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Abstract—This work addresses the mini-slot scheduling prob-
lem in IEEE 802.16d wireless mesh networks (WMNs). A practical
mini-slot scheduling needs to take into account following issues:
the transmission overhead, the scheduling complexity, and the
signaling overhead to notify the scheduling results to subscriber
stations. We focus in a grid-based WMN, which is the most
recommended topology due to its high capacity and connectivity.
In this paper, we propose scheduling schemes featured by low
complexity and low signaling overhead. The proposed schemes
help find periodical and regular schedules, which can balance
between transmission overhead and pipeline efficiency. They can
achieve near-optimal transmission latencies. Simulation results
show that our schemes outperform other schemes, especially
when the network size is larger.

Index Terms—IEEE 802.16, routing tree, mini-slot scheduling,
WiMAX, wireless mesh network.

I. INTRODUCTION

The IEEE 802.16 standard [1] has been proposed to achieve
wide-range wireless broadband access. The standard is based
on a common MAC (medium access control) protocol com-
pliant with different physical-layer specifications. The pro-
tocol supports the point-to-multipoint (PMP) and the mesh
modes. The IEEE 802.16 wireless mesh networks (WMNs)
are widely selected as wireless backbones for broadband data
access [2]. In a WMN, the base station (BS) is directly
connected to the wired backhaul to provide its subscriber
stations (SSs) Internet access. These SSs can be connected
to the BS in a multi-hop manner. The wireless access of
WMNs follows a TDMA (time division multiple access) based
MAC protocol, built on the OFDM (orthogonal frequency
division multiplexing) physical layer. In [2], it has been shown
that TDMA has better throughput than CSMA/CA (carrier
sense multiple access with collision avoidance) used in IEEE
802.11 networks [3], especially when the network is in heavy
traffic load. In such WMNs, scheduling is a critical issue that
may significantly impact the system performance. It involves
constructing a scheduling tree from the network and planning
wireless resources for SSs to send/receive their data to/from
the BS.

The wireless resource on each link in an IEEE 802.16d
WMN is a sequence of fixed-length time slots, called mini-
slots. However, before actually transmitting on a mini-slot,
a sender must wait for a fixed number of mini-slots, called
transmission overhead, to avoid collisions [4], [5]. This is
a guard time to synchronize and tolerate the air-propagation

delay of the transmission occurring on the mini-slot right
before the aforementioned overhead mini-slots. Once starting
its actual transmission, a node may send on several consecutive
mini-slots. References [6], [7] observe that if the (actual)
transmission is too short, most of the time will be occupied
by the transmission overhead. On the other hand, if the
transmission is too long, it may hurt fairness and pipeline
efficiency (i.e., there could be less concurrent transmissions in
the pipelines). So, a good scheduling should balance between
the ratio of transmission overhead and the pipeline efficiency
by adjusting the sizes of (actual) transmissions. In this work,
we propose to use three metrics to evaluate a scheduling
scheme (i) the total latency (i.e., the time to deliver all data
to BS), (ii) the scheduling complexity, and (iii) the signaling
overhead (i.e., the cost to notify all SSs their schedules).

In the literature, several works [8], [9] have studied the
scheduling problem in WMNs. Reference [8] considers that
each transmission can transmit one piece of data and tries to
maximize pipeline efficiency to minimize the total transmis-
sion time. However, the results in [8] are not optimal when the
transmission overhead is non-zero. Considering transmission
overheads, [9] proposes to always find the maximal number of
concurrent transmission links in each round. This problem has
been shown to be NP-hard [10]. Although it performs close
to optimum, its computational complexity is too high to be
used by the BS. Also, the signaling overhead incurred by [9]
is quite high because the scheduling patterns for SSs are not
regular.

