used in this paper.

IV. FUSION AND PAIRING ALGORITHMS

In this section, we derive several fusion algorithms. We
show how to derive the similarity score Simx(L

s
i (t − Ws :

t), Lv
j (t−Ws : t)) between Ls

i (t−Ws : t) and Lv
j (t−Ws : t),

where x is any fusion algorithm and Ws is a sliding window.
Whenever clear, time series Ls

i (t−Ws : t) and Lv
i (t−Ws : t)

may be denoted as Ls
i and Lv

j , respectively. The sampling rate
of wearable devices is 1 Hz [48], while the sampling rate of
videos is 15 Hz [49]. In order to align these data, we down-
sample the video data to 1 Hz whenever necessary6. Two types
of fusion algorithms are presented, namely similarity-based
and machine learning-based. Then, for all combinations of
Ls
i and Lv

j , we present a pairing algorithm to determine their
binding relations.

6Note that the synchronization can be solved by the existing work [50].

A. Similarity-based Algorithms
We present three algorithms based on Euclidean distance,

non-linear distance, and non-linear distance with angular sim-
ilarity. The goal is to compute score Simx(L

s
i , L

v
j ) for all i

and j.
The first one is called Euclidean Distance (ED) scheme. We

simply sum up the distance of all pairs of data points in the
two trajectories. We use Ws to calculate the similarity score
of Ls

i and Lv
j :

SimED(Ls
i , L

v
j ) =

∑
k=(t−Ws)...t

∥∥Ls
i (k), L

v
j (k)

∥∥
Ws

, (1)

where
∥∥Ls

i (k), L
v
j (k)

∥∥ is the Euclidean distance of two loca-
tions. Note that a larger value implies a lower similarity.

The second one is called Non-linear Distance (ND) scheme.
In the ED scheme, there is a linear relation between distance
and similarity. In the ND scheme, we normalize distance
between 0 and 1 and set a distance range (Θlow, Θhigh).
When the distance is within the range, a reverse weight is
given. When the distance is above Θhigh, a 0 weight is given.
When the distance is below Θlow, a weight of 1 is given. Here
a larger value implies a higher similarity. This is defined as
follows:

d(Ls
i (k), L

v
j (k))

=


1− DistED−Θlow

Θhigh−Θlow
, if Θlow ≤ DistED ≤ Θhigh

1 , if DistED < Θlow

0 , if DistED > Θhigh,
(2)

where DistED =
∥∥Ls

i (k), L
v
j (k)

∥∥. Then, we apply the same
slide window again to calculate their similarity score:

SimND(Ls
i , L

v
j ) =

∑
k=(t−Ws)...t

d(Ls
i (k), L

v
j (k))

Ws
. (3)

The third one is called Non-linear distance with Angle (NA)
scheme. It considers the walking angles in a trajectory. For
each pair Ls

i (k) and Lv
j (k), we can calculate their orientations

and the angle between them from previous time point, denoted
as ∠(Ls

i (k), L
v
j (k)). The angular similarity of them is defined

as:

a(Ls
i (k), L

v
j (k)) =

1 + Cos(∠(Ls
i (k), L

v
j (k)))

2
. (4)

Then we integrate the previous distance similarity and this
angular similarity by taking a multiplication and define the
similarity score as:

SimNA(L
s
i , L

v
j )

=

∑
k=(t−Ws)...t

d(Ls
i (k), L

v
j (k))× a(Ls

i (k), L
v
j (k))

Ws
. (5)

B. Machine Learning-based Algorithms
Instead of using designed rules, here we try to use machine

learning to learn important features for judging the similarity
of Ls

i and Lv
j . Feature information extracted from videos and

wearable devices are stored in a trajectory pool. Through
machine learning models, the probability of two trajectories
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belonging to the same user is computed. There are three
phases: (a) feature extraction, (b) model training, and (c)
similarity scoring.

For feature extraction, we design a variety of walking paths
in a lobby and record the trajectories of bounding boxes and
wearable devices. Because the recorded lengths are different
and most machine learning algorithms take fixed length inputs,
we have to cut data in the trajectory pool in the same length (in
terms of the number of points). Then, we design three features.
The first one is f1 = “total length difference”. Let ∥Ls

i∥ and∥∥Lv
j

∥∥ be the trajectory lengths of Ls
i and Lv

j in a window
Ws, where the length of a trajectory is defined by connecting
consecutive points by straight lines. We define f1 = | ∥Ls

i∥ −∥∥Lv
j

∥∥ |. The second one is f2 = “speed difference”. The speed
of a trajectory is defined as its length divided by its number
of data points:

f2 = | ∥L
s
i∥
t

−
∥∥Lv

j

∥∥
t

|. (6)

