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Abstract—Power management is one of the most important
issues in IEEE 802.16e wireless networks. In the standard, it
defines three types of power saving classes (PSCs) for flows with
different QoS characteristics. It allows a mobile device to turn
off its wireless radio when all its PSCs are in sleep states. In
this paper, we consider the scheduling of power saving classes
of type II in an IEEE 802.16e network with a BS and multiple
MSSs (mobile subscriber stations). Previous work proposes to
enforce all MSSs to have the same sleep cycle, thus leading to
higher energy cost for those MSSs with less strict delay bounds.
We observe that if the sleep cycles of MSSs can be assigned
according to their delay bounds, MSSs can significantly reduce
their duty cycles. We propose an efficient tank-filling algorithm,
which is standard-compliant and can allocate resources to MSSs
according to their QoS characteristics with the least number of
active frames. Simulation results verify that our algorithm incurs
less power consumption and leads to higher bandwidth utilization
than the previous schemes.

Index Terms—IEEE 802.16e, power management, power saving
class (PSC), quality of service (QoS), WiMAX, wireless network.

I. INTRODUCTION

The IEEE 802.16e [1], [2] is a promising standard for
providing broadband wireless access to mobile subscriber
stations (MSSs) with high mobility. Like most other wireless
mobile systems, how to conserve energy for battery-powered
MSSs is a critical issue in IEEE 802.16e. In IEEE 802.16e,
three types of PSCs (power saving classes) are defined. A PSC
can be associated to one or more flows in an MSS. When a
PSC is activated, it repeatedly switches between sleep and
listening windows, where only during a listening window, can
its member flows transmit/receive data. When all PSCs of an
MSS are in their sleep windows, the MSS can turn off its radio
transceiver to save energy.

The three types of PSC in IEEE 802.16e are reviewed
below. In type I, the sizes of listening windows are fixed
while the sizes of sleep windows grow exponentially when
no data arrives. Once any traffic arrives, the PSC will be
deactivated, until all queued traffics are delivered. So, PSCs of
type I are more suitable for non-real-time traffic variable-rate
(NRT-VR) and best-effort (BE) flows. In type II, the sizes of
both listening and sleep windows are fixed. However, unlike
type I, the arrival of traffics will not deactivate the PSC. This
type II is more suitable for unsolicited grant service (UGS)
and real-time traffic variable-rate (RT-VR) flows. In type III,
it is only valid for one sleep window, after which the PSC is

deactivated. This type is more suitable for multicast services
and management operations. Among these three types, we
are more interested in PSC of type II because one may
dynamically adjust such PSCs’ sleeping behaviors to maximize
MSSs’ energy efficiency.

In the literature, performance analyses for PSCs in an IEEE
802.16e network are conducted in [3]–[5]. For an MSS-BS
pair, [6]–[8] focus on the design of PSCs of type I. How to
adaptively adjust the initial sleep window is addressed in [6].
Assuming that the distribution of the response packet arrival
time is known, [7] proposes a decision algorithm such that
the MSS can stay asleep until response packets are expected
to arrive. In [8], how to adjust the minimum and the maximum
sleep windows is discussed. For type II, assuming that PSCs
are already given, a Maximum Unavailability Interval scheme
is proposed in [9] for selecting the optimal start frame for
each PSC to maximize its unavailable duration. References
[10], [11] propose to apply one single PSC to accommodate all
real-time flows in an MSS; parameters of the PSC are selected
to meet the flow with the strictest bandwidth and packet delay
bound. Considering multiple MSSs under the same BS, [12]
proposes a Longest-Virtual-Burst-First (LVBF) scheme, which
always selects a primary MSS in the burst mode to serve and
only gives the necessary bandwidth to the other MSSs to meet
their requirements. However, it does not take delay constraints
of flows into consideration. Reference [13] proposes to serve
each MSS by a PSC of type II, but all of them share the
same sleep cycle. This results in PSCs without overlapping in
their active frames. However, since the common sleep cycle
is bounded by the strictest delay bound of all MSSs, this way
causes some MSSs to have too many active frames.