In this paper, given the uplink loads of all SSs in a WMN,
we consider the problem of scheduling their traffics such that
the total latency to transmit all data to the BS is minimized
and the scheduling complexity and signaling overhead are as
low as possible. (The scheduling in the downlink direction is
similar, so we focus in only one direction.) In our approach,
we first try to find the optimal transmission size for the given
loads to strike a balance between the ratio of transmission
overhead and the pipeline efficiency. We observe that when
the actual transmission size is small, the pipeline could be full
for the most of the time, but the transmission overhead could
occupy too much time. On the other hand, when the actual
transmission size is too large, the above problem may be fixed,
but the pipelines may not be filled with sufficient concurrent
transmissions, thus hurting spatial reuse. We then assign the
transmissions of each link in a periodic and regular manner
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with a proper transmission size. Since our scheduling is
periodical, the signaling overhead to inform each SS becomes
low. To the best of our knowledge, our work is the first one
with these properties. Our schemes incur low complexity and
the approach is applicable to most regular topologies, such
as chain and grid networks, which have been proved to have
many applications and outperform random topologies in terms
of their achievable network capacity, connectivity maintenance
capability, and coverage-to-node ratios (about two times that of
random topologies) [11]. We remark that the chain topology is
a special case of grid topologies, which is the most suitable for
long-thin areas, such as railways and highways [8]. Simulation
results are provided to verify our claims on these topologies.

The rest of this paper is organized as follows. Section II
formally defines our mini-slot scheduling problem. Section III
presents our schemes. Simulation results are given in Sec-
tion IV. Section V concludes this paper.

II. PROBLEM DEFINITION

We are given one BS and n SSs, SSi, i = 1..n. These BS
and SSs are deployed in a chain and grid topologies, as shown
in Fig. 1. The BS only can be placed at the end point of the
topology. All nodes share the same communication channel.
The amount of data that a node can transmit per mini-slot is d
bytes. Since the topology is regular, two nodes are allowed to
transmit concurrently if they are at least H hops away from
each other. We consider the uplink scheduling. So we abstract
the uplink mini-slots of the system by concatenating them
together into an infinite sequence and ignore the downlink
mini-slots. Each SSi has a traffic demand of pi bytes. Our goal
is to construct a scheduling tree T such that each SSi receives
a collision-free schedule Ti and the total time to deliver all
SSs’ data to the BS is as less as possible. In our work, we
impose that the schedule Ti for each SSi should be periodical
as defined below.

(a) (b)

chain grid

BS
SS
link

Fig. 1. (a) A 5-node chain topology and (b) a 4 × 4 grid topology.

The transmission schedule is formulated as follows. For
each SSi and each mini-slot, we use a character in {0, 1, h}
to represent its state. A ‘0’ means that the mini-slot is idle for
SSi. A ‘1’ means that SSi can transmit at most d bytes in this
mini-slot. An ‘h’ means that SSi is preparing to transmit (i.e.,
this mini-slot is considered a transmission overhead). To start
an actual transmission, a SS must wait for α mini-slots of state
‘h’ so as to synchronize and tolerate the air-propagation time
of the transmission occurring right before the overhead mini-
slots, where α is a system-dependent constant. For example,

when α = 2, we can use a string ‘000hh1111’ to indicate that
a SS is idle in the first three mini-slots, waits for two overhead
mini-slots, and then transmits for four mini-slots.

In this work, we enforce that all SSs’ transmission schedules
are periodical and regular. Specifically, all SSs’ schedules have
the same of period of ρ. Each SS’s transmission schedule has
the format of (0ahα1b0c)∗, where a ≥ 0, b > 0, and c ≥ 0
are integers and a + α + b + c = ρ. Symbol ‘∗’ means a
number of repetitions of the string in parentheses until all
necessary data is delivered. Different SSs may have different
patterns. For example, Fig. 2 shows a chain network with one
BS and seven SSs. Only SS7 has a traffic demand of p7 = 4
bytes. Assuming α = 1, d = 1, and H = 3, we show three
schedules. In the first schedule, b = 1 mini-slot of data is
transmitted in each cycle. The other parameters a = 0/2/4
and c = 4/2/0, respectively. So there are three types of
schedule patterns: (h10000)∗, (00h100)∗, and (0000h1)∗. In
the second schedule, b = 2 mini-slots in each cycle; a = 0/3/6
and c = 6/3/0, respectively. In the third schedule, b = 4;
a = 0/5/10/15/20/25/30 and c = 30/25/20/15/10/5/0,
respectively (however, only one cycle is needed). The second
schedule is the most efficient. Our goal is to find the most
efficient regular schedules.
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Fig. 2. Transmission schedules for nodes in a chain network (idle state ‘0’
is omitted in the drawing).

