
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018 411

Efficient and Consistent Flow Update for
Software Defined Networks

Kun-Ru Wu, Member, IEEE, Jia-Ming Liang, Member, IEEE, Sheng-Chieh Lee, and Yu-Chee Tseng, Fellow, IEEE

Abstract— Software defined network (SDN) provides flexible
and scalable routing by separating control plane and data plane.
With centralized control, SDN has been widely used in traffic
engineering, link failure recovery, and load balancing. This work
considers the flow update problem, where a set of flows need to be
migrated or rearranged due to change of network status. During
flow update, efficiency and consistency are two main challenges.
Efficiency refers to how fast these updates are completed, while
consistency refers to prevention of blackholes, loops, and network
congestions during updates. This paper proposes a scheme that
maintains all these properties. It works in four phases. The
first phase partitions flows into shorter routing segments to
increase update parallelism. The second phase generates a global
dependency graph of these segments to be updated. The third
phase conducts actual updates and then adjusts dependency
graphs accordingly. The last phase deals with deadlocks, if any,
and then loops back to phase three if necessary. Through sim-
ulations, we validate that our scheme not only ensures freedom
of blackholes, loops, congestions, and deadlocks during flow
updates, but is also faster than existing schemes.

Index Terms— Computer network, OpenFlow, protocol, SDN,
switching, routing.

I. INTRODUCTION

SDN is appealing because it provides flexible and dynamic
routing by separating control and data planes. It has a

global view on network topology due to its centralized control
and is thus widely applied to traffic engineering [1], [2],
link failure recovery [3]–[5], and load balancing [6]–[9]. As
a network scales up, the frequency of flow updates, where
a set of flows need to be migrated to new routes, also
increases. During flow update, efficiency and consistency are
two main challenges. Efficiency refers to how fast a set of
given flow updates are completed, while consistency refers

Manuscript received September 30, 2017; revised February 5, 2018;
accepted February 27, 2018. Date of publication March 12, 2018; date
of current version May 21, 2018. This work was supported in part by
MOST under Grant 102-2218-E-182-008-MY3, Grant 105-2221-E-182-051,
Grant 106-2221-E-182-015-MY3, Grant 105-2745-8-182-001, Grant
106-2221-E-024-004, Grant 105-2221-E-009-100-MY3, Grant 105-2218-
E-009-029, Grant 105-2923-E-009-001-MY2, and Grant 104-2221-E-009-
113-MY3, in part by the MoE ATU Plan, in part by Delta Electronics,
in part by ITRI, in part by the Institute for Information Industry, in part by
Academia Sinica under Grant AS-105-TP-A07, and in part by Chang Gung
Memorial Hospital, Taoyuan. (Corresponding authors: Jia-Ming Liang.)

K.-R. Wu, S.-C. Lee, and Y.-C. Tseng are with the Department
of Computer Science, National Chiao Tung University, Hsinchu 30010,
Taiwan (e-mail: kunruwu@cs.nctu.edu.tw; sclee840310@cs.nctu.edu.tw;
yctseng@cs.nctu.edu.tw).

J.-M. Liang is with the Department of Computer Science and Information
Engineering, Chang Gung University, Taoyuan 33302, Taiwan, and also
with the Department of General Medicine, Chang Gung Memorial Hospital,
Taoyuan 33378, Taiwan (e-mail: jmliang@mail.cgu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2815458

to prevention of blackholes, loops, network congestions, and
deadlocks during updates. Blackhole-free means that there
is no tentative flow leading to a deadend [10]. Loop-free
means that there is no tentative circular route in the network.
Congestion-free means the sum of flows on a link should not
exceed its link capacity [11]. Since a SDN can control its
update order, it is expected to maintain these properties by
computing a suitable update schedule.

In previous works, [12]–[15] investigate the optimization of
transmission paths in a SDN which needs to update a large
amount of flows. References [16] and [17] propose dynamic
flow update schemes. In [16], a global dependency graph is
generated to dynamically adjust update schedules. However, its
update speed is not fast enough. Reference [17] uses critical
nodes and local dependency graph to speed up updating, but
it incurs congestions in some cases. It also does not have a
well-designed mechanism for handling deadlocks.