In this work, we focus on PSCs of type II. Given multiple
MSSs under a BS, we consider the arrangement of PSCs for
these MSSs according to their delay bounds and bandwidth
requirements. This involves not only the selection of each
PSC’s parameters, but also the selection of their listening
windows to reduce the overall active frames of MSSs. We
propose a tank-filling algorithm, which regards the resources
of the BS as a sequence of periodical tanks, each being able to
provide a fixed amount of bandwidth. The result outperforms
that of [13] because we relax the constraint that all PSCs
should share the same sleeping cycle. Simulation results are
provided to verify these claims.

The rest of this paper is organized as follows. Section II



gives some motivations and formally defines the problem. Our
tank-filling algorithm is presented in Section III. Simulation
results are shown in Section IV. Section V concludes this
paper.

II. MOTIVATION AND PROBLEM DEFINITION

In this section, we first motivate our work by discussing
previous work [13]. Then we formally define our problem. In
[13], assuming that there are multiple MSSs, each to be served
by a PSC of type II, it enforces each MSS to adopt a PSC of the
same sleep cycle length. The sleep cycle is selected to meet the
MSS with the tightest delay bound. While the solution is easy
to implement, this is too restricted and may incur too many
active frames to some MSSs. Fig. 1 shows an example with
two MSSs M1 and M2, which have data arrival rates of τ1 =
0.2Ω/frame and τ2 = 0.075Ω/frame and delay bounds of D1 =
4 (frames) and D2 = 12 (frames), respectively, where Ω is the
capacity of a frame. Fig. 1(a) shows the schedule computed by
[13]. Since min(D1, D2) = 4, in every four frames, M1 and
M2 will be active for one frame and be allocated of bandwidths
τ1 × 4 = 0.8Ω and τ2 × 4 = 0.3Ω, respectively, per frame.
Also, their active frames are shifted to avoid overlapping. As
Fig. 1(b) shows, by assigning each MSS a sleep cycle adaptive
to its delay bound, M1 and M2 can have sleep cycles of 4
and 12 frames, respectively, where in each active frame, they
receive τ1 × 4 = 0.8Ω and τ2 × 12 = 0.9Ω of bandwidths.
Still we can manage to incur no overlapping among their active
frames, so M2’s duty cycle is significantly reduced.

The above observation motivates us to study a power
management problem as follows. We consider a BS serving
n MSSs Mi, i = 1..n. Each Mi has a data arrival rate of
τi bits/frame and each data arrival has a delay bound of Di

frames. Assuming the available bandwidth per frame is Ω bits
and

∑
i=1..n

τi ≤ Ω, the goal is to assign each Mi a PSC of

type II with a sleep cycle of TS
i , a listening window of TL

i ,
and an offset of TO

i , such that TS
i ≤ Di and the total number

of active frames for all MSSs is minimized. Also, there is
implicit requirement that whenever a listening window of an
MSS arrives, the BS should be able to serve all its backlog
data that would be overdue otherwise.

III. THE PROPOSED TANK-FILLING SCHEME

In an IEEE 802.16e wireless network, the BS is responsible
for scheduling the sleep frames of the MSSs associated with
it. Initially, each Mi, i = 1..n, will send a request to the BS
containing its Di. We propose a tank-filling (TF) algorithm for
the BS to determine the following parameters for each Mi:
(1) (TS

i , TL
i , TO

i ) and (2) amount of bandwidth Bi,j allocated
to Mi in the j-th active frame in each listening windows,
j = 1..TL

i (noth that Bi,j is a real number between 0 and 1).
Then these parameters are sent to each Mi. Then these MSSs
will behave accordingly.