III. SCHEDULING AND TREE CONSTRUCTION SCHEMES

Next, we present our scheduling schemes for chain and grid
topologies. We first consider the chain topology with different
locations of source SSs on the chain. Then we use these results
as basic components to solve the scheduling problem for grid
topology. Given a grid network, we first construct a comb-
like tree. The comb-like tree is decomposed into individual
chains, each of which can be scheduled using the previous
chain solutions. Below, we present two solutions for a chain,



from simpler to more complicated cases. Then, we combine
these solutions for the grid topology.

A. A Chain with A Single Request

Since there are only one source and one destination, we can
model the chain, without loss of generality, as a path SSn →
SSn−1 → ... → SS1 → BS such that only SSn has a non-
zero demand pn. To increase parallelism, we partition these
SSs into k concurrent transmission-able groups, where k = H
if n ≥ H and k = n otherwise (recall that H is the least
spatial-reuse distance). Specifically, we define group Gj , j =
0..k − 1, as follows:

Gj = {SSi| (n − i) mod k = j, i = 1..n}. (1)

Nodes in the same group have the same schedule. We simply
denote by Tj the transmission schedule of Gj . Since we are
interested in having regular schedules, we enforce each Gj to
have a schedule of the format (0aj hα1b0cj )∗, where aj and
cj are group-specific constants and b is a fixed constant for all
groups, such that the following conditions hold: (i) a0 = 0,
(ii) aj +α+b+cj = ρ is a constant and ρ is the period for all
groups, and (iii) aj + α + b = aj+1, j = 0..k − 2. Conditions
(iii) means that each Gj+1 is obtained from Gj by shifting the
latter to the right by (α + b) positions. Given any b, we can
compute the total latency L1(n, pn, b) to deliver SSn’s data
to the BS:

L1(n, pn, b) =

⎧⎨
⎩

� pn

b·d� · H · (α + b)
+ (n − H) · (α + b), if n ≥ H

� pn

b·d� · n · (α + b), otherwise.
(2)

When n ≥ H , each cycle has a length of H · (α + b) mini-
slots. It takes � pn

b·d� cycles for SSn to transmit its last piece of
data. At the end of the � pn

b·d�th cycle, the last piece of SSn’s
data will arrive at node SSn−H . Then it takes another (n−H)
hops, each requiring (α + b) mini-slots, to travel to the BS.
This gives the upper term in Eq. (2). For the lower term, the
derivation is similar.

Given fixed n, pn, and α, we are interested in knowing the
optimal value of b, denoted by b̂, that gives the minimum
latency L1. To do so, we need to confine that pn is divisible
by b · d in Eq. (2). To minimize Eq. (2), we can let L1 = 0
and take the first-order derivative of b. This leads to

b̂ =

{ √
α·pn·H
d(n−H) , if n ≥ H

pn

d , otherwise.
(3)

The value of b̂ in Eq. (3) is a real. The best value may appear in
�b̂� or �b̂�. Plugging this into Eq. (2), we can get the minimum
L̂1.