The third one is f3 = “average distance difference”. We
calculate the distance between each pair of points and then
average them:

f3 =

∑
k=t−Ws...t

|Ls
i (k)− Lv

j (k)|
Ws

. (7)

The next phase is model training. We use the well-known
classifiers such as SVM (Support Vector Machine) [51], Ran-
dom Forest [52], and XGBoost [53] to train models from
the above features7. Each pair is labeled as +1 or 0. When
two trajectories are from the same person, the label is +1;
otherwise, the label is 0. We randomly pick some sample
pairs from the trajectory pool as our dataset and control the
number of positive outcomes to be the same as the number of
negative outcomes. SVM transforms the raw data into higher
dimensions, constructs a hyperplane from the data, divides
the data into two categories, and finally makes classifications.
Random Forest integrates multiple decision trees by ensemble
learning. Each tree in the last round will give its own category
selection and vote accordingly. The output will be the category
with the most votes. XGBoost is based on ensemble learning.
Finally, voting options are used to select the category with the
highest number of votes as the final result. The main difference
is that Random Forest is an integrated algorithm that uses
bagging to improve classification by combining randomly gen-
erated training sets, while XGBoost uses boosting to combine
weak learning algorithms into strong learning algorithms. The
selection of Boosting training sets is not independent. Each
selected training set is sampled based on the error rate and
depends on the result of the previous learning.

The third phase is similarity scoring. We use a window of
size Ws+D to score the similarity of two sequences. Let ML
be one of SVM, Random Forest, and XGBoost. We define:

7SVM, Random Forest, and XGBoost are well-established and highly
efficient models that can effectively classify discrete data [54]. Their ensemble
nature ensures accurate identification by adeptly capturing non-linear relation-
ships and feature interactions, thus enhancing the overall performance [55],
[56]

SimML(L
s
i , L

v
j ) =

∑
k=1...D ML

(
Ls
i (τk), L

v
j (τk)

)
D

,

where τk = t − Ws − k : t − (k − 1) and ML(Ls
i , L

v
j ) is

the result of a model running on two sub-sequences. So the
average number of 1s after running a model for D times is its
score.

C. Pairing Algorithm
Based on the similarity scores of all combinations of Lv

j and
Ls
i , we next design a strategy to determine the pairing result.

Note that the sequence length for the similarity-based scheme
is Ws, while that for the ML-based schemes is Ws +D. We
need to extend the window size for the former to Ws + D
in order to make a uniform solution. Also, note that a user’s
trajectory from bounding boxes in videos may be broken due
to reasons such as occultation and user leaving the camera
view area. That is, some video trajectories may be shorter
than Ws +D. In this case, we will not make any rush pairing
decision until its trajectory is long enough. To avoid a sensor
trajectory being similar to multiple video trajectories, we
propose to use deviation to quantify the statistical dispersion
of the combinations of each Ls

i and all possible candidates
of Lv

j . Specifically, we define the Uniqueness Score of Ls
i as

follows:

USx(L
s
i ) = V ar

(
Simx(L

s
i , L

v
j )|∥Lv

j∥ ≥ Ws +D, for all j
)
,

(8)
where x is any scheme and V ar(·) is the variation of a set of
values.

Intuitively, the higher the uniqueness score of a sequence
Ls
i , the higher the priority that Ls

i will be paired first. Based on
this concept, the Ls

i with the highest US will be paired with
the most similar Lv

j depending on the value of Simx(L
s
i , L

v
j ).

Note that all our schemes favor higher values, except the ED
scheme. Then the one with the second highest US will be
paired next. This is repeated until no more pairing is possible.
The outcome is a set of pairs P =

{
(Ls

i1
, Lv

j1
), (Ls

i2
, Lv

j2
), ...

}
.

V. PERFORMANCE EVALUATION AND PROTOTYPING

For the experiments, we test our result in a lobby area
with high ceiling, as shown in Fig. 3. We design a variety of
walking paths, including eight designated trajectories and three
random movements, as shown in Fig. 5. We deploy six BLE
beacons for indoor localization with a single camera. Some
users wear our badges, which have Raspberry PI, accelerom-
eter, gyroscope, compass, WiFi, and Bluetooth modules.

Our fusion server has an Intel i7-6700 (3.4GHz) with
GeForce GTX1080 GDDR5 (8GB) and 16GB DDR4
SDRAM. It has the following software components:

• Operating system: Ubuntu 16.04 64bit
• Eclipse version: Oxygen.2 (4.7.2)
• HTTP Web server version: Tomcat 7.0
• Nvidia driver version: 384.90
• CUDA version: 8.0
• cuDNN version: 5.1
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Fig. 7. Interleaving paths with various slide windows.

