
1740 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

A Cross-Layer Framework for Overhead Reduction,
Traffic Scheduling, and Burst Allocation in

IEEE 802.16 OFDMA Networks
Jia-Ming Liang, Student Member, IEEE, Jen-Jee Chen, Member, IEEE, You-Chiun Wang, Member, IEEE,

and Yu-Chee Tseng, Senior Member, IEEE

Abstract—IEEE 802.16 orthogonal frequency-division multiple
access (OFDMA) downlink subframes have a special 2-D channel-
time structure. Allocation resources from such a 2-D structure
incur extra control overheads that hurt network performance.
Existing solutions try to improve network performance by de-
signing either the scheduler in the medium access control layer
or the burst allocator in the physical layer, but the efficiency
of overhead reduction is limited. In this paper, we point out
the necessity of “codesigning” both the scheduler and the burst
allocator to efficiently reduce overheads and improve network
performance. Under the partial-usage-of-subcarriers model, we
propose a cross-layer framework that covers overhead reduction,
real-time and non-real-time traffic scheduling, and burst alloca-
tion. The framework includes a two-tier priority-based scheduler
and a bucket-based burst allocator, which is more complete and
efficient than prior studies. Both the scheduler and the burst
allocator are tightly coupled together to solve the problem of
arranging resources to data traffic. Given available space and
bucket design from the burst allocator, the scheduler can well
utilize the frame resource, reduce real-time traffic delays, and
maintain fairness. On the other hand, with priority knowledge and
resource assignment from the scheduler, the burst allocator can
efficiently arrange downlink bursts to satisfy traffic requirements
with low complexity. Through analysis, the cross-layer framework
is validated to give an upper bound to overheads and achieve high
network performance. Extensive simulation results verify that the
cross-layer framework significantly increases network through-
put, maintains long-term fairness, alleviates real-time traffic de-
lays, and enhances frame utilization.

Index Terms—Burst allocation, cross-layer design, fair schedul-
ing, IEEE 802.16, Worldwide Interoperability for Microwave
Access orthogonal frequency-division multiple access (WiMAX
OFDMA).

Manuscript received March 15, 2010; revised January 20, 2011; accepted
February 25, 2011. Date of publication March 10, 2011; date of current version
May 16, 2011. The work of Y.-C. Tseng was supported in part by the Aiming
for the Top University and Elite Research Center Development Plan, by the
National Science Council under Grant 97-3114-E-009-001, Grant 97-2221-
E-009-142-MY3, Grant 98-2219-E-009-019, Grant 98-2219-E-009-005, and
Grant 99-2218-E-009-005, by the Industrial Technology Research Institute,
Taiwan, by the Institute for Information Industry, Taiwan, by D-Link, and by
Intel Corporation. The review of this paper was coordinated by Dr. N. Ansari.

J.-M. Liang, Y.-C. Wang, and Y.-C. Tseng are with the Department of
Computer Science, National Chiao-Tung University, Hsin-Chu 30010, Taiwan
(e-mail: jmliang@cs.nctu.edu.tw; wangyc@cs.nctu.edu.tw; yctseng@cs.nctu.
edu.tw).

J.-J. Chen is with the Department of Electrical Engineering, National Uni-
versity of Tainan, Tainan 70005, Taiwan (e-mail: james.jjchen@ieee.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2011.2125808

I. INTRODUCTION

THE IEEE 802.16 standard [1] has been developed for
wide-range broadband wireless access. The physical

(PHY) layer employs the orthogonal frequency-division multi-
ple access (OFDMA) technique, where a base station (BS) can
simultaneously communicate with multiple mobile subscriber
stations (MSSs) through a set of orthogonal subchannels. The
standard supports the frequency-division duplex (FDD) and
the time-division duplex (TDD) modes. This paper aims at the
TDD mode. Under the TDD mode, the following two types of
subcarrier grouping models are specified: 1) adaptive modu-
lation and coding (AMC) and 2) partial usage of subcarriers
(PUSC). AMC adopts a contiguous permutation strategy, which
chooses adjacent subcarriers to constitute each subchannel and
leverages channel diversity by the high correlation in channel
gains. However, each MSS needs to report its channel quality
on every subchannel to the BS. On the other hand, PUSC adopts
a distributed permutation strategy, which randomly selects sub-
carriers from the entire frequency spectrum to constitute each
subchannel. Thus, the subchannels could be more resistant to
interference, and each MSS can report only the average channel
quality to the BS. Because PUSC is more interference resistant
and mandatory in the standard, this paper adopts the PUSC
model. In this case, there is no issue of subchannel diversity
(i.e., the qualities of all subchannel are similar), because the
BS calculates the average quality for each subchannel based on
MSSs’ reports [2], [3].

The BS manages network resources for MSSs’ data traffic,
which is classified into real-time traffic [e.g., unsolicited grant
service (UGS), real-time polling service (rtPS), and extended
real-time polling service (ertPS)] and non-real-time traffic [e.g.,
non-real-time polling service (nrtPS) and best effort (BE)].
These network resources are represented by frames. Each frame
consists of a downlink subframe and an uplink subframe. Each
downlink subframe is a 2-D array over channel and time
domains, as shown in Fig. 1. The resource unit that the BS
allocates to MSSs is called a burst. Each burst is a 2-D subarray
and needs to be specified by a downlink map information
element (DL-MAP_IE or simply IE) in the downlink map (DL-
MAP) field. These IEs are encoded by the robust quaternary
phase-shift keying (QPSK) 1/2 modulation and coding scheme
(MCS) for reliability. Because the IEs occupy frame space and
do not carry MSSs’ data, they are considered control overheads.
Explicitly, how we can efficiently reduce IE overheads will

0018-9545/$26.00 © 2011 IEEE

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1741

Fig. 1. Structure of an IEEE 802.16 OFDMA downlink subframe under the
TDD mode.

significantly affect network performance, because it determines
frame utilization. To manage resources to all data traffic, the
standard defines a scheduler in the medium access control
(MAC) layer and a burst allocator in the PHY layer. However,
their designs are left as open issues to implementers.

This paper aims at codesigning both the scheduler and the
burst allocator to improve network performance, which covers
overhead reduction, real-time and non-real-time traffic schedul-
ing, and burst allocation. The design of the scheduler should
consider the following three issues.

• The scheduler should improve network throughput while
maintaining long-term fairness. Because the BS may send
data to MSSs using different transmission rates (due to
network situations), the scheduler will prefer MSSs that
use higher transmission rates but should avoid starving
MSSs that use lower transmission rates.

• The scheduler should satisfy the delay constraints of real-
time traffic to avoid high packet-dropping ratios. However,
it should also meet the requirements of non-real-time
traffic.

• To well utilize the limited frame space, the scheduler
has to reduce IE overheads when assigning resources to
MSSs’ data traffic. This condition requires the knowledge
of available frame space and burst arrangement design
from the burst allocator.

On the other hand, the design of the burst allocator should
address the following three issues.

• The burst allocator should arrange IEs and downlink bursts
for the MSSs’ resource requests from the scheduler in the
OFDMA channel-time structure to well utilize the frame
space and reduce the control overhead. Under the PUSC
model, because all subchannels are equally adequate for
all MSSs, the problem of arranging IEs and downlink
bursts will become a 2-D mapping problem, which is NP-
complete [4]. To simplify the burst arrangement problem,
an advance planning for the MSSs’ resource requests in the
scheduler is needed. This condition requires codesigning
for the scheduler and the burst allocator.

• To satisfy traffic requirements such as real-time delay
constraints, the burst allocator has to arrange bursts based
on the traffic scheduling knowledge from the scheduler.

For example, bursts for urgent real-time traffic should first
be allocated to avoid packet dropping.

• Simplicity is a critical concern, because a frame is typ-
ically 5 ms [5], which means that the burst allocation
scheme needs to be executed every 5 ms.

In the literature, prior studies design solely either the sched-
uler [6]–[10] or the burst allocator [4], [11]–[14] to address the
reduction of IE overheads. Nevertheless, we point out the ne-
cessity of the cross-layer design by the following three reasons.
First, the amount of IE overheads highly depends on the number
of scheduled MSSs and the number of fragmented bursts, where
prior work handles the two issues by the scheduler and the burst
allocator, respectively. However, if we only consider either
issue, the efficiency of overhead reduction is limited. Second,
without considering burst arrangements, the scheduler may fail
to satisfy MSSs’ requirements, because extra IE overheads will
occupy the limited frame space. Third, without considering
the scheduling assignments, the burst allocator may kick out
some important data of MSSs (due to out-of-frame space).
This case may cause unfairness among MSSs and high packet-
dropping ratios of real-time traffic. Therefore, it is necessary to
codesign both the scheduler and the burst allocator due to their
inseparable dependency.