B. A Chain with Multiple Requests

Next, we consider a path SSn → SSn−1 → ... → SS1 →
BS with multiple non-zero-load nodes. Without loss of gen-
erality, we assume SSn’s load is non-zero. Similar to Sec. III.
A, we divide SSs into k groups Gj , j = 0..k − 1. Again, we
enforce Gj’s schedule with the format (0aj hα1b0cj )∗, where
aj and cj are group-specific constants and b is a fixed constant

for all groups, such that the following conditions hold: (i)
a0 = 0, (ii) aj + α + b + cj = ρ is a constant and ρ is the
period for all groups, and (iii) aj +α+b = aj+1, j = 0..k−2.
Conditions (iii) means that each Gj+1 is obtained from Gj by
shifting the latter to the right by (α + b) positions. To find an
appropriate value of b, we imagine that all data are originated
from SSn by assuming that all SSs have zero loads except
that SSn has a load p′n =

∑n
i=1 pi. Then we plug p′n into pn

in Eq. (3) to find the best b̂.
With this b̂, we need to find the latency

L2(n, p1, p2, ..., pn, b̂) to deliver all SSs’ data on the
original path. The transmission is similar to a pipeline
delivery, but with some bubbles sometimes. To model the
pipeline behavior, we do not take a ‘micro-view’ on the
system. Instead, we take a ‘macro-view’ to partition the path
into n′ = �n

k � trains, by traversing from the end (i.e., SSn)
toward the head (i.e., SS1) of the path by grouping, every
consecutive k SSs are as one train (when n is not divisible
by k, the last few SSs are grouped into one train). We make
two observations on these trains.

Observation 1: In each cycle, a train can deliver up to b · d
bytes of data to the next train, no matter where these data are
located in which SSs of the train.

However, a bubble appears when a train does not have
sufficient data to be delivered to the next train. Below, we
show when bubbles will not appear.

Observation 2: Except the first n′ = �n
k � cycles, the BS

will continuously receive b · d bytes of data in every cycle
until no more data exists in the path.

Observation 2 implies that if we can derive the network
state at the end of the n′th cycle, the latency can be easily
derived. To derive the network state after each cycle, let Si =
(w(i)

1 , ..., w
(i)
n′ ) be the network state at the end of the ith cycle,

i = 0..n′, where w
(i)
j is the total load remaining in the jth

train at the end of the ith cycle. Initially, w
(0)
j is the total

loads of those SSs in the jth train. Then we enter a recursive
process to find Si+1 from Si, i = 0..n′ − 1 as follows:

w
(i+1)
j =

⎧⎪⎨
⎪⎩

max{w(i)
j − bd, 0}

+ min{w(i)
j−1, bd}, j = 2..n′

max{w(i)
j − bd, 0}, j = 1.

(4)

Eq. (4) is derived based on observation 1. In the upper equality,
the first term is the remaining load of the jth train after
subtracting delivered data and the second term is the amount
of data received from the previous train. The lower equality
is delivered similarly.

According to observation 2, after the n′th cycle, the BS will
see no bubble until all data on the path is empty and it will

take �
∑ n′

j=1 w
(n′)
j

b·d � more cycles to deliver all remaining data.
This leads to

L2(n, p1, p2, ..., pn, b̂) = (�
∑ n′

j=1 w
(n′)
j

b·d � + n′) · ρ, (5)

where ρ = k ·(α+b) is the period of cycles. As has been clear
from the context, previous b̂ in Eq. (5) is just an estimation.



The optimal b may appear at a point to the left of b̂1. One
may repeatedly decrease b̂ to find a better value.

C. A Grid Topology

Here we show how to extend our scheduling schemes to a
grid topology. The scheduling is built on top of the previous
chain scheduling results. First, we will construct a comb-like
tree from the grid network. The comb-like tree is further
decomposed into horizontal and vertical chains. For example,
Fig. 3(a) shows how such tree is formed. One of the chain
passing the BS is called the trunk chain, and the others are
called branch chains. Then, we schedule all branch chains
to transmit their data to the trunk chain. Branch chains are
divided into H groups and we schedule these groups to
transmit sequentially. Finally, we schedule SSs in the trunk
chain to transmit their data to the BS.

1321321

(b)

BS

(a)

trunk chain

branch chains
...

BS

Fig. 3. (a) A comb-like tree on the 5 × 7 grid topology. (b) The grouping
of branch chains when H = 3.

