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Abstract

Most research works in transcoding proxies in mobile computing environments are on the ba-

sis of the traditional client-server architecture and do not employ the data broadcast technique. In

addition, the issues of QoS provision and energy conservation are also not addressed in the prior

studies. In view of this, we design in this paper a QoS-aware and energy-conserving transcod-

ing proxy by utilizing the on-demand broadcasting technique. We first propose a QoS-aware and

energy-conserving transcoding proxy architecture, abbreviated as QETP, and model it as a queue-

ing network consisting of three queues. By analyzing the queueing network, three lemmas are

derived to estimate the load these queues. We then propose a version decision policy and a service

admission control scheme to provide QoS in QETP. The derived lemmas are used to guide the exe-

cution of the proposed version decision policy and service admission control scheme to achieve the

given QoS requirement. In addition, we also propose a data indexing method to reduce power con-

sumption of clients. To measure the performance of the proposed architecture, three experiments

are conducted. Experimental results show that the average access time reduction of the proposed

scheme over traditional client-server architecture ranges from 45% to 75%. Experimental results

also show that the proposed scheme is more scalable than traditional client-server architecture and

is able to effectively control the system load to attain the given QoS requirements. In addition,

the proposed scheme is able to greatly reduce average tuning time of clients at the cost of a slight

increase (around 5% in our experiments) in average access time.
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1 Introduction

In a pervasive computing environment, due to the constraints resulting from power-limited mobile de-

vices and low-bandwidth wireless networks, designing a power conserving mobile information system

with high scalability and high bandwidth utilization becomes an important research issue, and hence

attracts a significant amount of research attention. In addition, the high diversity in the capabilities of

various mobile devices such as display capabilities (e.g., screen size, color depth and supported data

formats) and computation power makes the design of mobile information systems more challenging.

This diversity also results in an increasing demand on the capability ofcontext awarenessfor mobile

information systems.

Content adaptation, which is an important technique to realize context awareness, emerges to rem-

edy the problem resulting from the said diversity by offering different mobile users suitableversions

of the same object according to the capabilities of the mobile devices, the traffic of the networks and

the users’ preferences [20].Transcoding, which transforms a data object from one version into another,

is recognized as a promising technique to realize content adaptation [20][21][23]. A proxy capable of

transcoding (referred to as a transcoding proxy) is placed between a client and an information server

to coordinate the mismatch between what the server provides and what the client prefers. Since proxy-

based approaches are transparent to the content providers and users, this kind of approach is able to

simplify the design of servers and clients, and as a result, attracts much research attention.

In recent years, data broadcast [2][3][29] has been employed as an important technique to design a

scalable and power conserving mobile information system. However, most research works in transcod-

ing proxies in mobile computing environments are on the basis of the traditional client-server architec-

ture and do not employ the data broadcast technique. Hence, the transcoding proxies are not scalable

and the network bandwidth is not well utilized. In addition, most prior studies do not consider the issue

of quality of service (abbreviated as QoS) which is crucial in a mobile computing environment.

In addition, as shown in [26], only a modest improvement (20%∼ 30%) in battery lifetime is ex-

pected in the next few years. Hence, energy conservation is raised as a key factor of the design of

mobile devices. Since data indexing is recognized as a promising means to reduce power consumption

[17], many researchers have studied the design of data indexing algorithms in push-based data broad-
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casting environments [9][22][28][30]. However, most studies on on-demand data broadcasting focus

on the design of scheduling algorithms [1][3], and only a few of them consider the employment of data

indexing in on-demand data broadcasting environments [18].

In view of this, we design in this paper a scalable, QoS-aware and energy-conserving transcoding

proxy by utilizing the on-demand broadcasting technique. Explicitly, we first propose a QoS-aware and

energy-conserving transcoding proxy architecture, abbreviated as QETP, and model it as a queueing

network with three queues. By analyzing the queueing network, three lemmas are derived to formulate

the average waiting time of these queues. We then devise scheme ODB-QoS-Index to provide QoS in

QETP where ODB-QoS-Index stands for “On-demand Data Broadcasting with QoS and data Indexing.”