In this paper, we propose a cross-layer framework that con-
tains a two-tier priority-based scheduler and a bucket-based
burst allocator. The scheduler assigns priorities to MSSs’ traf-
fic in a two-tier manner and allocates resources to the traffic
based on its priority. In the first tier, traffic is differentiated by
its type. Urgent real-time traffic is assigned with the highest
level-1 priority to avoid its packets being dropped in the next
frame. Then, a γ ratio (0 < γ < 1) of nonurgent real-time
traffic is assigned with level-2 priority, and non-real-time traffic
is given level-3 priority. The aforementioned design has two
advantages. First, we can avoid generating too many urgent
real-time traffic in the next frame. Second, non-real-time traffic
can have opportunity to be served to avoid being starved. In the
second tier, traffic of the same type (i.e., the same priority level
in the first tier) is assigned with different priorities calculated
by the following four factors:

1) current transmission rates;
2) average transmission rates;
3) admitted data rates;
4) queue lengths.

The BS can have the knowledge of the aforementioned four
factors, because all downlink traffic is queued in the BS, and
MSSs will report their average channel qualities to the BS [15].
Unlike traditional priority-based solutions that are partial to
non-real-time traffic [10], our novel two-tier priority scheduling
scheme not only prevents urgent real-time traffic from incurring
packet dropping (through the first tier) but maintains long-
term fairness (through the second tier) as well. The network
throughput is also improved by giving a higher priority to
MSSs that use higher transmission rates (in the second tier).
In addition, the scheduler can adjust the number of MSSs to
be served and assign resources to traffic according to the burst
arrangement manner (from the burst allocator) to significantly
reduce IE overheads. This design is neglected in prior studies

1742 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

and has a significant impact on overhead reduction and network
performance.

On the other hand, the burst allocator divides the free space
of each downlink subframe into a special structure that consists
of several “buckets” and then arranges bursts in a bucket-by-
bucket manner. Given k requests to be filled in a subframe, we
show that this burst allocation scheme generates at most k plus
a small constant number of IEs. In addition, the burst allocator
will arrange bursts according to the priority design from the
scheduler so that the burst allocation can satisfy MSSs’ traffic
requirements. The aforementioned bucket-based design incurs
very low computation complexity and can be implemented
on most low-cost Worldwide Interoperability for Microwave
Access (WiMAX) chips [16]. Explicitly, in our cross-layer
framework, both the scheduler and the burst allocator are tightly
coupled together to solve the problems of overhead reduc-
tion, real-time and non-real-time traffic scheduling, and burst
allocation.

The major contributions of this paper are fourfold. First,
we point out the necessity of codesigning both the scheduler
and the burst allocator to improve network performance and
propose a cross-layer framework that covers overhead reduc-
tion, real-time and non-real-time traffic scheduling, and burst
allocation. Our framework is more complete and efficient than
prior studies. Second, we develop a two-tier priority-based
scheduler that distributes resources among MSSs according
to their traffic types, transmission rates, and queue lengths.
The proposed scheduler improves network throughput, guar-
antees traffic requirements, and maintains long-term fairness.
Third, a low-complexity bucket-based scheme is designed for
burst allocation, which significantly improves the utilization
of downlink subframes. Fourth, we analyze the upper bound
of the amount of IE overheads and the potential throughput
degradation caused by the proposed burst allocator, which is
used to validate the simulation experiments and provide guide-
lines for the setting of the burst allocator. Extensive simulations
are also conducted, and their results validate that our cross-
layer framework can achieve high network throughput, main-
tain long-term fairness, alleviate real-time traffic delays, and
improve downlink subframe utilization.

The rest of this paper is organized as follows. Section II
surveys the related work. Section III gives the problem formu-
lation. The cross-layer framework is proposed in Section IV.
Section V analyzes the expected network throughput of the
proposed framework. Extensive simulation results are given in
Section VI. Conclusions are drawn in Section VII.

II. RELATED WORK

Most of the prior studies on resource allocation in IEEE
802.16 OFDMA networks implement either the scheduler or
the burst allocator. For the implementation of the scheduler, the
study in [6] proposes a scheduling scheme according to MSSs’
signal-to-noise ratios (SNRs) to achieve rate maximization.
The work in [7] proposes a utility function to evaluate the
tradeoff between network throughput and long-term fairness.
In [8], an opportunistic scheduler is proposed by adopting the
instantaneous channel quality of each MSS to maintain fairness.

However, these studies do not consider the delay requirements
of real-time traffic. The work in [9] tries to minimize the
blocking probability of MSSs’ traffic requests, and thus, the
packet-dropping ratios of real-time traffic may be reduced.
Nevertheless, all of the aforementioned studies [6]–[9] do not
address the issue of overhead reduction. The work in [10] tries
to reduce IE overhead from the perspective of the scheduler,
where the number of MSSs to be served in each subframe is re-
duced to avoid generating too many IEs. However, without the
help of the burst allocator, the efficiency of overhead reduction
becomes insignificant, and some important data (e.g., urgent
real-time traffic) may not be allocated with bursts because of
out-of-frame space. In this case, some MSSs may encounter
serious packet dropping.

On the other hand, several studies consider implementing
the burst allocator. The work in [17] proposes a new control
message for periodic resource assignment to reduce duplicate
signaling. Reference [18] suggests piggybacking IEs on data
packets to increase the utilization of downlink subframes. How-
ever, both studies [17], [18] involve modifying the standard.
The work in [4] proposes two heuristics for burst allocation:
The first heuristic scans the free space in a downlink subframe
row by row to try to fully utilize the space, but it may generate
a large number of IEs. The second heuristic presegments a
subframe into several rectangles, and a request will choose a
rectangle larger than it for allocation; however, this scheme re-
quires prior knowledge of the request distribution. The work in
[11] first allocates bursts for large requests. Nevertheless, larger
requests may not be necessarily more important or urgent. Sev-
eral studies consider allocating bursts in a column-by-column
manner. In [12], bursts with the same MCS are combined into
a large one. However, this scheme is not compliant to the
standard, because a burst may contain requests from multiple
MSSs. The study in [13] pads zero bits in each column’s end,
which may cause low subframe utilization. The work in [14]
adopts a backward columnwise allocation scheme, where the
bursts are allocated from the right–down side to the left–up side
of the subframe. However, this scheme requires 3n bursts for
n MSSs in the worst case. As shown, existing research efforts
may pad too many useless bits, generate too many IEs, or leave
unused slot holes.

Few studies implement both the scheduler and the burst
allocator, but they do not consider reducing the IE overhead.
The studies in [19] and [20] try to arrange resources to MSSs to
maximize their data rates and maintain fairness. However, they
do not consider the delay requirements of real-time traffic. The
studies in [21] and [22] develop a one-tier priority-based sched-
uler to allocate resources to each MSS to exactly satisfy its
demand. Thus, the delay requirement of real-time traffic could
be guaranteed, but the network throughput may be degraded.
Nevertheless, all of the studies [19]–[22] neglect the issue of
overhead reduction, which may lead to low subframe utilization
and low network throughput. We will show by simulations in
Section VI that, without reducing the IE overhead, the quality-
of-service (QoS) requirements of MSSs’ traffic may not be
satisfied, particularly when the network becomes saturated.

Table I compares the features of prior studies and our cross-
layer framework. It is shown that our cross-layer framework

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1743

TABLE I
COMPARISON OF PRIOR WORK AND OUR CROSS-LAYER FRAMEWORK

covers all of the features. In addition, our cross-layer framework
has the least computation complexity in burst allocation. Thus,
it can be implemented on most WiMAX low-cost chips.

III. RESOURCE ALLOCATION PROBLEM

We consider the downlink communication in an IEEE 802.16
OFDMA network using the TDD mode. The mandatory PUSC
model is adopted so that there is no issue of subchannel
diversity (because MSSs will report only their average channel
qualities to the BS, as mentioned in Section I). The BS supports
multiple MSSs in a point-to-multipoint manner, where each
MSS has its admitted real-time and non-real-time traffic rates.
The BS has to arrange the radio resource to the MSSs according
to their traffic demands.

The radio resource is divided into frames, where each frame
is further divided into a downlink subframe and an uplink
subframe (see Fig. 1). A downlink subframe is modeled by
a 2-D array with X time units (in the time domain) and Y
subchannels (in the frequency domain). The basic unit in the
X × Y array is called a subchannel time slot (or simply a
slot). Each downlink subframe is composed of the following
three portions: 1) preamble; 2) control; and 3) data. The control
portion contains a DL-MAP and an uplink map (UL-MAP)
to indicate the downlink and uplink resource allocation in the
current frame, respectively. The downlink allocation unit is a
subarray, called a downlink burst (or simply a burst), in the
X × Y array. Each burst is denoted by (x, y, w, h), where x
is the starting time unit, y is the starting subchannel, w is the
burst’s width, and h is the burst’s height. An MSS can own
more than one burst in a subframe. However, no two bursts can
overlap with each other. Fig. 1 gives some examples. Bursts 1
and 2 can coexist, but bursts 2 and 3 cannot coexist. Each burst
requires one IE in the DL-MAP to describe its size and location
in the subframe. According to the standard, each burst carries
the data of exact one MSS. Explicitly, from the scheduler’s
perspective, the number of bursts (and, thus, IEs) will increase
when more MSSs are scheduled. On the other hand, from the
burst allocator’s perspective, more IEs are required when an
MSS’s data are distributed over multiple bursts. An IE requires
60 b encoded by the QPSK 1/2 MCS [5]. Because each slot can
carry 48 b by QPSK 1/2, an IE occupies 5/4 slots, which has a
significant impact on the available space to allocate bursts in a
downlink subframe.

