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Abstract: Due to the aging population, home care for the elderly has become very important.
Currently, there are many studies focusing on the deployment of various sensors in the house to
recognize the home activities of the elderly, especially for the elderly living alone. Through these,
we can detect the home situation of the single person and ensure his/her living safety. However,
the living environment of the elderly includes, not only the person living alone, but also multiple
people living together. By applying the traditional methods for a multi-resident environment,
the “individual” activities of each person could not be accurately identified. This resulted in an
inability to distinguish which person was involved in what activities, and thus, failed to provide
personal care. Therefore, this research tries to investigate how to recognize home activities in
multi-resident living environments, in order to accurately distinguish the association between
residents and home activities. Specifically, we propose to use the special characteristics of historical
activity of residents in a multi-person environment, including activity interaction, activity frequency,
activity period length, and residential behaviors, and then apply a suite of machine learning methods
to train and test. Five traditional models of supervised learning and two deep learning methods are
explored to tackle this problem. Through the experiments with real datasets, the proposed methods
were found to achieve higher precision, recall and accuracy with less training time. The best accuracy
can reach up to 91% and 95%, by J48DT, and LSTM, respectively, in different living environments.

Keywords: ambient assisted living; multi-person activity recognition; machine learning; deep learning

1. Introduction

A smart home is a promising technology for elderly care, which can be realized by
Internet of things (IoT), to improve the quality of life of the elderly, prevent and detect
their accidents, and enable the elderly to live in a safe and comfortable environment [1–4].
As the number of elderly people is increasing, Ambient Assistant Living (AAL) [5,6] has been
fully applied for home care. In the AAL environment, by deploying multiple sensors to
detect home activities, it can achieve elderly care, such as accident detection, emergency
medical rescue, and remote assistance [7,8]. However, existing researches mainly focused
on vision based activity recognition [9–11], body action identification [12–15], or single-
person activity recognition [16]. This may pose face privacy concerns, or be difficult
to associate body action with home activity, or neglect the elderly living together with
spouse or even relatives and/or friends [17–19], respectively. Once single-person activity
recognition is applied to the multi-person environment, it will fail to identify different
residents’ activities, and thus, cannot provide personal care for the elderly. This becomes
an important issue and motivates us to study this problem.

Therefore, this paper tries to address such activity recognition problem in the multi-
resident environment and proposes to explore a suit of machine learning models to tackle
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this problem. Specifically, we investigate and implement five traditional machine learn-
ing methods (including Support Vector Machine, K-Nearest Neighbor, Multi-Layer Perceptron,
J48 Decision Tree, Random Forest) and two deep learning techniques (including Recurrent
Neural Networks and Long Short-Term Memory) for modeling and testing, and then apply six
special historical activity features with multi-label methods [20] to evaluate their benefits
based on the confusion matrix and 10-Fold Cross-Validation. Note that the deep learning
models have the nature to handle time series features, which are fitting with the character-
istics of sequential home activities. However, these deep learning based techniques may
have higher complexity cost. We investigate them with the traditional well-known learning
models together. The extensive findings provide important observations with respect
to traditional methods and deep learning techniques. These methods can achieve better
performances in terms of precision, recall and accuracy in different scenarios, respectively.

The contributions of this paper are three-fold. First, this is a complete work to ad-
dress the problem of multi-resident home activity recognition. Contrary to the literature,
this work aims to identify ‘which resident’ activates ‘what activity’, that is more difficult
than traditional recognition problems. Second, we first design six special characteristics
based on residents’ historical behaviors and activity dependency, and then propose to lever-
age a suit of machine learning models, including five traditional supervised learning and
two new deep learning models, to investigate and conclude their effectiveness, efficiency,
and complexity. Third, we evaluate the performance of the proposed schemes and verify
them based on a public and well known dataset (i.e., ARAS dataset), which is generally
acknowledged and can make our results more authoritative and recognized. These results
also reveal that J48DT and LSTM methods can achieve better precision, recall and accu-
racy in different environments, which can provide valuable experiences for the system
developers of elderly personal care in the future.