In this paper, we design a dynamic algorithm for flow update
in a SDN by considering both consistency and efficiency.
It contains four phases. In the first phase, each flow to be
updated is partitioned into multiple segments, if possible,
to increase update parallelism. In the second phase, we gen-
erate a global dependency graph from these flow segments
to construct a global view. In the third phase, we start to
update rules of flow segments and adjust the dependency
graph dynamically for efficiency while maintaining network
consistency. In the last phase, we handle those deadlocks that
are not yet solved in the third phase.

The third and the forth phases can be repeated until the
desired network state is reached. Our simulation results vali-
date that the proposed algorithm is more efficient than existing
schemes and can guarantee consistency properties during the
update.

The rest of this paper is organized as follows. Related
work is discussed in Section II. The problem statement is
in Section III. Section IV presents our proposed algorithm.
Simulation results are in Section V. Conclusions are drawn in
Section VI.

II. RELATED WORK

In the literature, [1] and [2] present their experiences in
building a global SDN network and address dynamic traffic
engineering mechanisms. Reference [3] proves that combining
SDN with traditional network leads to faster link failures
recovery. References [1]–[3] show that the cost of flow
updates is a key issue influencing efficiency of SDN and
then point out that deciding optimized routing paths is critical
as SDN scales up. References [12]–[15] investigate the opti-

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



412 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Fig. 1. SDN network architecture.

mization of transmission paths in SDN. However, the above
researches do not address the potential data transfer delay
during flow updates. Studies [18]–[20] propose a static scheme
for scheduling flow updates that can decrease transition delay.
However, static schemes arrange update order in advance
and the update order can not be adjusted during update,
which is not suitable for network with frequent update
needs. When encountering compicated and dynamic flow
updates, these schemes may encounter the congestion problem.
Dynamic flow update methods are proposed in [16] and [17].
Reference [16] uses a global dependency graph to dynamically
adjust update schedules and thus prevents the congestion
problem. However, it does not perform well in terms of
efficiency and may lead to dropping packets during update.
Reference [17] improves [16] by identifying some critical
nodes that may hurt performance. It generates local depen-
dency graphs based on these critical nodes for improving
efficiency. However, it can not ensure consistency during
flow update. Transmitted packets may experience loss during
update. Besides, in [16] and [17], the way that deadlocks are
handled may lead to long latency.

III. PROBLEM STATEMENT

A network architecture can be divided into control plane,
data plane, and management plane. Data plane forwards
packets by looking up flow tables. Control plane config-
ures and updates flow tables for data plane. Management plane
is responsible for monitoring and configuring network devices.
In SDN, it separates control plane software and data plane
hardware. As shown in Fig. 1, one controller can monitor and
manage multiple routers or switches. Network devices thus
only need to forward packets. The controller is executed by
pure software and commands data planes by protocols such as
OpenFlow. In this way, new communication protocols can be
more easily realized with little hardware constraint. Therefore,
SDN can save hardware upgrade costs and adapt to ever-
increasing software needs.

A. Efficient and Consistent Flow Update

A flow update example is shown in Fig. 2, where flow
f1 = A → B → E in Fig. 2(a.1) needs to be migrated

to flow f ′
1 = A → C → D → E in Fig. 2(a.2). To do

so, control plane first sends control messages carrying update
rules to switches on target paths. During updates, packets are
still being transmitted in the network. Therefore, it is critical to
maintain the efficiency and consistency properties. Efficiency
refers to how fast a set of given flow updates are completed,
while consistency refers to prevention of blackholes, loops,
network congestions, and deadlocks during updates.

1) Blackhole problem: The existence of blackholes leads
to dropping packets at certain nodes, thus decreasing network
throughput. In the example of Fig. 2(a), the network needs
to make the following changes: i) deleting the old rules
from swi tch A and swi tch B , and ii) adding the new rules
to swi tch A, swi tchC and swi tch D . However, when only
partial updates are done, blackholes may appear. In Fig. 2(a.3),
the rule in swi tch B has been deleted already, but swi tch A

is not updated yet. Therefore, packets sent to swi tch B will
be buffered or even dropped. In Fig. 2(a.4), both swi tch A

and swi tch D are updated, but swi tchC is not updated yet,
so swi tchC is a blackhole.