The resource allocation problem is formulated as follows.
There are n MSSs in the network, where each MSS Mi, i =
1, . . . , n, is admitted with an average real-time data rate of Rrt

i

(in bits/frame) and a minimal non-real-time data rate of Rnrt
i

(in bits/frame). Let Ci be the current transmission rate1 (in
bits/slot) for the BS to send data to Mi, which may change
over frames. The objective is to design a cross-layer frame-
work that contains both the scheduler and the burst allocator
to arrange bursts to MSSs such that we can reduce the IE
overhead, improve the network throughput, achieve long-term
fairness, alleviate real-time traffic delays, and maximally utilize
downlink subframes. In addition, the design of the cross-layer
framework should not be very complicated so that it can execute
within a frame duration (i.e., 5 ms) and be implemented in most
low-cost WiMAX chips. Note that the fairness index (FI) in
[23] is adopted to evaluate the long-term fairness of a scheme
as follows:

FI =
(
∑n

i=1 SDi)
2

n
∑n

i=1(SDi)2

where SDi is the share degree of Mi, which is calculated by

SDi =

∑T−1
j=0

(
Ãrt

i (fc − j) + Ãnrt
i (fc − j)

)
T × (Rrt

i + Rnrt
i)

(1)

where Ãrt
i (x) and Ãnrt

i (x) are the amounts of real-time and
non-real-time traffic allocated to Mi in the xth frame, respec-
tively, fc is the current frame index, and T is the window size
(in frames), over which we measure fairness. We denote by
Ud(x) the utilization of the xth downlink subframe, which is
defined by the ratio of the number of slots used to transmit
data to X × Y . Thus, the average downlink utilization over
T frames is

∑T−1
j=0 Ud(fc − j)/T . Table II summarizes the

notations used in this paper.

IV. PROPOSED CROSS-LAYER FRAMEWORK

Fig. 2 shows the system architecture of our cross-layer
framework, which is composed of the following two com-
ponents: 1) the two-tier priority-based scheduler and 2) the

1The estimation of the transmission rate highly depends on the path loss,
fading, and propagation model. Here, we assume that the BS can accurately
estimate the transmission rate for each MSS and will discuss how we can
conduct the estimation in Section VI.

1744 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

TABLE II
SUMMARY OF NOTATIONS

Fig. 2. System architecture of the proposed cross-layer framework, where i =
1 . . . n.

bucket-based burst allocator. The transmission rate Ci for each
MSS Mi (see Fig. 2, label 1) is periodically reported to the
scheduler and the burst allocator. Each Mi’s admitted rates Rrt

i

and Rnrt
i (see Fig. 2, label 2) are sent to the scheduler when Mi

first associates with the BS or when Rrt
i and Rnrt

i change. The
scheduler also monitors the current amounts of queued real-
time and non-real-time data Brt

i and Bnrt
i (see Fig. 2, label 3).

The burst allocator informs the scheduler of the bucket size
Δbkt and the available free-space FS in the current downlink
subframe (see Fig. 2, label 4) to help the scheduler distribute
resources among MSSs’ traffic, where

FS = X × Y − (FCH size) − (UL-MAP size)

− (size of DL-MAP control fields) (2)

where FCH is the frame control header. The UL-MAP size can
be known in advance, because the uplink subframe is allocated
before the downlink subframe. The DL-MAP control fields
contain all parts of DL-MAP, except for IEs, which are yet
to be decided by the burst allocator. The scheduler’s mission
is to generate each Mi’s real-time and non-real-time resource
assignments Qrt

i and Qnrt
i (see Fig. 2, label 5) to the burst

allocator. Based on Qrt
i and Qnrt

i , the burst allocator arranges
IEs and bursts to each Mi (see Fig. 2, label 6). The actual
real-time and non-real-time traffic allocated to Mi are written,

respectively, as Art
i and Anrt

i (see Fig. 2, label 7) and are fed to
the scheduler for future scheduling.

In our cross-layer framework, the priority rule defined in the
scheduler helps the burst allocator determine how bursts can be
arranged for MSSs’ traffic. On the other hand, the allocation
rule defined in the burst allocator also helps the scheduler to
determine how resources can be assigned to MSSs’ traffic. Both
the priority and allocation rules are similar to tenons in the
cross-layer framework, which make the scheduler and the burst
allocator tightly cooperate with each other.

Due to the NP-complete nature of the burst allocation prob-
lem and the hardware constraints of low-cost WiMAX chips, it
is inefficient and yet infeasible to derive an optimal solution for
arranging IEs and bursts in a short frame duration. Therefore, to
keep our burst allocator simple and efficient, we adopt a bucket
concept as follows. The available free-space FS in the current
subframe is horizontally sliced into a number of buckets, each
of size Δbkt (see Fig. 3 for an example). The size Δbkt serves
as the allocation unit in our scheme. As shown, the scheduler
always keeps (Qrt

i + Qnrt
i) as a multiple of Δbkt for each

Mi. This way, the burst allocator can easily arrange bursts in
a “bucket-by-bucket” manner, well utilize the frame resource,
and generate quite few bursts and, thus, IEs (which will be
proved to have an upper bound in Section IV-B). In addition,
the long-term fairness is achieved, because the actual allocation
(Art

i , Anrt
i) by the burst allocator is likely to be quite close

to the assignment (Qrt
i , Qnrt

i) by the scheduler for each i =
1, . . . , n.

A. Two-Tier Priority-Based Scheduler

In each frame, the scheduler will generate resource assign-
ments (Qrt

i , Qnrt
i), i = 1, . . . , n to the burst allocator. To gen-

erate these assignments, the scheduler adopts a two-tier priority
rule. In the first tier, traffic is differentiated by its type and is
given priority levels according to the following order.

– P1: urgent real-time traffic whose packets will pass their
deadlines at the end of this frame;

– P2: real-time traffic ranked top γ ratio (0 < γ < 1)
sorted by their importance;

– P3: non-real-time traffic sorted by their importance.

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1745

Fig. 3. Example of the bucket-based burst allocation with three buckets and four resource assignments.

Then, in the second tier, traffic of the same type is assigned
with different priorities by its importance, which is calculated
by the following four factors:

1) current transmission rates;
2) average transmission rates;
3) admitted data rates;
4) queue lengths.
In particular, for priority level P2, we rank the importance of

Mi’s real-time traffic by

Irt
i = Ci ×

Ci

Cavg
i

× Brt
i

Rrt
i

. (3)

Here, the importance Irt
i involves the following three factors

that are multiplied together.
1) A higher transmission rate Ci gives Mi a higher rating to

improve the network throughput.
2) A higher ratio Ci/Cavg

i gives Mi a higher rating to pre-
vent starvation for MSSs with low average rates, where
Cavg

i is the average transmission rate for the BS to send
data to Mi in the most recent T frames. In particular, sup-
posing that an MSS encounters a bad channel condition
for a long period (i.e., a lower Cavg

i value), we still prefer
this MSS if it can now enjoy a higher transmission rate
(i.e., Ci > Cavg

i). In addition, a higher Ci/Cavg
i value

means that the MSSs is currently in a better condition;
therefore, we give it a higher priority to improve the
potential throughput.

3) A higher ratio Brt
i /Rrt

i gives Mi a higher rating to favor
MSSs with more backlogs.

Similarly, for priority level P3, we rank the importance of
Mi’s non-real-time traffic by

Inrt
i = Ci ×

Ci

Cavg
i

× 1
Snrt

i

(4)

where Snrt
i is the non-real-time rate satisfaction ratio of Mi in

the most recent T frames, which is calculated by

Snrt
i =

∑T−1
j=0 Anrt

i (fc − j)
T × Rnrt

i

. (5)

A small Snrt
i means that Mi’s non-real-time traffic may be

starved. Thus, a smaller Snrt
i gives Mi a higher rating.

The aforementioned two-tier priority rule not only prevents
urgent real-time traffic from incurring packet dropping (through
the first tier) but maintains long-term fairness (through the
second tier) as well. The network throughput is also improved
by giving a higher priority to MSSs that use higher transmission
rates (in the second tier). In addition, by giving a γ ratio of
nonurgent real-time traffic with level-2 priority, the amount of
urgent real-time traffic in the next frame can be reduced, and
non-real-time traffic can have opportunity to send their data.