Scheme ODB-QoS-Index is an online, iterative and adaptive algorithm comprising

1. a version decision policy to determine the suitable version for each data request according to the

users’ device profiles and the state of the server,

2. a service admission control scheme to determine whether to grant a service registration or a

service handoff according to the state of the server, and

3. a data indexing method to insert data indices into the broadcast program to reduce power con-

sumption of clients.

In each iteration, scheme ODB-QoS-Index estimates the average waiting time of each queue based

on the derived results, determines the state of each queue according to the corresponding estimation of

average waiting time, and configures the behavior of the version decision policy and the service admis-

sion control scheme in accordance with the states of these queues to attain the desired QoS. In addition,

scheme ODB-QoS-Index inserts index items into the broadcast program to reduce the clients’ power

consumption. To measure the performance of QETP, three experiments are conducted. Experimental

results show that the average access time reduction of the proposed scheme over traditional client-server

architecture ranges from 45% to 75%. Experimental results also show that scheme ODB-QoS-Index

is more scalable than traditional client-server architecture, and is able to achieve the system admin-

istrators’ QoS requirements by the devised version decision policy and the service admission control

scheme. In addition, scheme ODB-QoS-Index is able to greatly reduce average tuning time at the cost
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Figure 2: Employment of data indexing

of a slight increase (around 5% in our experiments) in average access time. Access time is defined as

the summation of time periods from the moment that mobile clients submit data requests to the moment

that mobile clients receive the requested data items. On the other hand, tuning time is defined as the

summation of time periods that mobile clients operate in active mode. Access time is widely used to

evaluate the efficiency of broadcast systems, while tuning time is used to evaluate power consumption

of mobile devices. To the best of our knowledge, there is no prior research on the design of transcoding

proxies employing data broadcast. This feature distinguishes this paper from others.

The rest of this paper is organized as follows. The descriptions of related work and the proposed

transcoding proxy architecture, QETP, are given in Section 2. An analytical model and a transcoding

model are devised in Section 3. Then, Section 4 describes the proposed version decision policy, ser-

vice admission control scheme and data indexing method. The performance evaluation is shown in

Section 5, and finally, Section 6 concludes this paper.

2 Preliminaries

2.1 On-demand Data Broadcasting

Figure 1 shows an example on-demand broadcasting system. In an on-demand data broadcasting system

[1][3][4], a server maintains a data request queue and serves these requests according to the employed

scheduling algorithm. When requiring one data item, a mobile client sends a data request to the server.
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After receiving a data request, the server first checks whether there exists another data request in the

data request queue with the same required data object. If yes, the new-coming data request ismerged

into that data request. This phenomenon is calledrequest merge. Data requests with the same requested

data object can be safely merged since one transmission of the data object in a broadcast channel is able

to serve all merged data requests. Therefore, the higher the occurrence probability of request merge

is, the more efficient the system is. Otherwise, the new-coming data request isinsertedinto the data

request queue.

A scheduling algorithm is used to prioritize all data requests in the data request queue, and the server

will serve these data requests according to their priorities. To serve a data request, the system retrieves

the required data object from the corresponding data server, and then broadcasts this object to all its

clients via a dedicated and shared broadcast channel. As a result, the on-demand broadcast system is

more scalable and can obtain higher network utilization than traditional client-server architecture.

2.2 Related Work

2.2.1 Prior Work Related to On-demand Data Broadcasting

Dykeman et al. pointed out in [10] that traditional FCFS scheduling would produce long average ac-

cess time for an on-demand broadcast system when the access frequencies of all data items were not

uniformly distributed. They proposed several scheduling algorithms and concluded that LWF could

provide the best performance among the proposed algorithms. Aksoy et al. pointed out in [3] that

although being able to produce the shortest average access time, LWF is not efficient when the num-

ber of data requests is large. To address this problem, they proposed algorithm RxW which is able to

schedule the received data requests efficiently by employing a pruning technique. Experimental results

showed that the performance (i.e., average access time) of RxW is close to that of LWF. Unfortunately,

the algorithm RxW is designed under the premise that each data item is of the same size. Hence, it

is not suitable for variable-sized data items. In [1], Acharya et al. addressed the broadcast scheduling

problem in the environments with variable-size data items. They defined a new metric, stretch, as the

ratio of the response time of a request to its service time. Based on stretch, they proposed a scheduling

algorithm, called LTSF, to minimize the stretch. Wu et al. argued that algorithm LTSF is not optimal
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in terms of overall stretch [27]. In addition, algorithm LTSF is not scalable in a large-scale environ-

ment. Therefore, they proposed a scheduling algorithm to optimize the system performance in terms

of stretch. Moreover, the proposed scheduling algorithm is more scalable than LTSF, and hence, is

suitable for practical use.