The rest of this paper is organized as follows. Related work is discussed in Section 2.
We define our problem in Section 3. Section 4 presents our proposed method. Performance
evaluations are shown in Section 5. Conclusions are drawn in Section 6.

2. Related Work

In the literature, due to the increase of the elderly population, home activity recog-
nition has been widely used in smart homes. Among them, the AAL (ambient assisted
living) platform [21,22] are designed to achieve home care, such as detecting abnormal
activities of the elderly and even for the elderly with dementia [23]. Traditionally, CCTV
(closed-circuit television) is a common way for monitoring and recognizing activity [9,10].
However, they face privacy concerns. Therefore, the research [11] proposes a privacy-
preserving and computationally efficient framework. Whereas the work [12] explores
data acquisition, transmission and data encryption to mitigate residential privacy issues.
In addition, the references, [13–16], further leverage sensors to detect activities and reduce
the leakage of image privacy. Specifically, the studies [13,14] use acceleration sensors to
identify body activities. While, the research [15], uses multilevel classification to achieve
activity identification. However, the above studies require to wear sensors over a long
period of time, which would make residents uncomfortable, and thus, disassemble them,
resulting in losing results. Then, the work, [16], combines multiple WiFi signals and ex-
ploits signal strength information to achieve activity recognition. However, it only focuses
on single-person activity recognition.

Based on the above results, it motivates us to study the home activity recognition
in the multi-resident environment by using non-intrusive sensing devices, such as non-
imaging and non-wearing technologies to avoid privacy concerns. We summarize the
above literature in Table 1.
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Table 1. Comparison of the literature for recognition.

Reference Aim Proposed Methods Pros Cons

[23]
To demonstrate how human
motions can be detected in a
quasi-real-time scenario.

Non-invasive machine
learning algorithm

(1) Less expensive
(2) Requires fewer resources Limited activity consideration.

[9]

To provide monitoring,
recording and identification of
human daily activities through
cameras

To identify the daily activities
of the elderly based on the
characteristics of skeleton and
joint.

Enriching the data diversity Face privacy concern.

[10] To introduce vision-based
human action recognition

To quantify and compare the
vision-based methods

Providing an overview and
summarize the challenges Face privacy concern

[11]
To design a privacy-preserving
and computationally efficient
framework

Using mobile video analytics
based on convolutional neural
network model

Less data processing time Not focusing on identification

[12]
To design wearable-sensors
based healthcare system for
human activity recognition.

IoT and blockchain based data
acquisition, transmission and
data encryption modules

Alarming feature Needing to wear sensors

[13] To use multiple wearable
sensors for activity recognition

To exploit a probabilistic
model based on Hidden
Markov Models

Useful for automatic
ergonomic evaluation for
industrial applications

Needing to wear sensors

[14]
To recognize activity based on
the localization of wearable
sensors

Using a two-stream
Convolutional Neural
Networks

Simultaneous recognition of
both human activity and
sensor location

Needing to wear sensors

[15]
To make wearable devices be
the ubiquitous platform for
data acquisition and analysis

To obtain body action through
inertial sensors of wearable
devices and mobile phones

Easy to get and implement Needing to wear sensors

[16] To recognize activity under the
interference of passengers

Based on multiple WiFi signal
information

Increasing the diversity of
fusion data

Focusing on single-person (i.e.,
the driver) activity
recognition.

3. Problem Definition

In this paper, we focus on the most common home activities, which are shown in
Table 2. We assume that each user’s historical activities in the past N days have been
known, as shown in Table 3, where A represents the activity number, T represents the
activity time, and U represents the user who performed the activity. Such data is recorded
by an activity structure of {(Ai, Ti, Ui), i = 1, . . . , N}, where i is the i-th day. Our goal is to
ask how to correctly match the unknown activity sequence Ax and the unknown user sequence
Ux based on the given activity list {(Ai, Ti, Ui), i = 1 . . . , N} so as to provide personal care.
The notations used in this paper are summarized in Table 4.