• opencv version: 3.1.1
Each beacon has a transmission range of 6 ∼ 15 m and a

transmission interval of 100 ms. We use Compro IP570 PTZ
camera which has a resolution of 1280 x 1024, rotation range
of 340-degree, tilt range of 100-degree, and optical zoom ratio
of 12x. Our Raspberry PI 3 Model B has a 1.2 GHz 64-bit
quad-core ARM Cortex-A53 CPU with 1GB LPDDR2 RAM,
MPU-6050 accelerometer, and GY-271 compass.

The experiments are conducted at the building in Micro-
electronics and Information Research Center (MIRC). The
environment size is 12 m × 5 m. There are 4 participants,
where 1∼3 users are with the wearable badge and 1∼2 users
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do not carry a badge.

A. Evaluation Results
In order to examine the performance of the proposed

schemes, we adopt Multi-Object Tracking Accuracy (MOTA)
from [57], [58] to calculate the accuracy of identification in
videos:

MOTA =

∑
∀t correct identification in t∑

∀t all identification in t
. (9)

In our designed walking paths, some may take about 20 sec-
onds to complete, while some may take longer (such as case 9,

Fig. 9. Special Complex Scenario (Case 11) with slide window Ws =
∞.

10, and 11, for which we take 3 minutes of data). Note that the
results based on machine learning methods are evaluated with
ten-fold cross-validation and leave-one-subject-out-validation
methods. Fig. 6 shows the accuracy of our schemes by varying
the sliding window with non-interleaving paths (case 1-3). We
can see that most schemes reach 90% MOTA. When we extend
the slide window, MOTA is improved, which is reasonable
with the complex scenario of interleaving paths (case 4-8). Fig.
7 shows that the overall MOTA decreases. This is due to many
broken video trajectories. This is difficult for pure image-based
solutions, while our schemes can still achieve 85% MOTA on
average, showing an enhancing-vision capability. Again, using
a longer sliding window would help 8.

For random paths, case 9 simulates one authorized staff and
one guest; case 10 simulates two authorized staffs; case 11
simulates a special complex scenario. The evaluation results
are shown in Fig. 8. Note that case 9 has a user without a
badge; the MOTA falls in 75% to 85% due to the presence of
unknown users in the environment. In case 10, the MOTA is
improved (80 ∼ 92%) due to the equal number of pairs. For the
special complex scenario (Case 11), it involves four persons
engaging in random walks within the lobby area: two staffs
with badges and two guests without badges, as shown in Fig.
9. The experiment results show greater matching difficulty as
the number of pairing trajectories increases. Specifically, most
similarity-based methods show a decrease in performance,
machine learning-based algorithms still achieve up to 82%
MOTA. This is because the susceptibility of Bluetooth wireless
signals to environmental effects, causing signal drift and
interference [59]. Such instability in location trajectories is
a longstanding challenge in wireless localization [60] and
is difficult to overcome. Fortunately, as wireless localization
technology advances, our algorithms can still be applied to
new wearable localization technologies.

8Note that NA requires at least two data to calculate angular similarity.
Thus, it is omitted when the sliding window=1.
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B. Intrusion and Asset Protection Application
Here, we introduce several application scenarios for our

system. These scenarios are: (i) two legal employees, (ii)
one legal and one illegal employee, and (iii) asset tracking.
Specifically, in the first scenario, two legal employees entered
the scene. The fusion system swiftly identified their IDs
individually and showcased them on the visualization screen.
In the second scenario, it unfolded with the entry of a legal
employee, followed by an authorized individual. As the legal
employee’s ID was swiftly identified and displayed on the
visualization screen, the fusion system captured the presence
of the illegal person and labeled them as ‘Unknown’ for
identification purposes. Finally, the third scenario commenced
with the placement of an asset bearing a badge within the
room. As the asset moved, its location trajectory was tracked
through BLE signals, and the image tracking system (YOLO)
captured images of the person in the area, including the one
carrying the asset. Thus, if an unauthorized person entered and
absconded with the asset, this suspicious activity would be
detected by the fusion system, flagging the person as carrying
a ‘Valuable Object’ for further monitoring and tracking.