However, most studies on on-demand data broadcasting focus on the design of scheduling algo-

rithms [1][3], and only a few of them consider the employment of data indexing in on-demand data

broadcasting environments [18]. Figure 2a and Figure 2b show the examples that a mobile client is-

sues a data request at timet on broadcast programs without and with data indexing, respectively. In

Figure 2a and Figure 2b, the time periods marked as ‘A’ and ‘D’ indicate that the time periods that the

mobile device is in active and doze mode, respectively. Since the sizes of index items are much smaller

than those of data items, employing data indexing is able to greatly reduce the average tuning time at

the cost of a slight increase in the average access time.

In [18], Lee et al. proposed a data indexing method in an on-demand data broadcasting environment.

As shown in Figure 3, the proposed broadcast program is partitioned into a series of buckets and each

bucket contains an index segment and a data segment. The number of the index items in an index

segment is equal to the number of data items in the corresponding data segment in the same bucket.

In bucketBk, the i-th index item (i.e.,Ik(i)) contains (1) the identifier and the version number of the

corresponding data item in bucketBk (i.e., Dk(i)), (2) the time offset thatDk(i) will be broadcast and

(3) the size ofDk(i). The number of index items within an index segment is called thedegreeof the

broadcast program. In [18], the degree of all buckets are the fixed, and the experimental results suggest

to set degree of broadcast programs to two for better performance.
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2.2.2 Prior Work Related to Transcoding Proxy

Han et al. proposed in [13] an image transcoding proxy which is able to control the data retrieval time

to meet users’ requirements. The proposed transcoding proxy can adaptively adjust the sizes of the

objects transmitted to users by using an aggressive lossy compression method. They also presented an

analytical framework for determining whether to transcode and how much to transcode an image, and

a process used by the transcoding proxy to adapt its image coding to meet an upper bound on the delay

tolerated by the end user.

In [7], Cardellini et al. analyzed how network proxies can work collaboratively in content transcod-

ing and caching. They proposed a distributed algorithm to distribute the computation load caused by

transcoding throughout a collaborative proxy system. They also proposed two extended strategies to

cache data objects. In [8], Chang et al. explored the aggregate effect when caching multiple versions of

the same Web object in the transcoding proxy. They argued that the aggregate profit of caching multiple

versions of an object is not simply equal to the sum of the profits of caching individual versions, but

rather, depends on the transcoding relationships among them. They devised the notion of a weighted

transcoding graph and formulated a generalized profit function. Based on the weighted transcoding

graph and the generalized profit function, an innovative cache replacement algorithm for transcoding

proxies was proposed, and the proposed cache replacement algorithm was shown to perform well in

terms of the delay saving ratios and cache hit ratios.

Hsiao et al. proposed the architecture of versatile transcoding proxy in [14]. Based on the con-

cept of the agent system, the proposed architecture can accept and execute the transcoding preference

script provided by the client or the server to transform the corresponding data or protocol according

to the user’s specification. Fine granularity control is achieved by building a weighted transcoding

graph which depicts the transcoding relationship among transcodable versions dynamically. Based on

the weighted transcoding graph, the transcoding proxy performs cache replacement according to the

content in the caching candidate set, which is generated by the concept of dynamic programming.

In the early study [15] of this paper, we proposed a QoS-aware transcoding proxy architecture to use

on-demand broadcast to transmit the requested data objects. However, the issue of energy conservation

is not considered. Therefore, for energy conservation, we in this paper extend the prior architecture to
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support data indexing techniques. In addition, we also revise the version decision policy and the service

admission control scheme proposed in [15] for better performance.