In the following procedure, we present the detailed opera-
tions of our scheduler. Let ei be a binary flag to indicate whether
an IE has been allocated for Mi, i = 1, . . . , n. Initially, we
set all ei = 0, i = 1, . . . , n. In addition, the free space FS is
deducted by ((Y/Δbkt) − 1) × θIE to preserve the space for
potential IEs caused by the burst allocator (this case will be
discussed in the next section), where θIE = 5/4 is the size of
an IE.

1) Let Urt
i be the amount of data of Mi’s urgent real-time

traffic in the current frame. For all Mi with Urt
i > 0, we

sort them according to their Ci values in a descending
order. Then, we schedule the free-space FS for each of
them as follows until FS ≤ 0.
a) Reserve an IE for Mi by setting FS = FS − θIE .

Then, set ei = 1.
b) If FS > 0, assign resource Qrt

i =
min {FS × Ci, U

rt
i } to Mi and set FS = FS −

�Qrt
i /Ci�. Then, deduct Qrt

i from Brt
i .

2) After step 1, if FS > 0, we sort all Mi that have real-
time traffic according to their Irt

i values [by (3)]. Then,
we schedule the resource for each of them as follows
until either all MSSs in the top γ ratio are examined or
FS ≤ 0.
a) If ei = 0, reserve an IE for Mi by setting FS = FS −

θIE and ei = 1.
b) If FS > 0, assign more resources δ = min{FS ×

Ci, B
rt
i } to Mi. Then, set Qrt

i = Qrt
i + δ and FS =

FS − �δ/Ci�. Deduct δ from Brt
i .

1746 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

3) After step 2, if FS > 0, we sort all Mi according to
their Inrt

i values [by (4)]. Then, we schedule the resource
for each of them as follows until either all MSSs are
examined or FS ≤ 0.
a) If ei = 0, reserve an IE for Mi by setting FS = FS −

θIE and ei = 1.
b) If FS > 0, assign more resources δ = min{FS ×

Ci, B
nrt
i } to Mi. Then, set Qnrt

i = δ and FS =
FS − �δ/Ci�. Deduct δ from Bnrt

i .
4) Because the bucket size Δbkt is the allocation unit in

our burst allocator, in this step, we will do a fine-tuning
on Qrt

i and Qnrt
i such that (Qrt

i + Qnrt
i) is aligned to a

multiple of Δbkt for each Mi. To do so, we will gradually
remove some slots from Qnrt

i and then Qrt
i until (((Qrt

i +
Qnrt

i)/Ci) mod Δbkt) = 0. One exception is when much
of the data in Qrt

i are urgent, which makes removing
any resource from Mi impossible. In this case, we will
add more slots to Mi until (((Qrt

i + Qnrt
i)/Ci) mod

Δbkt) = 0. The aforementioned adjustment (i.e., removal
and addition) may make the total resource assignment
below or beyond the available resource FS. If so, we
will further remove some slots from the MSSs with less
importance or add some slots to the MSSs with more
importance until the total resource assignment is equal to
the initial free space given by the burst allocator.

Fig. 4 illustrates the flowchart of the scheduler. To sum-
marize, our scheduler generates the resource assignment ac-
cording to the following three priorities: P1) urgent traffic;
P2) real-time traffic; and P3) non-real-time traffic. Step 1 first
schedules MSSs with urgent traffic to alleviate their real-time
traffic delays. Step 2 schedules the top γ ratio of MSSs to
reduce the number of MSSs that may have urgent traffic in the
following frames. This step also helps reduce the IE overhead
of future frames caused by urgent traffic, which is neglected
by prior studies. Step 3 schedules MSSs with lower non-real-
time satisfaction ratios to prevent them from starvation. Finally,
step 4 reshapes all assignments such that each (Qrt

i + Qnrt
i) is

divisible by Δbkt. This step will help the burst allocator fully
utilize a downlink subframe.

We then analyze the time complexity of our scheduler. In
step 1, sorting MSSs by their Ci values takes O(n lg n) time,
and scheduling the resources for the MSSs with urgent traffic
takes O(n) time. In step 2, sorting MSSs by their Irt

i values
requires O(n lg n) time, and scheduling the resources for the
top γ ratio of MSSs requires at most O(γn) time. In step
3, sorting MSSs by their Inrt

i values costs O(n lg n) time,
and scheduling the resources for the MSSs with non-real-
time traffic takes O(n) time. In step 4, reshaping all requests
spends at most O(n) time. Thus, the total time complexity is
O(n lg n + n + n lg n + γn + n lg n + n + n) = O(n lg n).

B. Bucket-Based Burst Allocator

Ideally, the free space FS in (2) should accommodate each
resource assignment (Qrt

i , Qnrt
i) calculated by the scheduler

and its corresponding IE(s). However, because the burst al-
location problem is NP-complete, our bucket-based heuristic

Fig. 4. Flowchart of the two-tier priority-based scheduler.

will try to squeeze as more MSSs’ assignments into FS as
possible and allocate one burst per assignment with a very high
possibility. If more than one burst is required, more IEs are
needed, in which case, some assignments that were originally
arranged by the scheduler may be trimmed down or even
kicked out by the burst allocator. Given the free space FS by
(2), bucket size Δbkt, and assignments (Qrt

i , Qnrt
i)’s from the

scheduler, our bucket-based heuristic works as follows.

1) Horizontally2 slice FS into Y/Δbkt buckets, each of a
height Δbkt, where Y is divisible by Δbkt. Fig. 3 shows
an example by slicing FS into three buckets.

2) Let k be the number of resource assignments given by
the scheduler. We reserve �(k + (Y/Δbkt) − 1) × θIE�
slots for IEs at the left side of the subframe. In fact, the
scheduler has also reserved the space for these IEs, and
its purpose will become clear later on. Fig. 3 gives an
example. Because there are four assignments, 4 + 3 − 1
IEs are reserved.

3) We then assign bursts to satisfy these resource assign-
ments according to their priorities originally defined in
the scheduler. Because each assignment (Qrt

i , Qnrt
i) may

have data mixed in the categories of P1, P2, and P3, we
redefine its priority as follows.
a) An assignment with data in P1 has a higher priority

than an assignment without data in P1.
b) Without the existence of data in P1, an assignment

with data in P2 has a higher priority than an assign-
ment without data in P2.

2We can also vertically slice FS, but the effect will be the same.

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1747

Fig. 5. Flowchart of the bucket-based burst allocator.

Then, bursts are allocated in a bucket-by-bucket man-
ner. In particular, when an assignment (Qrt

i , Qnrt
i) is

examined, it will be placed starting from the previous stop
point and fill up the bucket from right to left until either
(Qrt

i , Qnrt
i) is satisfied or the left end of the bucket is

encountered. In the latter case, we will move to the right
end of the next bucket and repeat the aforementioned allo-
cation process. In addition, this “cross-bucket” behavior
will require one extra IE for the request. The aforemen-
tioned operation is repeated until either all assignments
are examined or all buckets are exhausted. Fig. 3
gives one example, where the four assignments are pri-
oritized by (Qrt

3 , Qnrt
3) > (Qrt

1 , Qnrt
1) > (Qrt

4 , Qnrt
4) >

(Qrt
2 , Qnrt

2). Assignment (Qrt
1 , Qnrt

1) requires two IEs,
because it involves one cross-bucket behavior.

4) According to the allocation in step 3, we place each
resource assignment (Qrt

i , Qnrt
i) into its burst(s). In ad-

dition, the amount of actual allocation is written into
each (Art

i , Anrt
i) and fed back to the scheduler for future

scheduling.

Fig. 5 illustrates the flowchart of the burst allocator. We
make some remarks as follows. First, because there are Y/Δbkt

buckets, there are at most ((Y/Δbkt) − 1) cross-bucket burst
assignments, and thus, at most ((Y/Δbkt) − 1) extra IEs are
needed. To accommodate this need, some assignments may
slightly be trimmed down. Thus, (Qrt

i , Qnrt
i) and (Art

i , Anrt
i)

are not necessarily the same. However, the difference should be
very small. Second, the bucket that is located at the boundary of
reserved IEs and data (e.g., the third bucket in Fig. 3) may have
some extra slots (e.g., the lower left corner of the third bucket).
These extra slots are ignored in the aforementioned process for
ease of presentation, but they can be used to allocate bursts
to further improve space efficiency. Third, because each cross-
bucket behavior will require one extra IE and there are Y/Δbkt

buckets, the number of IEs required is bounded, as proved in
Theorem 1.

Theorem 1: In the bucket-based burst allocator, the (k +
(Y/Δbkt) − 1) IEs reserved in step 2 are sufficient for the burst
allocation in step 3.