2) Loop Problem: To prevent blackholes, it is straight-
forward to add new rules first and then delete old rules.
However, it might form a loop during the transition. Flow f1 =
A → B → E → C → D in Fig. 2(b.1) needs to be updated to
f ′
1 = A → C → B → E → D in Fig. 2(b.2). In Fig. 2(b.3),

if swi tch A and swi tchC are updated, but swi tchE still uses
the old rule. A loop C → B → E → C appears. Note that
since the priority of new rule is higher than the priority of
old rule, swi tchC will send packets to swi tch B rather than
swi tch D .

3) Congestion Problem: During updates, no link should
experience tentative bandwidth overflow. In Fig. 2(c), there
are two flows f1 and f2 with rates 0.7 and 0.8 Mbits/s,
respectively. Assuming each link capacity to be 1 Mbits/s,
if we update f1 first, the load of linkAD will tentatively
become 0.7 + 0.8 > 1 Mbits/s during transition.

4) Deadlock Problem: In Fig. 2(d), flow f1 and f2 need to
be switched. In this case, each flow waits for the other flow
to be removed before it can be migrated. Therefore, none of
them can be updated, causing deadlock.

B. Problem Formulation

We consider a SDN with N switches si , 1 ≤ i ≤ N .
Switches are connected by a set of links and the link between
s j and sk is denoted by l j,k . The link capacity of l j,k is
denoted by C j,k . In the network, we are given a set F of
flow pairs. Each flow pair ( fi , f ′

i ) ∈ F implies the need of
migrating the transmission flow fi to a new path f ′

i . A flow fi

(or f ′
i ) is written as a sequence si1 → si2 → si3 → . . ., such

that li j ,i j+1 is a link. The required transmission bandwidth of
both fi and f ′

i is bi (Mbits/s). During flow update, we have
to maintain the four consistency properties. Our goal is to
schedule an updating order R̂ = R1 → R2 → . . ., where
Ri refers to the i th update round. Each round Ri consists
of a set of segment pairs denoted by {(g1, g′

1), (g2, g′
2), . . .},

where each segment pair (gi , g′
i ) is a partial flow pair in F

and represents migrating g j to g′
j . We will show how to



WU et al.: EFFICIENT AND CONSISTENT FLOW UPDATE FOR SOFTWARE DEFINED NETWORKS 413

Fig. 2. Blackhole, loop, congestion, and deadlock problems.

partition a flow into segments. All segment pairs in Ri can
be updated in parallel. Therefore, the update time of Ri is
T (Ri ) = max

(g j ,g′
j )∈Ri

{|g j |× tD +|g′
j |× tA}, where tD and tA are

the time of deleting and adding a rule at a switch, respectively.
The total update time of R̂ is T (R̂) = ∑

Ri of R̂

T (Ri ).

Our goal is to find an update order R̂ for updating F with
the minimal update time T (R̂) while guaranteeing consistency
during the whole updating process.

IV. PROPOSED SCHEME

Updating flow f to f ′ includes adding new rules to f ′ and
deleting old rules from f . However, updating rules on these
switches in an arbitrary order may cause problems. To prevent
blackholes and loops, [17] proposes a reverse order update
scheme. The controller adds new rules with reverse order and
then deletes old rules with forward order. Taking Fig. 2(b)
as an example, rules should be added to f ′ with the order
sD → sE → sB → sC → sA , and be deleted from f with the
order sA → sB → sE → sC → sD . For switch sE , once its
new rule is added (which has a higher priority than old rules),
the packets transmitted to it via f1 will be forwarded to sD by
the new rule. Thus, the loop problem in Fig. 2(b.3) will not
appear. On the other hand, the blackhole problem in Fig. 2(b.3)
is prevented since we add rule at sD before sC .

In this work, we adopt the scheme in [17]. Our proposed
scheme is shown in Algorithm 1. It mainly contains four
functions. Function ParFlow() tries to partition flow pairs into
segment pairs. We then generate a dependency graph from
these segment pairs by function GenDepGraph(). Function
GenRnd() is to schedule a sequence of non-deadlock rounds
from Ĝ. If there is no deadlock in the function, it is expected to
handled all flow updates. Otherwise, RsvDead() is called

to resolve one deadlock. Then this is repeated until Ĝ
becomes null.