Table 2. Types of home activity [24].

Num. Activity Num. Activity

1 Idle 15 Toileting
2 Going out 16 Napping
3 Preparing breakfast 17 Using Internet
4 Having breakfast 18 Reading book
5 Preparing lunch 19 Laundry
6 Having lunch 20 Shaving
7 Preparing dinner 21 Brushing teeth
8 Having dinner 22 Talking on the phone
9 Washing dishes 23 Listening to music
10 Having snack 24 Cleaning
11 Sleeping 25 Chat
12 Watching TV 26 Having guest
13 Studying 27 Changing clothes
14 Having shower
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Table 3. Examples of historical activities and unknown user list.

Historical Activity List(Ai, Ti, Ui)

A1 (12, 17, 22, 12, 15, 17, 21, 15, 17, 11, 11, 20, 21, 15, 27, 2, 1, 12, 3, 4, 15, 17, 21, 13, 22, . . . )
T1 (00:00:01, 00:00:01, 00:09:03, 00:14:05, 00:43:42, 00:50:02, 00:56:18, 01:00:00, 01:04:12, . . . )
U1 (user1, user2, user1, user1, user2, user2, user1, user1, user1, . . . )

A2 (17, 2, 10, 17, 10, 12, 13, 21, . . . )
T2 (00:00:01, 00:00:01, 00:0042, 00:06:46, 00:19:40, 00:23:22, 01:07:55, 02:32:28, . . . )
U2 (user1, user2, user1, user1, user1, user1, user1, user1, . . . )

A3 (10,10,17,12,25,12,21,17,15, . . . )
T3 (00:00:01, 00:00:01, 00:01:38, 00:18:49, 00:29:01, 00:47:54, 01:29:31, 01:30:35, 01:36:05, . . . )
U3 (user1, user2, user2, user1, user1, user1, user2, user1, user2, . . . )

A4 (12, 17, 21, 17, 11, 22, 17, 21, 11, . . . )
T4 (00:00:01, 00:00:01, 00:05:11, 00:06:13, 00:08:28, 00:12:02, 00:23:45, 01:03:08, 01:12:26, . . . )
U4 (user1, user2, user2, user1, user2, user1, user1, user1, user1, . . . )

A5 (22, 2, 12, 17, 21, 11, 25, 25, 25, 27, . . . )
T5 (00:00:01, 00:00:01, 00:10:06, 01:20:22, 01:44:29, 01:48:57, 09:16:17, 09:16:36, 09:27:18, . . . )
U5 (user1, user2, user1, user1, user1, user1, user2, user1, user2, . . . )

Unlabeled Data (Ax, Tx, Ux)

Ax (12, 2, 17, 15, 21, 11, 12, 1, 3, 17, 3, 2, 4, 22, 4, 9, 15, 21, 12, 17, 15, 14, 17, 5, 22, 5, 6, 26, 6, 9, . . . )
Tx (00:00:01, 00:00:01, 00:01:02, 00:06:01, 00:52:04, 01:15:03, 01:55:20, 02:22:26, 02:54:54, . . . )
Ux (user1, user2, user1, ?, ?, ?, ?, user1, ?, ?, ?, . . . )

Table 4. Notations used in the paper.