Proof: Given Y/Δbkt buckets b̂1, b̂2, . . ., and b̂Y/Δbkt
,

we can concatenate them into one virtual bucket b̂ with
((Y/Δbkt) − 1) joints. We then allocate one virtual burst for
each request from the scheduler in b̂; therefore, we have at most
k virtual bursts. Then, we replace each virtual burst by one
real burst. However, we require one extra real burst whenever
the replaced virtual burst crosses one joint. The worst case
occurs when each of the ((Y/Δbkt) − 1) joints is crossed by
one virtual burst. In this case, we require (k + (Y/Δbkt) − 1)
real bursts to replace all virtual bursts. Because each real burst
requires one IE, we have to reserve at most (k + (Y/Δbkt) − 1)
IEs. �

In comparison, a naive burst allocation will require the worst
case of 3k IEs if the allocation goes in a row-major or column-
major way [14] (because each request may require up to three
IEs). In our scheme, the bucket size Δbkt can dynamically
be adjusted to reflect the “grain size” of our allocation. A
larger grain size may cause fewer IEs but sacrifice resource
utilization, whereas a smaller grain size may cause more IEs
but improve resource utilization. We will discuss the effect of
Δbkt in Section VI-F.

We then analyze the time complexity of our burst allocator.
Because we allocate bursts in a zigzag manner, the time com-
plexity is proportional to the number of bursts. By Theorem 1,
we have at most (k + (Y/Δbkt) − 1) bursts. Because we have
k ≤ n and Y/Δbkt is usually smaller than n, the time complex-
ity is O(k + (Y/Δbkt) − 1) = O(n).

To conclude, the proposed scheduler and burst allocator
are dependent on each other by the following two designs.
First, the scheduler reserves the extra IE space caused by the
bucket partition and arranges resources to MSSs’ traffic so that
the resource assignments can align to buckets. Thus, we can
enhance the possibility that the burst allocator fully satisfies
the resource assignments from the scheduler. Second, the burst
allocator follows the priority rule in the scheduler to arrange
bursts. Thus, even if the frame space is not enough to satisfy all
traffic, urgent real-time traffic can still be arranged with bursts
to catch their approaching deadlines.

V. ANALYSIS OF NETWORK THROUGHPUT LOSS

BY THE BUCKET-BASED SCHEME

Given an ideal scheduler, we analyze the loss of network
throughput caused by our bucket-based burst allocator. To
simplify the analysis, we assume that the network has only
traffic of priority levels P1 and P3 and each MSS has infinite
data in P3. (Traffic of P2 will eventually become urgent traffic
of P1.) Then, we calculate the difference between the expected
throughput by our burst allocator and the maximum throughput
by an ideal burst allocator. In the ideal burst allocator, the
number of IEs is equal to the number of resource assign-
ments from the scheduler. In addition, the frame resource is
always first allocated to urgent traffic (P1) and then to non-
real-time traffic (P3) with the highest transmission rate. It
follows that the following two factors may degrade the network
throughput by our burst allocator: 1) extra IEs incurred by
step 3 in Section IV-B and 2) the data padding of low-rate

1748 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

non-real-time traffic at the boundary between the data in P1
and P3. In particular, each burst must begin with the data in
P1, followed by the data in P3. Furthermore, if the data in P3
covers more than one column, it must be sent at the highest
transmission rate. If the data in P3 covers less than a column,
it may be sent at a nonhighest transmission rate. The right-
hand side of Fig. 3 shows these two possibilities, where P2 is
empty. Note that, in the first possibility, all data in P3 must be
transmitted at the highest rate; otherwise, the shaded area will
be allocated to the data in P3 of other MSSs using the highest
rate.

Following the aforementioned formulation, our objective is
to find the throughput loss L by our burst allocator compared
with the ideal burst allocator as

L = E[Õ] × chigh + E[S̃] (6)

where Õ is the random variable that represents the number of
extra IEs caused by buckets, and S̃ is the random variable that
represents the throughput degradation (in bits) caused by the
low-rate padding in the shaded area of the second possibility
on the right-hand side of Fig. 3. To simplify the analysis, we
assume that there are only two transmission rates chigh and clow,
where chigh > clow. The probability that an MSS is in either rate
is equal.

A. Calculation of E[Õ]

We first give an example to show how our analysis works.
Suppose that we have three MSSs and three buckets. Each
bucket has two arrangement units, each having Δbkt slots.
Thus, there are, in total, six arrangement units, denoted by
O1, O2, O3, O4, O5, and O6. Resources that are allocated
to the three MSSs can be represented by two separators
“|.” For example, we list the following three possible al-
locations: 1) O1O2|O3O4|O5O6; 2) O1O2O3O4‖O5O6; and
3) O1|O2O3O4O5|O6. In arrangement 1, we need no extra
IE. In arrangement 2, MSS 2 receives no resource, but MSS
1 needs one extra IE. In arrangement 3, MSS 2 requires
two IEs.

We will use arrangement units and separators to conduct
the analysis. Suppose that we have n MSSs, (Y/Δbkt)(= B)
number of buckets, and X × B(= α) arrangement units (i.e.,
each bucket has X arrangement units). This approach can be
represented by arbitrarily placing (n − 1) separators along a
sequence of α arrangement units. Bucket boundaries appear
after each ith arrangement unit such that i is a multiple of X .
Note that only (B − 1) bucket boundaries can cause extra IEs,
as mentioned in Section IV. Whenever no separator appears at
a bucket boundary, one extra IE is needed. There are, in total,
(α + (n − 1))!/(α!(n − 1)!) ways of placing these separators.
Let Ẽ be the random variable that represents the number of
bucket boundaries, where each of bucket boundaries is inserted
by at least one separator. The probability of (Ẽ = e) is calcu-
lated by

Prob[Ẽ = e] =
CB−1

e × (α−(B−1−e)+(n−1−e))!
(α−(B−1−e))!(n−1−e)!

(α+(n−1))!
α!(n−1)!

. (7)

Note that the term CB−1
e refers to the combinations of choos-

ing e boundaries from the (B − 1) bucket boundaries. Each of
these e boundaries is inserted by at least one separator. The re-
maining (B − 1 − e) bucket boundaries must not be inserted by
any separator. To understand the second term in the numerator
of (7), we can denote by x0 the number of separators before the
first arrangement unit and by xi the number of separators after
the ith arrangement unit, i = 1, . . . , α. Explicitly, we have

x0 + x1 + · · · + xα = n − 1 ∀xi ∈ {0, 1, 2, · · ·}.

However, when Ẽ = e, (B − 1 − e) of these xi’s must be 0.
In addition, e of these xi’s must be larger than or equal to 1.
Then, this problem is equivalent to finding the number of
combinations of

y0 + y1 + · · · + yj + · · · + yα−(B−1−e) = n − 1 − e

∀yj ∈ {0, 1, 2, . . .}.

It follows that there are (α − (B − 1 − e) + (n − 1 − e))!/
((α − (B − 1 − e))!(n − 1 − e)!) combinations. Therefore,
E[Õ] can be obtained by

E[Õ]=
B−1∑
e=0

(number of extra IEs when Ẽ=e)×Prob[Ẽ=e]

=
B−1∑
e=0

(B−1−e)×
CB−1

e × (α−(B−1−e)+(n−1−e))!
(α−(B−1−e))!(n−1−e)!

(α+(n−1))!
α!(n−1)!

. (8)

B. Calculation of E[S̃]

Recall that E[S̃] is the expected throughput degradation
caused by the transmission of a burst at a low rate and the
burst contains some data padding of non-real-time traffic. To
calculate E[S̃], let us define ÑL as the random variable of
the number of MSSs using the low transmission rate clow.
Because there is no throughput degradation by MSSs using the
high transmission rate chigh, the overall expected throughput
degradation is

E[S̃] =
n∑

m=1

E[S̃|ÑL = m] × Prob[ÑL = m]. (9)

Let Ũi be the random variable that represents the amount
of data of Mi’s urgent traffic i = 1, . . . , n. Here, we assume
that Ũi is uniformly distributed among [1,R], where R ∈ N.
Let X̃L

j be the random variable that represents the amount of
throughput degradation (in bits) due to the data padding of Mj’s
non-real-time traffic when using clow. Because the throughput
degradation caused by MSSs using chigh is zero, we have

E[S̃|ÑL = m] = E

⎡
⎣ m∑

j=1

X̃L
j

⎤
⎦ . (10)

Explicitly, X̃L
i and X̃L

j are independent of each other for any
i �= j; therefore, we have

E

⎡
⎣ m∑

j=1

X̃L
j

⎤
⎦ =

m∑
j=1

E
[
X̃L

j

]
. (11)

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1749

Now, let us define IU
i as an indicator of representing whether

Mi has urgent traffic such that IU
i = 1 if Mi has urgent traf-

fic; otherwise, IU
i = 0. Because the bursts of low-rate MSSs

without urgent traffic will not contain the data padding of non-
real-time traffic, no throughput degradation will be caused by
them. Therefore, we can derive

E
[
X̃L

j

]
= E

[
X̃L

j |IU
j = 1

]
× Prob

[
IU
j = 1

]

=

(R∑
u=1

f(Ũj = u)
R

)
× Prob

[
IU
j = 1

]
(12)

where

f(Ũj = u) =
(⌈

u

Δbkt × clow

⌉
− u

Δbkt × clow

)

× Δbkt × (chigh − clow)

is a function for representing the throughput degradation
caused by a low-rate MSS with non-real-time data padding
when Ũj = u.