Algorithm 1
1: S = φ
2: // Partition flows into segments
3: for each ( f, f ′) ∈ F do
4: S = S

⋃
Par Flow( f, f ′)

5: end for
6: // Dependency graphs generation
7: Ĝ = GenDepGraph(S)
8: while Ĝ �= Null do
9: // Generate non-deadlock rounds

10: Gen Rnd(Ĝ)
11: // Resolve deadlock
12: if Ĝ �= Null then
13: Rsv Dead(Ĝ)
14: end if
15: end while

A. Segmenting Flow Pairs

To increase update parallelism, function Par Flow( f, f ′)
tries to partition a flow pair ( f, f ′) into segment pairs
{(g1, g′

1), (g2, g′
2), . . .} such that g j and g′

j are partial paths
of f and f ′, respectively, and g j and g′

j share the same start
and end nodes. Fig. 3(a.1) shows an example, where ( f, f ′)
is divided into {(g1, g′

1), (g2, g′
2)}. Both g1 and g′

1 start at
A and end at B; both g2 and g′

2 start at C and end at D.
The common parts (which do not need to be updated) are
not included. Fig. 3(a.2) shows a more complicated exam-
ple, where ( f, f ′) is divided into {(g1, g′

1), (g2, g′
2), (g3, g′

3)}



414 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Fig. 3. Examples of partitioning flow pairs into segment pairs.

(to be explained later). Note that except start and end nodes,
a segment pair never overlaps.

How to partition ( f, f ′) into segments pairs is shown in
Algorithm 2. Set M is initially empty and will contain final
segment pairs at the end. Node S is an index to f ′ that helps
us to traverse f ′. Function Star t ( f ′) returns the first node
of f ′, while End( f ′) returns the last node of f ′.

Algorithm 2 Par Flow( f, f ′)
1: M = ∅
2: s = Star t ( f ′)
3: while s �= End( f ′) do
4: if s uses different rule in f and f ′ then
5: tail = FindT ail(s)
6: g = sub-flow of f from s to tail
7: g′ = sub-flow of f ′ from s to tail
8: M = M ∪ {(g, g′)}
9: s = tail

10: else
11: s = Next (s)
12: end if
13: end while
14: return (M)

In the while-loop, we traverse f ′ in the forward direction
using index s. If s tail has different routing rules for f and f ′,
a new segment pair (g, g′) starting from s and ending at tail
is generated. Here, s is a splitting node that f and f ′ go into
different directions and FindT ail(s) returns the node next
to s in f ′ that also appears in the rest part of f . Then we
move index s to tail. Otherwise, we move index s to Next (s),
the node immediately next to s in f ′. At the end, M contains
all these generated segment pairs and serves as the returned
value of this function.

In Fig. 3(b), f = A → B → C → D → E and f ′ = A →
C → D → B → E . Since the search is based on node order in
f ′, from A, the next common node of f and f ′ is C, so the
first segment pair is (g1, g′

1) = (A → B → C, A → C).
From C, the next pair is (g2, g′

2) = (C → D, C → D).
From D, the next pair is (g3, g′

3) = (D → E, D → B → E).
So totally three pairs are returned.

Note that Algorithm 2 only partitions one flow pair. After
each call to Par Flow(), the returned set is unioned with
set S in Algorithm 1. Finally, S will include all generated
segment pairs.

B. Generating Dependency Graph

Next, we derive the dependency relations among segment
pairs of S. This helps prevent potential congestions and
deadlocks. We will write l → (g, g′) if the migration of g to g′
depends on the availability of bandwidth on link l. We will
write (g, g′) → l if the migration of g to g′ will release some
bandwidth to link l.

Our goal is to first generate a dependency graph G and
then extend it to an augmented graph Ĝ. From each segment
pair (g, g′) ∈ S, we construct m + n + 1 nodes, where m
and n are the numbers of links in g and g′, respectively. The
(g, g′) itself generates one node, called segment node, also
denoted by (g, g′) for convenience. Each link of g and g′
generates one node, called link node, also denoted by the link’s
label. This gives m + n link nodes. From each link node l
of g′, we generate a directed edge l → (g, g′). For each link
node of g, we generate a directed edge (g, g′) → l. Fig. 4(a)
shows an example with 6 segment pairs. Fig. 4(b) shows the
subgraphs derived from (g1, g′

1) and (g2, g′
2). After having all

subgraphs, we can combine them into a dependency graph by
merging all link nodes belonging to the same link into one
node. Fig. 4(c) is the final G after merging all link nodes.