Notation Definition

Ai Activity sequence of day i
Ui User sequence of day i
Ti Activity occurrence time of day i

Ax Activity sequence of unknown user
Tx Activity occurrence time (corresponding to Ax)
Ux Unknown user sequence (corresponding to Ax)

µ Average value
σ Standard deviation
xd The value of the input layer
sk The value from the input layer to the hidden layer
vik The weight of the i-th input to the k-th hidden node
zj The value from the hidden layer to the output layer

wkj The weight of the k-th hidden node outputting to the j-th output value
yj The j-th output value
ht The t-th hidden layer
ft The t-th forgetting gate in LSTM model
Ct Current memory data
Ot The output of the t-th hidden layer

TP True Positive
TN True Negative
FP False Positive
FN False Negative

4. The Proposed Methods

In this work, we study the activity recognition issue in multi-resident environments
and propose various machine learning models based on the activity-dependent charac-
teristics and historical activity behaviors of the residents, thereby improving the accuracy
of the activity recognition. Specifically, our solution is divided into two stages. The first
stage is data collection and pre-processing, which detects whether the data is abnormal or
missing, and then performs the numerical conversion. The second stage is to implement a
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suit of machine learning models, and then performs training and testing. Finally, we make
experiments and analyze the benefit to obtain the better classification results. The details
are described as follows.

4.1. Data Collection and Preprocessing

We use the ARAS dataset [24] in this work, which collects real data from two houses
with multiple residents, and applies a non-invasive detection method by deploying mul-
tiple sensors to recognize home activities, including pressure sensor, temperature sensor,
and distance sensor, and infrared receiver, etc. This dataset records 30 days of home
activities. The detailed attributes of the dataset are shown in Table 5.

Table 5. The detailed attributes of the ARAS dataset [24].

Attribute House A House B

Num. of residents 2 males (both aged 25) Married couple (age average
34)

Size of the house 50 m2 90 m2

House information
One bedroom, one living
room, one kitchen, one

bathroom

Two bedrooms, one living
room, one kitchen, one

bathroom.

Num. of ambient sensors 20 of 7 different types 20 of 6 different types

Duration 30 days 30 days

Num. of activities 27 27

Num. of data records (user1:
user2) 1594:1288 1180:1021

For the ARAS dataset, we first performed multi-label merging [20] for the 27 activities
identified in the dataset, combining similar activity types, such as preparing breakfast,
preparing lunch, and preparing dinner, into “cooking” and use “eating” to represent
having breakfast, having lunch, and having dinner to enhance the nature of the activity.
The combined results are shown in Tables 6 and 7.

Table 6. Combined Activities.

Num. Activity Num. Activity

1 Idle 13 Using Internet
2 Going out 14 Reading book
3 Cooking 15 Laundry
4 Eating 16 Shaving
5 Washing dishes 17 Brushing teeth
6 Having snack 18 Talking on the phone
7 Sleeping 19 Listening to music
8 Watching TV 20 Cleaning
9 Studying 21 Chat
10 Having shower 22 Having guest
11 Toileting 23 Changing clothes
12 Napping
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Table 7. Examples of multi-label activity data.

ID Day Chat Clean Cloth Cook Toilet TV . . . User

1 1 0 0 0 0 0 1 . . . 1
2 1 0 0 0 0 0 0 . . . 1
3 1 0 0 0 0 1 0 . . . 2
4 1 0 0 0 0 0 0 . . . 2
5 1 0 0 0 0 0 0 . . . 1

• Data Preprocessing

Next, we visualize the data to check whether the data is abnormal or missing. In ad-
dition, we test it based on the “missingno” package (built in Python). The results are
shown in Figure 1. As can be seen, there is no white dashed line in the black bar-graph (i.e.,
missing value), which means that the dataset is complete and no compensation is required.
Note that the left vertical axis means the number of data records, the horizontal axis is the
data label, and the right side shows the missing data distribution. Since the dataset has no
missing data, this distribution has no variation and only shows the number of total data
labels (i.e., 32).
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Figure 1. Data visualization.

Then, through One-Hot Encoding, the non-numeric fields are converted into numerical
values. Since there is no difference in the order of the content in each line, it will not be
converted into numerical values with difference size, but converted into dummy variables,
as shown in Table 8. Note that the two residents are marked as “user1” and “user2” in the
right part of Table 8 (in the red block). The ID shows “2880” means that it has 2880 records
of activity data after data processing.