Our TF algorithm considers the resources of the BS as a
sequence of repetitive tanks, each being able to hold Ω amount
of water per frame. It maintains an important property that
TS

i of each Mi is an integer multiple of its previous TS
i−1 for

each i = 2..n. So, we call TS
1 as the basic cycle, or simply

Tbasic, of the network. Intuitively, this property helps make
MSSs’ sleeping behaviors regular and increase the overlapping
of their listening windows. Assuming that TS

1 , TS
2 , ..., TS

n , are
known (recall that TS

1 = Tbasic), the resources controlled by

the BS are represented by an array R[1 : T S
n

Tbasic
, 1 : Tbasic],

where each R[k, �], k = 1.. T S
n

Tbasic
and � = 1..Tbasic, is to

record the amount of remaining resource in the �-th frame
of the k-th basic cycle. Initially, R[k, �] = Ω is regarded as
an empty tank. Gradually, we will fill in more data to each
tank. Below, we present our TF algorithm in three steps. (A)
Assuming that Tbasic is known, we will choose TS

i of each
Mi, i = 1..n. (B) Determine TL

i , TO
i , and Bi,j , j = 1..TL

i ,
of each Mi, i = 1..n. (C) In the end, we will come back and
search for the most energy-efficient basic cycle Tbasic.

A. Determining TS
i of Mi

To decide TS
i , we first sort MSSs by their delay bounds.

Without loss of generality, let D1 ≤ D2 ≤ · · · ≤ Dn.
Supposing that TS

1 = Tbasic is known and TS
1 ≤ D1, we

set TS
i , i = 2..n, as follows:

TS
i = TS

i−1 ×
⌊

Di

TS
i−1

⌋
. (1)

It is not hard to see that Eq. (1) implies TS
i ≤ TS

i−1 × Di

T S
i−1

=

Di. So, TS
i guarantees the delay bound of Mi. In fact, Eq. (1)

also ensures that TS
i is an integer multiple of TS

i−1.
Lemma 3.1: Eq. (1) guarantees that each TS

i is an integer
multiple of TS

i−1, i = 2..n, and TS
i ≤ Di, i = 1..n.

B. Scheduling TL
i , TO

i , and Bi,j of Mi

Recall the array R[·, ·], which represents the resource of the
BS. We will sequentially allocate resources for Mi, i = 1..n,
by updating R[·, ·]. Our algorithm is called ‘tank-filling’ when
Mi is being considered, we will test every ‘starting’ tank in R
by sequentially filling its data to the empty part of that tank
and continuing to next tank in R, until all the data is drained.
Note that here R is regarded as TS

n tanks is a row-major way.
Among these testing starting tank, the one resulting in the least
active frames to Mi is selected. The detail procedure for Mi

is follows, where i starts from 1 and end at n:

a) Calculate the bandwidth requirement of Mi per TS
i

by γi = τi × TS
i .

b) When Mi enters the step, R[·, ·], if regarded in a
row-major order, has a period of TS

i−1 (see that note
at the end of step (d)). So we let j = 1..TS

i−1 as
the potential indices of the starting tanks and run the
following steps for each j.

i) Starting from the j-th tank in R[·, ·], we
fill in the bandwidth requirement γi of Mi

into the empty part of the tank. If there
is sufficient space for γi, we are done;
otherwise we fill the j-th tank up proceed to
the (j +1)-th tank. We continue the process
until all γi is satisfied.
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Fig. 1. Sleep scheduling for two MSSs M1 and M2 using (a) a common sleep cycle and (b) different sleep cycles.

ii) Let f(j) be the number of tanks that have
been used to serve Mi’s data. This is re-
garded as the cost function to start with the
j-th tank.

c) Among all possible js in step (b), let j∗ be the index
which induces the smallest cost f(·). We then place
Mi’s demand starting from the j∗-th tank according
to above procedure. Note that in case of a tie, we
will give priority to the one which leaves the least
remaining resource in the last frame where Mi’s
demand is placed.

d) Then we set TL
i = f(j∗) and TO

i = j∗. Also, we
set Bi,j to the bandwidth allocated to Mi in the
j-th tank, j = 1..TS

n , and subtract Bi,j from the
corresponding entry in R (note that the allocation in
step (b) should be repeated T S

n

T S
i

for array R, so R

has a period of TS
i at the end of this step).