Next, we augment G to Ĝ by adding information to each
link and segment node. A link node l j,k has one extra element.

• Avl Bw: available bandwidth, which is the total band-
width of l j,k subtracted by the sum of bandwidths of all
flows passing it.

A segment node (g, g′) has two extra elements.

• T x Bw: transmission bandwidth bi of g and g′.
• PotU pT m: Potential update time, which is the longest

possible time to update all nodes depending on (g, g′).
Fig. 4(d) shows Ĝ.

Next, we show how to calculate PotU pT m for Ĝ. This
element reflects the accumulated update time of a dependency
sequence. From each segment node r , we construct a breadth-
first spanning tree in G with r as root. Then a tentative value
tm(x) is computed for each segment/link node x in a bottom-
up manner on the tree. If x is a segment node, we set

tm(x) = T (x) + max
y is a child of x

{tm(y)},

where T (x) = |g| · tD + |g′| · tA such that x = (g, g′). If x is
a link node, we set

tm(x) = max
y is a child of x

{tm(y)}.

Intuitively, a segment node will add its update time on itself,
while a link node will not. For a leaf node y, if it has no out-
going dependency, its tm(y) = 0; otherwise, its tm(y) = ‘L’,
which means “Large value”. The label ‘L’ will
remain there when we go up recursively. Finally,
PotU pT m(r) is set to tm(r).

In Fig. 5(a), the update time of link node link1 is
max{tm(B), tm(C)} = 70, where B and C are children of
link1. If dependency relations form a loop, the leaf node will
have its PotU pT m =‘L’. In Fig. 5(b), node D has ‘L’, its
parent will carry ‘L’, too. Note that the above process is for



WU et al.: EFFICIENT AND CONSISTENT FLOW UPDATE FOR SOFTWARE DEFINED NETWORKS 415

Fig. 4. Dependency graphs G and Ĝ .

Fig. 5. Examples of calculating PotU pT m.

one segment node. It should be repeated for each segment
node to find its PotU pT m.

C. Generating Non-Deadlock Rounds

Now, Ĝ contains all dependency information.
Algorithm Gen Rnd is to schedule flow updates round by
round until finishing all updates or encountering unsolvable
deadlocks. We explain its steps as follows:

• line 1: The while loop will potentially generate a round
after each iteration.

• lines 2-3: This is to initialize a new empty round R. Seg-
ment nodes are sorted by their PotU pT m in a descending
order, and then by their T x Bw in a descending order.

• lines 5-10: If all links on g′ have enough bandwidths
for updating (g, g′), we update their Avl Bw and append
(g, g′) to set R.

• lines 15-18: If the set R is not empty, we update the
segment pair (g, g′) and release bandwidth to link l.

• line 19: After updating, the segment pair (g, g′) is
removed in the set R.

Consider the example in Fig. 4(d), the sorted list
is: [(g1, g′

1), (g6, g′
6), (g4, g′

4), (g3, g′
3), (g2, g′

2), (g5, g′
5)].

To find the first round, we check the sorted segment pairs
one by one. Only (g4, g′

4) and (g5, g′
5) can acquire enough

bandwidths to update. Node (g4, g′
4) takes 0.4 bandwidth from

lA,B and lB,D and then node (g5, g′
5) takes 0.1 bandwidth

from lA,C and lC,D . So R = {(g4, g′
4), (g5, g′

5)}. The network
state after taking out these bandwidths is shown in Fig. 6(a).
The state after finishing updating R is shown in Fig. 6(b).
Note that the field PotU pT m needs to be recalculated for all
segment pairs. PotU pT m of (g1, g′

1) is reduced to L + 27
and that of (g6, g′

6) is reduced to 15. In this example, all
dependencies can be resolved, and the final sequence of round
is S = R1 → R2 → R3 → R4 = {(g4, g′

4), (g5, g′
5)} →

{(g1, g′
1)} → {(g2, g′

2), (g3, g′
3)} → {(g6, g′

6)}.