• Standardization of Features

In order to prevent the values of specific feature in the dataset from affecting the clas-
sification results, we use Z-Score Normalization [25] as the method, shown in the following:

New value =
x− µ

σ
. (1)

This method normalizes the original data to a value with a mean value of 0 and a
variance of 1, where x represents the value before normalization, µ represents the feature
average, and σ represents the feature standard deviation.

• Feature Selection
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Here, we use the filtering method [26], which scores each feature value according to
the divergence and correlation index of the feature, and determines the suitable feature by
setting the scoring threshold or the number of selected thresholds.

Through the above processes, the features of the home activities are filtered out:
1. Activity sequence of a day (labeled by uniqueID), 2. Activity frequency of a day (labeled
by times), 3. Activity duration (in hours, labeled by duration), 4. Activity occurrence
interval (labeled by period, which is represented as: early ‘1’, mid ‘2’ or late ‘3’), 5. Activity
occurrence times in a day (labeled by times2), 6. Ratio of individual activity over total
activities (labeled by ratio). The examples of filtered activity features are shown in Table 9.

Table 8. Results of one-hot encoding.

ID Day Chat Clean Cloth Cook . . . Toilet TV User1 User2

1 1 0 0 0 0 . . . 0 1 1 0
2 1 0 0 0 0 . . . 0 0 1 0
3 1 0 0 0 0 . . . 1 0 0 1
4 1 0 0 0 0 . . . 0 0 0 1
5 1 0 0 0 0 . . . 0 0 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2876 30 0 0 1 0 . . . 0 0 1 0
2877 30 0 0 0 0 . . . 0 0 1 0
2878 30 0 0 0 0 . . . 0 0 1 0
2879 30 0 0 0 0 . . . 0 1 1 0
2880 30 0 0 0 0 . . . 0 0 0 1

Table 9. Examples of the filtered activity features.

ID Day uniqueID Times Duration Period Time2 Ratio User1 User2

1 1 1 3 0.150 1 1 0.12 1 0
2 1 2 5 0.083 1 1 0.04 1 0
3 1 3 3 0.116 1 1 0.02 0 1
4 1 4 5 0.716 1 1 0.03 0 1
5 1 5 3 0.066 1 1 0.01 1 0

4.2. Machine Learning Methods

In the second stage, we implement a suit of machine learning methods to explore
the correctness of multi-resident activity recognition, including five traditional machine
learning methods: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer
Perceptron (MLP), J48 Decision Tree, Random Forest (RF), and two deep learning models:
Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM). The details are
described as follows.

• Support Vector Machine (SVM)

Support Vector Machine (SVM) [27] is a supervised machine learning method. It was
originally used for binary classification, but has now been extended to statistical classi-
fication and regression analysis. The principle involves using the function to upgrade
the data from the original dimension to the high-dimensional feature space, and use the
optimization tool in the feature space to find a hyper-plane that can separate the data
into two categories. This hyper-plane is the classification boundary. Therefore, a good
classification boundary should be as far away as possible from the nearest training data
point, which can reduce the probability of judgment errors.

Note that we implemented the multi-classification SVM based on the One-Against-One
method [28], which selects certain two categories of data from the multi-category data, and
repeats the operation until all the category combinations have their corresponding SVMs.
Finally, there will be CT

2 (T-class classification) SVM models. When there is a new piece
of data to be predicted, CT

2 SVMs will be thrown into it. Each SVM will classify this data
into a certain category like voting, then record +1 for this category, and finally judge the
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category with the maximum number of votes. Then, it can predict the data belonging to
that category.

• K-Nearest Neighbor (KNN)

K-Nearest Neighbor (KNN) [29] is one of the simplest supervised classification method.
The concept of the method is to determine one’s own category based on the neighbor
categories that are close to each other. The premise of this method is to have a training
dataset with a marked category. The specific calculation steps are divided into three steps:

(1) Calculate the distance between the test object and all objects in the training set,
where the most commonly used is Euclidean distance [30].