By combining (9)–(12), we can derive that

E[S̃] =
n∑

m=1

⎛
⎝ m∑

j=1

(R∑
u=1

f(Ũj = u)
R

)
× Prob

[
IU
j = 1

]⎞⎠
× Prob[ÑL = m]. (13)

Finally, the throughput loss by our burst allocator can be
calculated by combining (8) and (13) into (6).

VI. PERFORMANCE EVALUATION

To verify the effectiveness of our cross-layer framework, we
develop a simulator in C++ based on the architecture in [15],
as shown in Fig. 6. The simulator contains three layers: The
traffic-generating module in the upper layer creates the MSSs’
demands according to their real-time and non-real-time traffic
requirements. In the MAC layer, the queuing module maintains
the data queues for each MSS and the scheduling module
conducts the actions of the scheduler. In the PHY layer, the
channel-estimating module simulates the channel conditions
and estimates the transmission rate of each MSS, and the burst-
allocating module conducts the actions of the burst allocator.
The arrows in Fig. 6 show the interaction between all the
modules in our simulator. In particular, the traffic-generating
module will generate traffic and feed them to the scheduling
module for allocating resources and to the queuing module for
simulating the queue of each traffic. The channel-estimating
module will send the transmission rates of MSSs to both the
scheduling and burst allocating modules for their references.
In addition, the scheduling and the burst-allocating modules
will interact with each other, particularly for our scheme.

The simulator adopts a fast Fourier transform (FFT) size of
1024 and the zone category as PUSC with reuse 1. The frame
duration is 5 ms. This way, we have X = 12 and Y = 30.
Six MCSs are adopted, which are denoted by a set MCS =
{QPSK1/2, QPSK3/4, 16QAM1/2, 16QAM3/4, 64QAM2/3,

Fig. 6. Architecture of our C++ simulator.

TABLE III
AMOUNTS OF DATA CARRIED BY EACH SLOT AND THE MINIMUM

REQUIRED SNR THRESHOLDS OF DIFFERENT MCSS

64QAM3/4}. For the traffic-generating module, the types of
real-time traffic include UGS, rtPS, and ertPS, whereas the
types of non-real-time traffic include nrtPS and BE. Each MSS
has an admitted real-time data rate Rrt

i of 0 ∼ 200 bits and an
admitted non-real-time data rate Rnrt

i of 0 ∼ 500 bits/frame. In
each frame, each MSS generates 0 ∼ 2Rrt

i amount of real-time
data and Rnrt

i ∼ 4Rnrt
i amount of non-real-time data.

For the channel-estimating module, we develop two scenar-
ios to estimate the transmission rate of each MSS. The first
scenario, called the Stanford University Interim (SUI) scenario,
is based on the SUI path loss model recommended by the IEEE
802.16 Task Group [24]. In particular, each MSS will roam
inside the BS’s signal coverage (the largest area that the BS
can communicate with each MSS using the lowest QPSK1/2
MCS) and move following the random waypoint model, with
the maximal speed of 20 m/s [25]. The transmission rate of each
MSS Mi is determined by its received SNR as

SNR(BS,Mi) = 10 · log10

(
P̃ (BS,Mi)
BW · No

)

where BW is the effective channel bandwidth (in hertz), No is
the thermal noise level, and P̃ (BS,Mi) is the received signal
power at Mi, which is defined by

P̃ (BS,Mi) =
GBS · GMi

· PBS

L(BS,Mi)

where PBS is the transmission power of the BS, GBS and
GMi

are the antenna gains at the BS and Mi, respectively, and
L(BS,Mi) is the path loss from the BS to Mi. Given Mi’s
SNR, the BS can determine Mi’s MCS based on Table III. In
particular, the BS will choose the highest MCS whose minimum
required SNR is smaller than SNR(BS,Mi). Table IV lists the
parameters used in the SUI scenario.

1750 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

TABLE IV
SIMULATION PARAMETERS USED IN THE SUI SCENARIO

Fig. 7. Six-state Markov chain to model the channel condition.

The second scenario, called the Markov scenario, adopts a
six-state Markov chain [26] to simulate the channel condition of
each MSS, as shown in Fig. 7. In particular, let MCS[i] be the
ith MCS, i = 1, . . . , 6. Suppose that an MSS uses MCS[i] to
fit its channel condition at the current frame. The probabilities
that the MSS switches to MCS[i − 1] and MCS[i + 1] in
the next frame are both (1/2)pc, and the probability that it
remains unchanged is 1 − pc. For the boundary cases of i =
1 and 6, the probabilities of switching to MCS[2] and MCS[5],
respectively, are both pc. Unless otherwise stated, we set pc =
0.5, and the initial i value of each MSS is randomly selected
from 2 to 5.

We compare our cross-layer framework with the high-rate-
first (HRF) scheme [21], the modified proportional fair (MPF)
scheme [10], the rate maximization with fairness consideration
(RMF) scheme [20], and the QoS guarantee (QG) scheme [22].
HRF always first selects the MSS with the highest transmission
rate Ci to serve. MPF assigns priorities to MSSs, where an
MSS with a higher Ci value and a lower amount of received
data is given a higher priority. RMF first allocates resources
to unsatisfied MSSs according to their minimum requirements,
where MSSs are sorted by their transmission rates. If there
remain resources, they are allocated to the MSSs with higher
transmission rates. Similarly, QG first satisfies the minimum
requirements of each MSS’s traffic, which are divided into real-
time and non-real-time traffic. Then, the remaining resources
are allocated to MSSs with higher transmission rates. Because
both HRF and MPF implement only the scheduler, we adopt
the scheme in [4] as their burst allocators. In our framework,
we use B = 5 buckets and set γ = 0.3 in P2, unless otherwise
stated. In Section VI-F, we will discuss the effects of these two
parameters on the system performance. The duration of each
experiment is at least 1000 frames.

A. Network Throughput

We first compare the network throughput under different
number of MSSs (i.e., n), where the network throughput is
defined by the amount of MSSs’ data (in bits) transmitted by the
BS during 1000 frames. We observe the case when the network
becomes saturated, where there are 60 ∼ 90 MSSs to be served.
Fig. 8 shows the simulation results under both the SUI and

the Markov scenarios, where the trends are similar. Explicitly,
when the number of MSSs grows, the throughput increases but
will eventually become steady when there are too many MSSs
(i.e., n ≥ 80). The throughput under the SUI scenario is lower
than the throughput under the Markov scenario, because some
MSSs may move around the boundary of the BS’s coverage,
leading to a lower SNR and, thus, a lower MCS. Under the
Markov scenario, a higher pc means that each MSS may more
frequently change its MCS, and vice versa.

In general, both RMF and QG ignore the effect of IE over-
heads on network performance so that their throughput will
be degraded. Although HRF first serves MSSs with higher
transmission rates, its throughput is not the highest. The reason
is that HRF not only ignores the importance of IE overheads but
also neglects the effect of Ci/Cavg

i factor on potential through-
put when scheduling traffic. The throughput of MPF is higher
than the throughput of RMF, QG, and HRF for the following
two reasons. First, MPF prefers MSSs that use the higher trans-
mission rates, which is similar to HRF. However, HRF incurs
higher IE overheads because of the scheduling methodology
(which will be verified in Section VI-B). Second, both RMF
and QG try to schedule every traffic in each frame, which gen-
erates too many IEs (in fact, we can postpone scheduling some
traffic to reduce IE overheads while still guaranteeing long-term
fairness, as will be verified in Sections VI-B and C). On the
other hand, MPF enjoys higher throughput, because it takes
care of IE overheads from the viewpoint of the scheduler. In
particular, our cross-layer framework has the highest through-
put in most cases because of the following two reasons. First,
our scheduler assigns a higher priority to MSSs with higher
Ci and Ci/Cavg

i values and thus makes MSSs receive their
data in higher transmission rates. Second, both our scheduler
and burst allocator can effectively decrease the number of IEs
and acquire more subframe space for data transmission. Note
that, when n = 90, our cross-layer framework will try to satisfy
a large number of urgent traffic to avoid their packets being
dropped. In this case, its throughput is slightly lower than
the throughput of MPF, but our cross-layer framework can
significantly reduce the real-time packet-dropping ratio, as will
be shown in Section VI-D.

B. IE Overheads and Subframe Utilization

Fig. 9 shows the average number of IEs in each downlink
subframe. As discussed earlier, HRF, RMF, and QG do not
consider IE overheads; therefore, they will generate a large
number of IEs. The situation becomes worse when the number
of MSSs grows, because each MSS needs to be allocated
with at least one burst (and, thus, one IE). By considering
IE overheads in the scheduler, MPF can reduce the average
number of IEs per frame. It can be observed that, when the
number of MSSs grows, the number of IEs in MPF reduces.
The reason is that MPF allocates more resources to MSSs in
a frame to reduce the total number of scheduled MSSs, thus
reducing the number of allocated bursts (and IEs). In Fig. 9,
our cross-layer framework generates the smallest number of
IEs per frame, because both the proposed scheduler and burst
allocator consider IE overheads, and the framework can adjust

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1751

Fig. 8. Comparison on network throughput. (a) SUI scenario. (b) Markov scenario (pc = 0.8). (c) Markov scenario (pc = 0.2).