416 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Algorithm 3 Gen Rnd
1: while True do
2: R = φ
3: Sort the segment nodes by PotU ptm and T x Bw
4: for each (g, g′) in the sorted list do
5: if ∀l → (g, g′) : Avl Bw(l) ≥ T x Bw(g, g′) then
6: for each l → (g, g′) do
7: Avl Bw(l) = Avl Bw(l) − T x Bw(g, g′)
8: end for
9: R = R ∪ {(g, g′)}

10: end if
11: end for
12: if R = φ then
13: break while
14: else
15: Conduct flow update in R
16: for ∀(g, g′) → l, (g, g′) ∈ R do
17: Avl Bw(l) = Avl Bw(l) + T x Bw(g, g′)
18: end for
19: Remove all (g, g′) ∈ R from Ĝ
20: if Ĝ has no segment node, then break while
21: end if
22: end if
23: end while

Fig. 6. Change of dependency graph during a round.

D. Resolving Deadlock

After the above steps, if there is any segment pair remaining
in Ĝ, function Rsv Dead is called. It is impossible to resolve
a deadlock unless some party in the loop is willing to yield.
Therefore, we will identify a pair and reduce its bandwidth
requirement so as to migrate it. The first for-loop calculates
the yield ratio of each (g, g′) ∈ Ĝ by the following equation:

yr(g, g′) =
T x Bw(g, g′) − min

l→(g,g′)
{Avl Bw(l)}

T x Bw(g, g′)
This ratio refers to the percentage of throughput loss

during updating. We can restore its bandwidth after the whole
migration is done. In line 4-5, we favor the one with the
lowest yield ratio and update its T x Bw. Then the rest of
these steps are to conduct the update of (g, g′) and reflect

Algorithm 4 HandleDeadlock

1: for each (g, g′) ∈ Ĝ do
2: calculate yr(g, g′)
3: end for
4: select (g, g′) with the minimal yr(g, g′)
5: T x Bw(g, g′) = T x Bw(g, g′) × (1 − yr(g, g′))
6: for each l → (g, g′) do
7: Avl Bw(l) = Avl Bw(l) − T x Bw(g, g′)
8: end for
9: Conduct update for (g, g′)

10: for ∀(g, g′) → l do
11: Avl Bw(l) = Avl Bw(l) + T x Bw(g, g′)
12: end for
13: R = R ∪ {(g, g′)} and Remove (g, g′) from Ĝ

Fig. 7. Network topology (10 switches as examples).

the update in Ĝ. Calling this function contributes one round
consisting of only one segment pair. Then we will loop back
to line 8 of Algorithm 1.

E. Analysis of Time Complexity

In the proposed scheme, it works in four phases. The first
phase costs O(M × N) to partition |F | flow pairs (we let M =
|F | for ease of presentation) into shorter routing segments to
increase update parallelism. Here, a flow can be partitioned
into at most O(N) shorter segments.

The second phase generates a global dependency graph
of the segments to be updated. Thus, it costs O(M × N)
because there are M flow pairs and each flow pair has
at most (N − 1) segments which connect to/from at most
(N − 1) links. Then, it recursively calculates the potential
update time for all segments and links. Since there are at
most (N − 1) segment nodes and (N − 1) link nodes to
be updated, it costs O(N) to traverse all nodes and links
in the spanning tree. Thus, the second phase costs totally
O(M × N) + O(N) = O(M × N).

The third phase conducts actual updates and then adjusts
dependency graphs accordingly. To generate the non-deadlock
schedules, it first costs O(M NlogM N) to sort at most M N
segment nodes based on the potential update time and trans-
mission bandwidth. Then, these segments cost O(M N × N)
to check the available bandwidth of all the links belonging
to them and costs O(M N × N) to conduct flow update



WU et al.: EFFICIENT AND CONSISTENT FLOW UPDATE FOR SOFTWARE DEFINED NETWORKS 417

Fig. 8. Update completion efficiency under different traffic flows in light network loads.

accordingly. Thus, the third phase costs O(M NlogM N) +
O(M N × N) + O(M N × N) = O(M NlogM N + M N2).

The last phase deals with deadlocks, if any, and then loops
back to phase three if necessary. To resolve deadlocks, it first
costs O(M N) to calculate the yield ratio for all deadlock
segments in Ĝ. Then, it costs O(M N) to select the segment
with the minimal value of yield ratio. Next, it costs O(1)
to calculate the new transmission bandwidth. It costs O(N)
to update the available bandwidth of all links in this selected
segment after applying the new transmission bandwidth. Thus,
the fourth phase totally costs O(M N) + O(M N) + O(1) +
O(N) = O(M N).