As noted in step (d), after the allocation of Mi, array R has
a period of TS

i . This would simplify our next allocation for
Mi+1 since TS

i+1 is an integer multiple of TS
i .

Example 1: Fig. 2 shows an example of step B. There are
5 MSSs M1, M2, M3, M4, and M5 with sleeping cycles of
TS

1 = Tbasic, TS
2 = 2Tbasic, TS

3 = 2Tbasic, TS
4 = 2Tbasic, and

TS
5 = 4Tbasic and required resources per cycle of γ1 = 0.5Ω,

γ2 = 1.25Ω, γ3 = 0.4Ω, γ4 = 0.4Ω, and γ5 = 2.5Ω,
respectively, where Tbasic = 3 frames. Initially, R[k, �] = Ω
for k = 1..4 and � = 1..3. Then, each Mi is scheduled as
follows. For M1, we can only set j∗ = 1. Then, the BS
reserves γ1 = 0.5Ω resource for M1 in every basic cycle
as shown in Fig. 2(1) and set B1,1 = B1,4 = B1,7 =
B1,10 = 0.5Ω, TO

1 = j∗ = 1, and TL
1 = f(1) = 1; so

R[1, 1] = R[2, 1] = R[3, 1] = R[4, 1] = 0.5Ω and R[k, �] = Ω
for k = 1..4 and � = 2, 3. For M2, its j∗ can be 1 or 2 or 3
and allocating γ2 by starting from any of the two basic cycles
are the same. Since �0.5Ω + 1.25Ω� − (0.5Ω + 1.25Ω) =
0.25Ω < �1.25Ω� − 1.25Ω = 0.75Ω, setting j∗ = 1 and
3 would create the least number of active frames and leave
the least remaining resource in the last frame. So we select
j∗ = 1. After the allocation, shown as Fig. 2(2), we set
B2,1 = B2,7 = 0.5Ω, B2,2 = B2,8 = 0.75Ω, TO

2 = j∗ = 1,

and TL
2 = f(1) = 2 and update R[1, 1] = R[3, 1] = 0 and

R[1, 2] = R[3, 2] = 0.25Ω. For M3, choosing j∗ = 3, 4, 5,
and 6 would create the same and least number of active frames
(i.e., f(3) = f(4) = f(5) = f(6) = 1 < f(2) = 2 < · · · ),
but setting j∗ = 4 would leave less remaining resource in
the last allocated frame (i.e., 0.1Ω). So we set j∗ = 4
and update B3,4 = B3,10 = 0.4Ω, TO

3 = j∗ = 4, and
TL

3 = f(4) = 1, as shown in Fig. 2(3). Then update
R[2, 1] = R[4, 1] = 0.1Ω. For M4, setting j∗ = 3, 5, and
6 would create the same and least number of active frames
(i.e., f(3) = f(5) = f(6) = 1 < f(2) = f(4) = 2 < · · · )
and leave the same remaining resource in the last frame.
So we choose j∗ = 3 and set B4,3 = B4,9 = 0.4Ω,
TO

4 = j∗ = 3, and TL
4 = f(3) = 1, as shown in Fig. 2(4).

Then we update R[1, 3] = R[3, 3] = 0.6Ω. For M5, choosing
j∗ = 3 would add the least number of active frames (i.e.,
f(3) = 4 < f(2) = f(5) = 5 < f(4) = 6 < · · · ). So we
choose j∗ = 3 and set B5,3 = 0.6Ω, B5,4 = 0.1Ω, B5,5 = Ω,
B5,6 = 0.8Ω, TO

5 = j∗ = 3, and TL
5 = f(3) = 4, as shown

in Fig. 2(5). Then update R[1, 3] = R[2, 1] = R[2, 2] = 0 and
R[2, 3] = 0.2Ω.

C. Selecting Tbasic

Clearly, different values of TS
1 will lead to different duty

cycles for MSSs. Here we adopt an exhausted search by setting
TS

1 = 1..D1 and trying to find the sum of the total number of
active frames of all MSSs over a windows of TS

n frames. Then
TS∗

1 leading to the least number of active frames is chosen as
Tbasic.