Details of the scheme are as follows. We consider a X ×Y
grid topology. Without loss of generality, we assume X ≤ Y
and we decompose the tree into Y vertical chains (branch
chains) and one horizontal chain (trunk chain). Intuitively,
the trunk chain is larger than the branch chains. There are
two phases. In the first phase, branch chains are scheduled
to transmit. These chains are divided into H groups. Since
two parallel branch chains with a distance of H hops can
transmit concurrently without interference, we assign a number
between 1 to H to each branch chain in rotation from left to

1The current b̂ is the upper bound of the optimal value because we
previously imagine that all data are originated form SSn.

right. Chains marked by the same number are in the same
group. Then we schedule each group of chains to transmit
sequentially. For example, when H = 3, in Fig. 3(b), the
seven branch chains are numbered by 1..3 in rotation. Then
we let group 1 to transmit until all data are forwarded to
the trunk chain, followed by group 2, and then group 3 in
a similar way. Since chains in the same group can transmit
individually without interference, we can apply the optimal b̂
for each chain as formulated above. The latency of phase one
is the sum of all groups’ latencies. In the second phase, data
are already all aggregated at the trunk chain. So, we can apply
the easier result again to schedule nodes’ transmissions on the
trunk chain.

IV. PERFORMANCE EVALUATION

In this section, we present our simulation results to verify
the effectiveness of the proposed schemes. The simulator is
written in JAVA language. Unless otherwise stated, the default
parameters used in our simulation are d = 1 byte, α = 3
mini-slots [4], and H = 3 hops.

We compare our scheme against two schemes, namely the
basic IEEE 802.16d mesh operation [1] and the BGreedy
scheme [8]. The basic IEEE 802.16d mesh operation as-
signs the cumulated data plus a transmission overhead as the
transmission for each SS without any spatial reuse. BGreedy
scheme makes each transmission as short as possible to
maximize pipeline efficiency. Then, except BGreedy scheme,
we construct our comb-like tree for all other schemes because
they do not discuss the routing tree construction in their works.

In the following results, we use the total latency to compare
different schemes. We simulate two scenarios: a chain with
multiple requests (SN1) and a grid with multiple requests
(SN2). Unless otherwise stated, we use a 15-node chain and
a 7 × 7 grid for the last two scenarios.

A. Impact of Network Size

First, we investigate the effect of network size on the total
latency (in mini-slots). Fig. 4(a) and (b) show our results for
SN1 and SN2. Each SS has a randomly traffic demand from 0
to 20 bytes. Clearly, the total latencies of all schemes increase
as the network size increases. Ours has the best performance.
This indicates the necessity of balancing between transmission
overhead and pipeline efficiency. This effect is more significant
when the network size is larger. In addition, it is to be noted
that the schedules generated by our schemes are regular and
periodical, which is not so for other schemes.

B. Impact of Transmission Overhead

Next, we investigate the impact of transmission overhead
(α) on total latency. Fig. 5 shows the results. The average
traffic load of each station is 10 bytes. Naturally, the total
latencies of all schemes increase as α increases. In both
SN1 and SN2, our schemes significantly outperform the other
schemes in all values of α. We see that a larger α will favor our
schemes as compared to other schemes because our schemes
can reduce the ratio of transmission overhead, especially when
the transmission overhead is larger.
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Fig. 4. The impact of network size on total latency in scenarios SN1 and
SN2.

V. CONCLUSIONS

This paper addresses the scheduling problem in a grid-
based WMN. Most existing solutions try to maximize the
pipeline efficiency factor; however, they disregard the cost of
transmission overhead. Our approach arranges regular patterns
for SSs to transmit repeatedly. Through finding the optimal
transmission size for these patterns, the transmission overhead
and pipeline efficiency can be balanced such that the total
latency can be minimized. With these features, our schemes
incur much low computational cost and allow an easy imple-
mentation of the scheduler. Simulation results also show that
our schemes outperform other schemes, especially when the
network size is larger.
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