Since the third phase schedules at least one seg-
ment in each round and the last phase resolves at least
one deadlock in each loop, they need to take at most
K = M × N rounds. Therefore, the proposed scheme totally

costs O(M×N)+O(M×N)+K ×(O(M NlogM N+M N2 )+
O(M N)) = O(K M NlogM N + K M N2). Note that to speed
up the algorithm, we can set a constant threshold for ‘K ’ on
the number of iterations. Thus, the complexity will become
O(M NlogM N + M N2).

V. PERFORMANCE EVALUATION

In this section, we develop a simulator by Python lan-
guage and implement our scheme to validate its perfor-
mance. The simulator includes two types of network topology:
(1) mesh network and (2) data center network [17], as illus-
trated in Fig. 7. In these two topologies, there are 100 switches
with the link bandwidth of 1 (Gbps), where the switches
are full-duplex and the traffic flows can be transmitted
to or from two connecting switches. In addition, the trans-
mission pairs and routes are generated randomly [17]. Note



418 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Fig. 9. Update completion efficiency under different traffic flows in medium network loads.

that the data center network contains three layers: core layer
(12 switches), aggregation layer (22 switches), and access
layer (66 switches). Each data flow can be transmitted through:
(1) access layer → aggregation layer → core layer or (2) core
layer → aggregation layer → access layer, accordingly.

In the simulation, we compare our scheme against Cupid
scheme [17]. To simulate a real SDN environment, we add
several real parameters into our simulation, such as the
latency of real switches. We adopt the measured latencies of
off-the-shelf SDN switches in [21], including the time needed
for adding a rule to a switch and deleting a rule in rule table.
In addition, according to Open vSwitch [22] (a software-based
SDN switch), which can support a maximum of 255 flows
in a switch, is adopted. Thus, the number of flows |F | in
our simulation is = 1000, 2000, 5000, 10000, 15000 and

25500 flows. The performance metrics include: 1) update com-
pletion efficiency, 2) total update time, and 3) throughput loss.
In addition, three levels of network loads are considered: light,
medium and heavy, where the loads over the total link capacity
are < 40%, 40% to 80%, and > 80%, respectively. Note that
in the following Figs. 8, 9 and 10, the proposed scheme is
represented by solid patterns and Cupid by hollow patterns.

A. Light Network Load (< 40%)

First, we investigate the number of flows on update com-
pletion efficiency when the network load is light. In Fig. 8,
we can see that most schemes achieve 100% update com-
pletion in both mesh and data center networks except for
Cupid in Fig. 8(b). The update efficiency of Cupid in small
scale flows is slightly better than ours, such as the results



WU et al.: EFFICIENT AND CONSISTENT FLOW UPDATE FOR SOFTWARE DEFINED NETWORKS 419

Fig. 10. Update completion efficiency under different traffic flows in high network loads.

shown in Figs. 8(a) and 8(c), because it does not check
all links’ capacities for flow pairs. Thus, Cupid incurs more
throughput loss when the topology is complicated, such as
the mesh network shown in Fig. 8(d). Since Cupid considers
only critical nodes and local dependency graph to perform
update, the flows passing through multiple hops encountering
congestion cannot be detected. Therefore, Cupid needs to
spend more time on resolving deadlocks especially in large-
scale flows, e.g., |F | = 15000 ∼ 25500 in Fig. 8(b).
Contrarily, our scheme can detect congestion problems and
reduce throughput loss significantly during flow updating, thus
taking extra update time.

B. Medium Network Load (40% to 80%)

Next, when the network load increases to medium level,
as shown in Fig. 9, the congestion problem is more likely to

happen during flow updating. We can see that our scheme
outperforms Cupid when the number of flows increases to
10000, 15000 and 25500 in Figs. 9(b) and 9(d). The reason
is that more flows result in more deadlocks. Since Cupid
addresses deadlocks flow by flow, it takes longer time to
resolve deadlocks. Contrarily, our scheme can find all possible
schedules and update flows concurrently to solve deadlocks;
thus, it can complete in a short time when the network load
increases, as shown in Fig. 9(e).