(2) Find the closest K objects in the distance calculated in the previous step as neighbors
of the test object.

(3) Find the object with the highest frequency among the K objects, and its category is the
category to which the test object belongs.

• Multilayer Perceptron (MLP)

Multi-Layer Perceptron (MLP) [29] is a back-propagation neural network, whose struc-
ture contains three layers: input layer, hidden layer and output layer. Each layer will
be connected to the next layer, using backward pass technology to achieve supervised
learning. The MLP structure is shown in Figure 2, where there are n pieces of input data,
each piece of data corresponds to m output values, and only one layer of the hidden layer
is set as p hidden nodes. Figure 2 is the structure of MLP, which shows that the value from
the input layer to the hidden layer is sk, i.e., the weighted linear sum of the input values,
and vik is the weight of the i-th input to the k-th hidden node. After the activation function
f 1, the hidden layer node outputs hk. The value from the hidden layer to the output layer is
zj, j = 1, . . . m; wkj is the weight of the k-th hidden node outputting to the j-th output value,
and the output yj is obtained through the activation function f 2. In short, MLP learns based
on the perceptron, and changes the connection weight each time after processing the data
to reduce the amount of errors between the output and the predicted results.
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• Random Forest (RF)

Random Forest (RF) [31] is a combined learning algorithm based on decision tree
classifiers. Its principle is to use a random method to build a forest, combined with
multiple CART (Classification and Regression Tree) [32], which uses the GINI algorithm for
decision-making trees to form a combined prediction model. Each tree randomly selects
observations and variables to construct a classifier, and obtains the final result through
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voting, and then combines learning through the Bagging algorithm [33]. Finally, it randomly
selects variables to split when CART grows. Due to its parallel computing characteristics,
Random Forest performs well in both small and large datasets.

• J48 Decision Tree (J48DT)

J48 Decision Tree (J48 DT) [34] is an excellent improvement of the ID3 algorithm [32],
which uses the gain ratio of attributes to overcome the problem of information gaining
regularization. In the calculation process, it is also necessary to calculate the split informa-
tion value of the attribute, and it performs pruning during the tree construction to avoid
over-fitting. Among them, the calculation method of the split information value is:

SplitIn f oA(S) = −
v

∑
j=1

∣∣Sj
∣∣

|S| × log2

(∣∣Sj
∣∣

|S|

)
. (2)

The value of split information is used for the profit ratio, where the calculation method
of the profit ratio is:

GainRatio(A) =
Gain(S, A)

SplitIn f oA(S)
. (3)

Note that it considers the number of branches with different characteristics. After ob-
taining the profit ratio, we select the maximum information profit as the feature.

• Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNN) [35] can deal with time series problems. Since it
considers the previous relationship, it is used as the input for the next step to maintain
the state from the previous iteration to the next iteration to realize a chain of repeating
modules of a neural network. In the standard RNN, the repeating module has a very
simple structure, as shown in Figure 3. The specific operation steps are as follows: (1)
Input xt. (2) Calculate the current state ht by using the input and the state at the previous
moment. (3) The current state becomes the previous state of the next step ht−1. (4) Perform
the above steps several times depending on assignment decision. (5) The final state is used
to calculate the output yt. (6) Compare the output with the real label and get the error. (7)
The error is updated through back-propagation, and the training is completed.
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• Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) model [36] also has the form of a chain of repeated
modules of neural networks, as shown in Figure 4. The performance of LSTM is usually
better than RNN or Hidden Markov Model. In order to minimize the training error, gradient
descent can be used to modify the weight of each time based on the error. When the LSTM
block is set, the error is also calculated backwards from Output to each Gate in the Input
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stage, until this value is filtered out. Therefore, the normal backward pass neuron is an
effective method for training LSTM blocks to remember long-term values. Compared with
RNN, LSTM has additional Ct for memory purpose.
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By implementing of the above machine learning methods, the benefits will be evalu-
ated in the next section.