Fig. 9. Comparison on IE overheads. (a) SUI scenario. (b) Markov scenario.

Fig. 10. Comparison on subframe utilization. (a) SUI scenario. (b) Markov scenario.

the number of nonurgent real-time traffic to be served to avoid
generating too many bursts.

IE overheads have a strong impact on the utilization of down-
link subframes, as reflected in Fig. 10. Because HRF, RMF, and
QG generate a large number of IEs, their subframe utilization
will be lower than MPF and our cross-layer framework. It can
be observed that the number of buckets B significantly affects
the subframe utilization of our cross-layer framework. In par-
ticular, a very large B (e.g., 30) will reduce the amount of data
carried in each bucket and thus generate many small bursts. On
the other hand, a very small B (e.g., 1) may degrade the func-
tionality of buckets, and thus, some resource assignments may
not fully utilize the bursts allocated to them. Based on Fig. 10,
we suggest setting B = 5 to get the best utilization, and the
analysis result in Section VI-G will also validate this point.

C. Long-Term Fairness

Next, we verify whether each scheme can guarantee long-
term fairness under a highly congested network, where there are
140 ∼ 200 MSSs. Fig. 11 shows the fairness indices (FI) of all
schemes. Recall that the network becomes saturated when there
are 80 MSSs. Thus, it is impossible to get a FI of 1, because the
network resource is not enough to satisfy the requirements of all
traffic. Based on Fig. 11, HRF incurs the lowest index, because
it always serves MSSs that use higher transmission rates. By
considering the amount of allocated data of each MSS, MPF
can have a higher index than HRF. QG and RMF try to satisfy
the minimum requirement of each traffic in every frame, thus
leading to higher indices. Because RMF allocates the resources
to MSSs sorted by their transmission rates, its index will be
lower than QG.

1752 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

Fig. 11. Comparison on long-term fairness. (a) SUI scenario. (b) Markov scenario.

Fig. 12. Comparison on real-time packet-dropping ratios under different numbers of MSSs. (a) SUI scenario. (b) Markov scenario.

Our cross-layer framework has the highest FI (more than
0.85) due to the following two reasons. First, our priority-based
scheduler only schedules γ ratio of nonurgent real-time traffic
to avoid starving non-real-time traffic. Second, our cross-layer
framework tries to reduce the IE overheads and acquire more
frame space to allocate bursts for MSSs’ traffic. In this case, we
have more resources to fairly distribute among MSSs. Thus, our
cross-layer framework can maintain long-term fairness, even in
a highly congested network.

D. Packet-Dropping Ratios of Real-Time Traffic

We then observe the packet-dropping ratios of real-time
traffic, where each MSS will generate 0 ∼ 2Rrt

i real-time data
in each frame. When a real-time packet is not transmitted
within 6 frames (i.e., 30 ms) after being generated, it will be
dropped. Fig. 12 shows the real-time packet-dropping ratios
of all schemes under 10 ∼ 110 MSSs. Both HRF and MPF
distribute resources to MSSs based on the transmission rates
without considering the traffic types; therefore, their ratios
begin raising when n ≥ 50. In this case, a large amount of
non-real-time traffic will compete with real-time traffic for the
limited resource. On the other hand, the ratios of RMF and QG
begin raising when n ≥ 90. Because both RMF and QG try to
satisfy the minimum requirements of all traffic in each frame,
they can avoid real-time packet dropping when the network
is not saturated (i.e., n < 90). Our cross-layer framework can
have almost zero ratio due to the following three reasons. First,

our priority-based scheduler assigns urgent real-time traffic
with the highest priority. In addition, it schedules a γ ratio
of nonurgent real-time traffic to avoid generating too many
urgent traffic in the following frames. Second, our bucket-based
burst allocator arranges bursts based on the priorities from the
scheduler; therefore, the bursts of the urgent real-time traffic
can first be allocated to avoid packet dropping. Third, both
our scheduler and burst allocator try to reduce IE overheads,
and thus, more urgent real-time traffic can be served in each
frame.

Fig. 13 shows the real-time packet-dropping ratios of all
schemes under different admitted non-real-time data rates,
where the network is saturated. Because MPF proportionally
distributes resources among MSSs, it incurs the highest real-
time packet-dropping ratio. On the other hand, because some
MSSs with real-time traffic may have higher transmission rates,
the ratio of HRF is lower than the ratio of MPF. As discussed
earlier, both RMF and QG try to satisfy the minimum require-
ment of each traffic, and thus, their ratios can become lower.
Note that, because QG differentiates real-time traffic from non-
real-time traffic, its ratio is lower than the ratio of RMF. Our
cross-layer framework always has a zero ratio, because the
bursts of urgent real-time traffic are first allocated, and our
framework can acquire more frame space to serve urgent real-
time traffic by reducing IE overheads.

Because the trends under both SUI and Markov scenarios are
similar, we only show the results under the Markov scenario in
the following experiments.

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1753

Fig. 13. Comparison on real-time packet-dropping ratios under different admitted non-real-time rates. (a) SUI scenario. (b) Markov scenario.

Fig. 14. Comparison on non-real-time satisfaction ratios of the bottom 10%
MSSs under the Markov scenario.

E. Satisfaction Ratios of Non-Real-Time Traffic

Next, we measure the satisfaction ratios of non-real-time
traffic [by (5)] under a saturated network. Fig. 14 shows
the satisfaction ratios of non-real-time traffic of the bottom
10% MSSs. When the non-real-time rate is larger than
125 bits/frame, the ratio of HRF is zero, because these
bottom 10% MSSs (whose transmission rates must be lower)
are starved. The ratio of MPF starts diminishing when the
non-real-time rate is larger than 250 bits/frame, because MPF
proportionally distributes resources among traffic. By satisfying
the minimum requirement of each traffic, the ratios of RMF and
QG are close to one. Our cross-layer framework can have a ratio
of nearly one for the bottom 10% MSSs, which means that non-
real-time traffic will not be starved, although our scheme prefers
real-time traffic.

F. Effects of System Parameters

We then observe the effects of system parameters in our
cross-layer framework on network throughput, subframe uti-
lization, and IE overheads under a saturated network (i.e.,
the number of MSS is 90). Fig. 15 shows the impact of the
number of buckets (i.e., B) on network throughput, utilization,
and overhead ratios when Y = 32. Here, the overhead ratio is
defined as the ratio of the number of slots used for MAP infor-
mation (e.g., DL-MAP, UL-MAP, and IEs) to the total number
of slots in a downlink subframe. In general, the utilization
decreases when the overhead ratio increases, because they are
complementary. Based on Fig. 15, the utilization first increases

Fig. 15. Effect of the number of buckets B on the network throughput,
subframe utilization, and IE overheads under the Markov scenario.

and then decreases when B grows. The former increment is
because some resource assignments do not fully utilize their
allocated bursts. On the other hand, the latter decrement is
because the burst allocator generates too many bursts to satisfy
the thinner buckets. The overhead ratio increases when B
increases, because more IEs are generated. In addition, when
B ≤ 4, the throughput increases when B grows, because more
buckets may serve more requests. On the other hand, when
B ≥ 8, such a trend reverses, because more IEs are generated,
causing lower utilization. Based on Fig. 15, we suggest setting
B = 4 ∼ 8, because this range of B value improves both
throughput and utilization while reducing IE overheads.

Fig. 16 shows the effects of γ and B on real-time packet-
dropping ratios and network throughput in our cross-layer
framework. Explicitly, the real-time packet-dropping ratio
decreases when γ grows, because more real-time traffic can
be served. However, when γ increases, the throughput may
decrease, because the scheduler has to select more nonurgent
real-time traffic to serve. In this case, some real-time traffic
with lower transmission rates may be served, which degrades
the throughput. As aforementioned, a large B may generate
more IEs and thus reduce the utilization. Thus, the throughput
in the case of larger B (e.g., B = 15 and 30) starts dropping
earlier than in the case of smaller B (e.g., B = 5 and 10). Based
on Fig. 16, we suggest setting γ = 0.15 ∼ 0.45, because this
range of γ value not only improves the network throughput but
also reduces real-time packet-dropping ratios under different
values of B.

1754 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 4, MAY 2011

Fig. 16. Effect of γ on the network throughput and real-time packet-dropping ratios under the Markov scenario. (a) Smaller B. (b) Larger B.

Fig. 17. Effect of the number of buckets (B) on the throughput loss L
(by analysis) and the total network throughput (by simulation) under the
Markov scenario.