C. Heavy Network Load (> 80%)

Finally, when the network is under heavy load, as shown
in Fig. 10, there are potentially more congestions and dead-
locks. Thus, all schemes take more time to update. We can
see that our scheme still outperforms Cupid in terms of total



420 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

update time and throughput loss when the number of flows is
larger than 1000. Since more flows in a data center network
need to pass through access layer, aggregation layer, and then
core layer, the bottleneck between core layer and aggregation
layer should be addressed first. Similar to Fig. 9(a)(b), Cupid
needs more time to handle its deadlock procedure and may
not complete in short time, as shown in Fig. 10(a)(b). It is
worth noting that our scheme can achieve 100% completion in
both network topologies under high network load with massive
flows because our scheme can update flows more efficiently
and consistently.

VI. CONCLUSIONS

In this paper, we have addressed the efficiency and
consistency issues for software defined networks in terms of
Blackhole problem, Loop problem, and Deadlock problem
when migrating flows. We have proposed an efficient flow
update scheme which considers both efficiency and consis-
tency by four phases. First, it partitions flows into shorter
routing segments to increase update parallelism. Second,
it generates a global dependency graph for network status
maintenance. Third, it conducts actual updates and adjusted
dependency graphs. Finally, it deals with deadlocks when
loops exists. Through simulations, we have verified that our
scheme can not only ensure freedom of blackholes, loops,
congestions, and deadlocks during flow updates, but also run
faster than existing schemes. For future directions, one may
use SDN software, such as Open vSwitch (OVS) [22] to build a
prototype. Our simulation is at flow level; it deserves to study
packet-level simulations.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[2] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

[3] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single link
failure recovery in hybrid SDN networks,” in Proc. IEEE INFOCOM,
Apr./May 2015, pp. 1086–1094.

[4] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in Proc. Design
Rel. Commun. Netw. (DRCN), 2011, pp. 164–171.

[5] K. Xi and H. J. Chao, “IP fast rerouting for single-link/node fail-
ure recovery,” in Proc. Broadband Commun., Netw. Syst., Sep. 2007,
pp. 142–151.

[6] H. Sufiev and Y. Haddad, “A dynamic load balancing architecture for
SDN,” in Proc. IEEE Sci. Elect. Eng. (ICSEE), Nov. 2016, pp. 1–3.

[7] Y.-L. Lan, K. Wang, and Y.-H. Hsu, “Dynamic load-balanced path
optimization in SDN-based data center networks,” in Proc. IEEE Int.
Symp. Commun. Syst., Netw. Digit. Signal Process. (CSNDSP), Jul. 2016,
pp. 1–6.

[8] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai, “SDN based load
balancing mechanism for elephant flow in data center networks,” in
Proc. IEEE Int. Symp. Wireless Pers. Multimedia Commun. (WPMC),
Sep. 2014, pp. 486–490.

[9] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow:
Controller load balancing for OpenFlow networks,” in Proc. IEEE Cloud
Comput. Intell. Syst. (CCIS), Oct./Nov. 2012, pp. 780–785.

[10] C. Cooper, R. Klasing, and T. Radzik, “Searching for black-hole faults in
a network using multiple agents,” in Principles of Distributed Systems.
Berlin, Germany: Springer, 2006, pp. 320–332.

[11] R. Schoonderwoerd, O. Holland, and J. Bruten, “Ant-like agents for load
balancing in telecommunications networks,” in Proc. Auto. AGENTS,
1997, pp. 209–216.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX Conf. Netw. Syst. Design Implement. (NSDI), vol. 10. 2010,
p. 19.

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Experim. Technol. (CoNEXT), 2011, p. 12.

[15] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford,
“Network architecture for joint failure recovery and traffic engineering,”
in Proc. ACM SIGMETRICS Joint Int. Conf. Meas. Modeling Comput.
Syst., 2011, pp. 97–108.

[16] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
SIGCOMM, 2014, pp. 539–550.

[17] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free con-
sistent data plane update in software defined networks,” in Proc. IEEE
INFOCOM, Apr. 2016, pp. 1–9.

[18] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[19] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zUpdate: Updating data center networks with zero loss,” in Proc. ACM
SIGCOMM, 2013, pp. 411–422.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proc. ACM SIGCOMM
Conf. Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 323–334.

[21] K. He et al., “Measuring control plane latency in SDN-enabled
switches,” in Proc. ACM SIGCOMM Symp. Softw. Defined Netw. Res.,
2015, pp. 25:1–25:6.

[22] Open vSwitch. Accessed: Feb. 6, 2018. [Online]. Available:
http://openvswitch.org/



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