5. Performance Evaluation

In this section, we use the ARAS dataset [24] for training and testing experiments,
which contains the real data collected for multi-resident environments, including two
houses (i.e., House A and House B) and each house has two residents, recording for
30 days of home activities. We evaluate and compare the performance of the proposed
machine learning models by the performance metrics based on confusion matrix, shown in
Table 10. They are precision, recall, accuracy, and F1-socre, where Precision = TP

(TP+FP) ;

Recall = TP
(TP+FN)

; Accuracy = TP+TN
TP+TN+FP+FN ; F1-Score = 2×Precision∗Recall

Precision+ Recall . In addition, we
use 10-Fold Cross-Validation [37] to validate all the models.

Table 10. Confusion matrix.

Actual Class\Predicted Class Positive Negative

Positive TP FN
Negative FP TN

5.1. Precision

First, we investigate the performance of different methods on precision. From Figure 5,
we can see that the precision of SVM and KNN is quite low. Since KNN uses the distance
between the unit to be classified and the neighboring unit as the weight for classification,
once the feature types of the neighboring unit are fewer, it will cause classification errors.
For SVM, since it needs to establish an accurate hyper-plane, if the sampling data is less,
it results in low precision. Note that other methods perform well. Their precision values
range between 89% and 95%. RNN and LSTM perform the best in House A and House
B, respectively, due to the characteristic of repeated module chain of neural networks,
which are more suitable for time-series features.
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5.2. Recall

Next, we observe the performance of different methods on recall. Similarly, Figure 6
shows that SVM and KNN perform poorly, mainly because there are fewer training features
and less sampling training data. Other methods perform better. Their recall values reach
up to 91% (in House A), and 95% (in House B), respectively. J48DT and LSTM perform the
best in House A, and House B, respectively, because J48DT conducts pruning during tree
construction to avoid over-fitting while LSTM can use the memory to remember long-term
information, and thus can classify more accurately.
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5.3. Accuracy

Furthermore, we compare the accuracy of different methods. Similarly, Figure 7 shows
that SVM and KNN have poor performance, while other methods have better accuracy
(between 89.4% and 95%). Note that J48DT and LSTM perform the best. Their accuracy
values reach up to 91.25% and 95%, in House A, and House B, respectively.
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5.4. F1-Score

Here, we compare F1-Score of different methods, which can be used to judge the
quality of the models. As shown in Figure 8, since F1-Score combines with the values of
accuracy and recall as evaluation indicators, the trend of SVM and KNN will be consistent
with the previous figures. Similarly, other methods performed better, whose values are
between 89.5% and 95%. Note that J48DT and LSTM perform the best and their values
reach up to 91.2% and 95%, in House A, and House B, respectively.
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5.5. RMSE

RMSE (Root Mean Square Error) is used to measure of the deviation between the
observed value and the true value. It is sensitive to the extra large or small errors in the
measurement. A method with a smaller RMSE value, it can be the better learning model.
Thus, if the RMSE value is close to 0, it means that the model is better than the method of
predicting with the mean value. In Figure 9, we can see that the RMSE value of KNN and
RF are relatively high. In relation to the results from confusion matrix (i.e., Figures 5–8), it
can be seen that the two methods are not good enough. Contrarily, the decision-tree based
models (i.e., J48DT and RF) and deep learning models (i.e., RNN and LSTM) have lower
RMSE, and thus, perform better.
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5.6. Computational Complexity

Finally, we compare the computational complexity of different methods. The computa-
tion time for training and testing is measured by the platform of ASUS D320MT with Intel
Core i5-6400 CPU@ 2.7 GHz, 16 GB RAM, and NVIDIA GeForce® GTX 1080Ti Graphics
Card. In Figure 10, we can see that for both House A and House B, KNN and J48DT take
less time than other methods. Although RNN and LSTM need more time, they can achieve
more reliable precision, accuracy, and F1-score (referring to Figures 5–8).
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5.7. Observations 
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5.7. Observations