G. Verification of Throughput Analysis

Finally, we verify our analytic results in the part where two
transmission rates, clow = 48 bits/slot and chigh = 96 bits/slot,
are adopted. The probabilities that an MSS can use clow and
chigh are both 0.5. Then, the probability that m MSSs can use
clow is

Prob[ÑL = m] = Cn
m × (Prob[transmission rate = clow])m

× (Prob[transmission rate = clow])n−m

=
n!

m!(n − m)!
× (0.5)m × (0.5)n−m

=
(0.5)n × n!
m!(n − m)!

.

In addition, the probability that an MSS Mi has urgent
data is

Prob
[
IU
i = 1

]
= (1 − γ)TD−1

where TD is the deadline of real-time data that will be dropped
(in frames). Note that, because the scheduler will serve all
queued real-time data from the top γn MSSs in each frame,
after (TD − 1) frames, the probability of an MSS with urgent
data is no more than (1 − γ)TD−1. In our simulation, we set
γ = 0.3, TD = 6 frames, and R = 200 bits/frame.

Fig. 17 shows the analysis and simulation results. When B <
4, the throughput loss L decreases, but the network throughput
increases as B increases. On the other hand, when B > 8, L
increases, but the network throughput decreases as B increases.

This result indicates that the minimum value of L by analysis
appears at the range of B = [4, 8], whereas the maximum
network throughput by simulation appears at the same range
of B = [4, 8]. Thus, our analysis and simulation results are
consistent. Based on Fig. 17, we suggest setting B = 4 ∼ 8
to maximize the network throughput and minimize L, which
matches the results in Fig. 15. Therefore, our analysis can
validate the simulation results and provide guidelines for the
setting of the burst allocator.

VII. CONCLUSION

In this paper, we have proposed a cross-layer framework
that covers the issues of overhead reduction, real-time and
non-real-time traffic scheduling, and burst allocation in an
IEEE 802.16 OFDMA network. Compared with existing so-
lutions, our framework is more complete, because it involves
codesigning both the two-tier priority-based scheduler and the
bucket-based burst allocator. Our scheduler reduces potential
IE overheads by adjusting the number of MSSs to be served.
With a two-tier priority rules, it guarantees real-time traffic
delays, ensures satisfaction ratios of non-real-time traffic, and
maintains long-term fairness. On the other hand, our burst
allocator incurs low complexity and guarantees a bounded num-
ber (k + (Y/Δbkt) − 1) of IEs to accommodate data bursts.
In addition, it follows the priority rule from the scheduler to
avoid packet dropping of urgent real-time traffic. We have also
analyzed the impact of the number of buckets on the throughput
loss. Through both analyses and simulations, we show how we
can adjust the system parameters to reduce IE overheads, im-
prove subframe utilization, and enhance network throughput. In
addition, these results verify that such a cross-layer framework
significantly improves the resource allocation and utilization
of downlink communications in WiMAX networks. For future
work, we will investigate how we can optimize the scheduler
and burst allocator for some particular cases, e.g., various traffic
characteristics and MSS densities. In addition, we will consider
extending our results for WiMAX relay networks.

REFERENCES

[1] IEEE Standard for Local and Metropolitan Area Networks Part 16—Air
Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for Combined
Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE
Std. 802.16e-2005, 2006.

LIANG et al.: OVERHEAD REDUCTION, TRAFFIC SCHEDULING, AND BURST ALLOCATION IN OFDMA NETWORKS 1755

[2] B. Rong, Y. Qian, and H. H. Chen, “Adaptive power allocation and call ad-
mission control in multiservice WiMAX access networks,” IEEE Wireless
Commun., vol. 14, no. 1, pp. 14–19, Feb. 2007.

[3] K. Sundaresan and S. Rangarajan, “Efficient algorithms for leveraging
spatial reuse in OFDMA relay networks,” in Proc. IEEE INFOCOM,
2009, pp. 1539–1547.

[4] Y. Ben-Shimol, I. Kitroser, and Y. Dinitz, “Two-dimensional mapping
for wireless OFDMA systems,” IEEE Trans. Broadcast., vol. 52, no. 3,
pp. 388–396, Sep. 2006.

[5] H. S. Kim and S. Yang, “Tiny MAP: An efficient MAP in IEEE
802.16/WiMAX broadband wireless access systems,” Comput. Commun.,
vol. 30, no. 9, pp. 2122–2128, Jun. 2007.

[6] Y. Ma and D. Kim, “Rate-maximization scheduling schemes for uplink
OFDMA,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3193–3205,
Jun. 2009.

[7] J. Shi and A. Hu, “Maximum utility-based resource allocation
algorithm in the IEEE 802.16 OFDMA system,” in Proc. IEEE ICC, 2008,
pp. 311–316.

[8] R. Pitic and A. Capone, “An opportunistic scheduling scheme with min-
imum data-rate guarantees for OFDMA,” in Proc. IEEE WCNC, 2008,
pp. 1716–1721.

[9] N. A. Ali, M. Hayajneh, and H. Hassanein, “Cross-layer scheduling algo-
rithm for IEEE 802.16 broadband wireless networks,” in Proc. IEEE ICC,
2008, pp. 3858–3862.

[10] J. Kim, E. Kim, and K. S. Kim, “A new efficient BS scheduler and
scheduling algorithm in WiBro systems,” in Proc. IEEE ICACT , 2006,
vol. 3, pp. 1467–1470.

[11] T. Wang, H. Feng, and B. Hu, “Two-dimensional resource allocation for
OFDMA system,” in Proc. IEEE Int. Conf. Commun. Workshops, 2008,
pp. 1–5.

[12] T. Ohseki, M. Morita, and T. Inoue, “Burst construction and packet-
mapping scheme for OFDMA downlinks in IEEE 802.16 systems,” in
Proc. IEEE GLOBECOM, 2007, pp. 4307–4311.

[13] X. Perez-Costa, P. Favaro, A. Zubow, D. Camps, and J. Arauz, “On the
challenges for the maximization of radio resources usage in WiMAX
networks,” in Proc. IEEE CCNC, 2008, pp. 890–896.

[14] A. Erta, C. Cicconetti, and L. Lenzini, “A downlink data region allocation
algorithm for IEEE 802.16e OFDMA,” in Proc. IEEE Int. Conf. Inf.,
Commun. Signal Process., 2007, pp. 1–5.

[15] T. Kwon, H. Lee, S. Choi, J. Kim, D. H. Cho, S. Cho, S. Yun,
W. H. Park, and K. Kim, “Design and implementation of simulator based
on cross-layer protocol between MAC and PHY layers in WiBro com-
patible IEEE 802.16e OFDMA system,” IEEE Commun. Mag., vol. 43,
no. 12, pp. 136–146, Dec. 2005.

[16] Intel ships its next-generation WiMAX chip with support for mobile
networks. [Online]. Available: http://www.intel.com/pressroom/archive/
releases/2006/20061011comp.htm

[17] Y. Tcha, M. S. Kim, and S. C. Lee, “A compact MAP message to provide
a virtual multiframe structure for a periodic fixed-bandwidth assignment
scheme,” IEEE Std. C802.16e-04/368r2, 2004.

[18] J. Kim and D. H. Cho, “Piggybacking scheme of MAP IE for minimizing
MAC overhead in the IEEE 802.16e OFDMA systems,” in Proc. IEEE
VTC, 2007, pp. 284–288.

[19] K. Kim, Y. Han, and S. L. Kim, “Joint subcarrier and power allocation in
uplink OFDMA systems,” IEEE Commun. Lett., vol. 9, no. 6, pp. 526–
528, Jun. 2005.

[20] L. Gao and S. Cui, “Efficient subcarrier, power, and rate allocation
with fairness consideration for OFDMA uplink,” IEEE Trans. Wireless
Commun., vol. 7, no. 5, pp. 1507–1511, May 2008.

[21] X. Zhu, J. Huo, S. Zhao, Z. Zeng, and W. Ding, “An adaptive resource
allocation scheme in OFDMA-based multiservice WiMAX systems,” in
Proc. IEEE ICACT , 2008, pp. 593–597.

[22] X. Zhu, J. Huo, X. Xu, C. Xu, and W. Ding, “QoS-guaranteed scheduling
and resource allocation algorithm for IEEE 802.16 OFDMA system,” in
Proc. IEEE ICC, 2008, pp. 3463–3468.

[23] D. M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” J. Comput. Netw. ISDN,
vol. 17, no. 1, pp. 1–14, Jun. 1989.

[24] Channel models for fixed wireless applications. [Online]. Available:
http://www.ieee802.org/16/tga/docs/80216a-03_01.pdf

[25] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the random
waypoint mobility model for wireless ad hoc networks,” IEEE Trans.
Mobile Comput., vol. 2, no. 3, pp. 257–269, Jul.–Sep. 2003.

[26] H. S. Wang and N. Moayeri, “Finite-state Markov channel—A useful
model for radio communication channels,” IEEE Trans. Veh. Technol.,
vol. 44, no. 1, pp. 163–171, Feb. 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