VI. CONCLUSION

We have introduced a surveillance system in smart cities
that tackles the crucial problem of person identification, a
significant research challenge across various fields. Unlike
prior studies, our approach integrates trajectory data from
both wearable devices and surveillance cameras. To correctly
pair these trajectories data, we propose a fusion architecture
that is based on the similarity scores obtained by different
schemes. The result can greatly reduce manual efforts in find-
ing out proper information in surveillance videos. For future
directions, we will continue to explore applications in larger
and more complex environments with a wider field of view,
aiming to achieve broader camera coverage while maintaining
efficiency with a minimal number of cameras. In addition,
we will investigate the system’s capabilities to identify a
wider range of objects, including personnel and diverse assets,
beyond the current scope to enhance its versatility. Finally, we
plan to evaluate the proposed system’s performance in real-
world scenarios with higher personnel flow, such as in trans-
portation hubs or city streets, to provide valuable insights into
scalability and robustness. For the wearable components, we
will continue exploring new wireless localization technologies,
based on reasonable implementation costs and computational
complexity, to enhance the positioning trajectories.
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Aranda, “Precise Local Positioning of a Mobile Device Based on Pose
Reconstruction From a Visible Light Beacon,” IEEE Access, vol. 12, pp.
20 517–20 529, 2024.

[38] J. Kim, W. Shin, H. Park, and D. Choi, “Cluster Self-Refinement for
Enhanced Online Multi-Camera People Tracking,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2024, pp. 7190–7197.

[39] L. Bai, F. Ciravegna, R. Bond, and M. Mulvenna, “A low cost indoor
positioning system using bluetooth low energy,” IEEE Access, vol. 8,
pp. 136 858–136 871, 2020.

[40] P. Zand, J. Romme, J. Govers, F. Pasveer, and G. Dolmans, “A high-
accuracy phase-based ranging solution with Bluetooth Low Energy
(BLE),” in IEEE Wireless Communications and Networking Conference
(WCNC), 2019, pp. 1–8.

[41] S. Akiyama, R. Morimoto, and Y. Taniguchi, “A study on device identifi-
cation from ble advertising packets with randomized mac addresses,” in
IEEE International Conference on Consumer Electronics-Asia (ICCE-
Asia), 2021, pp. 1–4.

[42] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan, “YOLO-
World: Real-Time Open-Vocabulary Object Detection,” arXiv preprint
arXiv:2401.17270, 2024.

[43] K. Tong and Y. Wu, “I-YOLO: a novel single-stage framework for small
object detection,” The Visual Computer, pp. 1–18, 2024.

[44] Y. Zhou, “A yolo-nl object detector for real-time detection,” Expert
Systems with Applications, vol. 238, 2024.

[45] G. Li, Z. Ji, X. Qu, R. Zhou, and D. Cao, “Cross-Domain Object
Detection for Autonomous Driving: A Stepwise Domain Adaptative
YOLO Approach,” IEEE Transactions on Intelligent Vehicles, vol. 7,
no. 3, pp. 603–615, 2022.

[46] X. Liu, L. Lin, S. Yan, H. Jin, and W. Jiang, “Adaptive Object Tracking
by Learning Hybrid Template Online,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 21, no. 11, pp. 1588–1599, 2011.

[47] C.-C. Lo, T.-H. Chiang, T.-K. Lee, L.-J. Chen, and Y.-C. Tseng,
“Wireless Location Tracking by a Sensor-assisted Particle Filter and

Floor Plans in a 2.5-D Space,” in Proc. IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1–6, 2018.

[48] H. Tan, A. M. Wilson, and J. Lowe, “Measurement of stride parameters
using a wearable GPS and inertial measurement unit,” Journal of
biomechanics, vol. 41, no. 7, pp. 1398–1406, 2008.

[49] N. Wagle, J. Morkos, J. Liu, H. Reith, J. Greenstein, K. Gong, I. Gangan,
D. Pakhomov, S. Hira, O. V. Komogortsev et al., “aEYE: a deep learning
system for video nystagmus detection,” Frontiers in Neurology, vol. 13,
p. 963968, 2022.

[50] H. Zhang, J. Guo, X. Liu, D. Zhou, and Y. Hou, “A Time Synchroniza-
tion Algorithm Based on Correlation Analysis in GNSS/INS Integrated
Navigation,” in IEEE International Conference on Unmanned Systems
(ICUS), 2022, pp. 1327–1332.

[51] M. Tanveer, M. Tabish, and J. Jangir, “Pinball Twin Bounded Support
Vector Clustering,” in IEEE EMBS International Conference on Biomed-
ical and Health Informatics (BHI), 2021, pp. 1–4.

[52] C. Galen and R. Steele, “Performance Maintenance Over Time of
Random Forest-based Malware Detection Models,” in 11th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication Confer-
ence (UEMCON), 2020, pp. 0536–0541.

[53] G. Minghui, Z. Hang, M. Li, Z. Zhijun, L. Kai, C. Xudong, H. Jicheng,
and N. Zhiyan, “Research on Intrusion Detection Model Based on
DAE- XGBoost,” in IEEE 10th International Conference on Information,
Communication and Networks (ICICN), 2022, pp. 57–62.
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