In Figure 11, we further observe the convergence of RNN and LSTM in House A
and House B on accuracy. As can be seen, the accuracy of RNN and LSTM in House A is
worse than that of House B. This is because the difference in number of home activities,
which are triggered by the two users in House A, is very large (i.e., one of the two users
in House A often goes outside and has fewer activities, referring to Table 5), resulting in
misclassification of uneven weight distribution. In addition, LSTM finally performs better
than RNN in House B because the number of users’ activities is more balanced and the
advantages of the memory and forgetting gate of LSTM can be enlarged to improve
accuracy. Finally, we also can see that RNN converges faster than LSTM in both House A
and House B, as LSTM has more parameters to be trained and updated under the same
number of layers and thus converges slightly slow.
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5.8. Discussions

Since SVM needs to find the best boundary between classification targets, if there is
more data or the situation becomes more complex, its performance decreases dramatically,
as shown in Figures 5–8. Then, KNN exploits the distance between the classification target
and the adjacent data as the classification weight. Therefore, once the features of adjacent
units are fewer, it will cause errors. Therefore, it does not perform well in precision, recall,
accuracy and F1-score (as shown in the above figures). However, its intuitive classification
mechanism only needs to find a specific number of units near the target for comparison,
so the training time is less, as shown in Figure 10. MLP is a multi-layer feed-forward neural
network, which has better performance in precision, recall, accuracy and F1-score (referring
to Figures 5–8). However, if there are more parameters to be learned, it takes lots of time
for calculation. RF and J48DT are both decision tree based algorithms, which need to find
the best solution from branches. Therefore, they perform very well in precision, recall,
accuracy and F1-score. Note that the activity records in House A is much more than that in
House B, so the branch nodes and tree width of House A in the RF method are more than
that in House B, resulting in more training time for House A than House B (referring to
Figure 10). J48DT always selects the option with the highest information gain at the branch
point, so it can be reduced the width of the tree and has the least calculation time. RNN is
a deep-learning model based on the time dimension and has a memory function that can
retain information during the training process. Therefore, it performs better than ordinary
neural networks. From Figures 5–8, we can see that it has better performance in terms of
precision, recall, accuracy and F1-score. However, it also requires more training parameters
and thus spends more time in training. LSTM has a long-term memory and forgetting
mechanism, so it performs better in precision, recall, accuracy and F1-score than that of
RNN. In addition, the difference in recall between House A and House B is large (i.e., 89%,
and 95%, respectively), as House A has more data (i.e., 306 records) and House B has less
data (i.e., 159 records). Note that the performance of the deep learning models (i.e., LSTM
and RNN) is better (but slightly) than that of the decision-tree based learning (i.e., J48DT
and RF) as the dataset is scarce and the scale is slightly small (i.e., only 30 days of records),
and thus, LSTM and RNN may limitedly elaborate the sequential activity features with the
memory mechanism and forgetting gate. Contrarily, J48DT always selects the option with
the highest information gain at the branch node especially when the dataset is not very
large and then performs pruning during the tree construction process to avoid over-fitting.
Thus, J48DT can perform well.
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6. Conclusions

In this paper, we have addressed the problem of multi-resident activity recognition.
Based on the activity dependent features and user historical behaviors, we have imple-
mented and evaluated five traditional machine learning methods and two deep learning
techniques for training and testing, including SVM, KNN, MLP, J48DT, RF, RNN and LSTM.
According to the experimental results with real datasets, the performances of J48DT and
LSTM are the best, whose accuracy values reach up to 91%, and 95%, respectively, in differ-
ent houses. While, the performances of SVM and KNN are the worst, even lower than 69%.
For the future work, we will continue to investigate more powerful learning technologies,
such as reinforcement learning, and also compare them with more presentative algorithms,
in order to provide more valuable experiences for the development of the elderly personal
care and further expand the application scope.
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