IV. PERFORMANCE EVALUATION

We have developed a simulator by C++ to verify the
effectiveness of our PMSS scheme. Unless otherwise stated,
the following assumptions are made in our simulation. The
number of MSSs is ranged from 5 to 45. Each MSS Mi has
a data rate τi of 1000 ∼ 3000 bits/frame and delay bound
Di of 10 ∼ 200 frames, where 1000 is the minimum data
rate, 3000 is the maximum data rate, 10 is the minimum delay
bound, and 200 is the maximum delay bound of the MSS. The
available bandwidth per frame of the system is Ω = 80000 bits
(16Mbps) and the length of an OFDM/OFDMA frame is set
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Fig. 2. Example of scheduling Bi,j , T L
i , and T O

i for five MSSs M1, M2,
M3, M4, and M5.

to 5 ms [14]. We consider two performance metrics: (i) active
ratio: the ratio of active frames for the system and (ii) fail-to-
sleep probability: the ratio of failure to schedule MSSs’ sleep.
We will compare our PMSS against the MMPS-FC (Multi-
ple MSSs Power-saving Scheduler with Fragment Collection)
and MMPS-BF (Multiple MSSs Power-saving Scheduler with
Boundary Free) schemes in [13].

A. Effects of n

In this experiment, we study the effect of n on the active
ratio and fail-to-sleep probability. Fig. 3(a) shows the active
ratio decreases when n increases. Our PMSS almost always
performs the best in all three schemes, except at n = 40,
MMPS-FC performs better than our PMSS. However, when
n = 40, the fail-to-sleep probability of MMPS-FC is almost
100% (Fig. 3(b)). Fig. 3(b) shows the fail-to-sleep probabil-
ity increases when n increases. MMPS-BF and our PMSS
schemes perform the same and the best in the fail-to-sleep
probability. The fail-to-sleep probabilities of the two schemes
is zero when n < 40. For MMPS-FC, it can 100% successfully
schedule MSSs into sleep when n < 25.

B. Effects of Maximum Delay Bound

Then, we investigate the effect of maximum delay bound
on the active ratio by fixing n = 20. Fig. 4 shows the active
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Fig. 3. Effects of number of MSSs on (a) active ratio and (b) fail-to-sleep
probability.
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ratio decreases when the maximum delay bound increases. Our
PMSS performs the best in all three schemes. For the three
schemes, our PMSS benefits the most when the maximum
delay bound is increased from 50 ms to 3000 ms (70%); for
MMPS-FC and MMPS-BF, the improvement is 52% and 47%,
respectively. This is because our scheme can more accurately
capture the traffic characteristics of MSSs.
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probability.

C. Effects of System Bandwidth

In this experiment, we investigate the effect of system
bandwidth on the active ratio and fail-to-sleep probability by
fixing n = 20. Fig. 5(a) shows the active ratio decreases when
system bandwidth increases. Our PMSS outperforms other two
schemes except when the system bandwidth is 8Mbps. When
the system bandwidth is 8Mbps, MMPS-FC performs the best
but its fail-to-sleep probability is much higher (88%) than
other two schemes (about 50%). For the three schemes, our
PMSS benefits the most when system bandwidth is increased
from 8Mbps to 128Mbps (73%); for MMPS-FC and MMPS-
BF, the improvement is 13% and 42%, respectively.

V. CONCLUSIONS

In this paper, we propose a per-MSS sleep scheduling
scheme for multiple MSSs in IEEE 802.16e wireless networks
such that the overall power consumption of the system is
minimized while the QoS of each MSS can be guaranteed.
Compared to the previous work, our approach assigns and
schedules type II PSCs for each MSS by considering each
of their QoS characteristics such that the sleep scheduling
can more accurately capture each MSS’s QoS requirement.

This leads to each MSS can sleep more and the total power
consumption of the system is significantly reduced. Also, the
proposed scheme is easy to implement and compatible to the
standard.
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