2.3 System Architecture

Figure 4 shows the proposed architecture of QETP. In a cellular environment, the whole service area of

a mobile environment is divided into a number of cells. Two dedicated channels, one control channel

and one broadcast channel, are provided in each cell. A control channel is used to transmit control mes-

sages such as registration messages, data requests, acknowledgements, and so on. On the other hand,

a broadcast channel is used by the transcoding proxy to disseminate data objects to its clients. In ac-

cording to the locations of these components, QETP comprises the following two types of components:

front-end and back-end.

A front-end, which comprises a service manager and a scheduler, is allocated to each cell. These

two components are described below.

• Service Manager:A service manager is in charge of all service-related operations such as service

registration, service termination, service admission control and so on. Each service manager

owns a profile database storing the users’ profiles and the profiles of these users’ devices.
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• Scheduler:A scheduler is a software component which handles the data requests of the corre-

sponding cell. After receiving a data request, the scheduler will first determine a suitable version

for this data request according to the user’s device profile and the network state. Then, the sched-

uler will check whether the received data request can be merged to an existing data request in

the data request queue. Different from the traditional on-demand broadcasting architecture de-

scribed in Section 2.1, request merge occurs only when there exists another data request in the

data request queue asking for the same version of the same required data object of the received

data request. Otherwise, the scheduler will insert the received data request into the data request

queue.

In addition, a scheduling algorithm is employed to determine the service order of the data requests

in the data request queue. While serving a data request, the scheduler will send this request to

the cache manager and the cache manager will respond with the content of the required data

object. The scheduler then broadcasts the required data object via the broadcast channel, and

serves the next data request in the data request queue. Moreover, scheduler will broadcast index

items through the broadcast channel to reduce the power consumption of mobile clients.

A back-end, which comprises a cache manager and a transcoder, behaves like a traditional transcod-

ing proxy. These two components are described below.

• Cache Manager:After receiving a data request from a scheduler, the cache manager is responsi-

ble for returning the required version of the required data object to the scheduler. Suppose that

the cache manager receives a data request of thej-th version of data objectD(i). If the j-th

version ofDi is cached, the cache manager will return the cached data object to the scheduler

immediately. If thej-th version ofDi is not cached, the cache manager will check whether there

exists another version ofDi which can be transcoded into thej-th version ofDi . If yes, the cache

manager will ask the transcoder to generate thej-th version ofDi . Otherwise, the cache man-

ager will request the original version of the requested data object from the data server, ask the

transcoder to transform the returned data object into the required version, and then transmit the

result of transcoding to the scheduler.
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• Transcoder: A transcoder is in charge of the transformation of data objects among different

versions according to the received transformation requests generated by the cache manager.

Since the design of the back-end is similar to the systems proposed in some prior works [7][8][13][25],

we focus in this paper on the design of the front-end.

3 Analytical and Transcoding Models

3.1 Analytical Model

In this subsection, we derive the worst case of the average access time1 of QETP, and use the derived

results to propose a version decision policy and a service admission control scheme in Section 4. To

facilitate the following discussion, we first make the following assumptions.

1. The employed scheduling scheme of the scheduler is FCFS (standing for first come, first serve).

2. No request merge occurs in the data request queue of the scheduler.

3. One transmission of a data object in the broadcast channel is received by exactly one client.

4. The messages of registration, de-registration and handoff are negligible.

Assumptions 2 and 3 occur when the users’ interests are highly diverse, and hence the effect of on-

demand broadcast diminishes. We make these two assumptions since we focus on the worst case

of the transcoding proxy. Assumption 4 is made since we focus on the situation that the number of

data requests is much higher than the number of control messages (i.e., registration, de-registration,

handoff and service termination). These assumptions will be relaxed in our simulation model. For

better readability, a list of used symbols is shown in Table 1.

We model QETP as a queueing network as shown in Figure 5. Queue 2 is a physical queue which

is located in the scheduler. On the contrary, Queue 1 and Queue 3 are logical queues which are only

used to model the control and broadcast channels in order to derive the average waiting time of a data

request on the control and broadcast channels, respectively. Suppose that the data requests submitted

1In this paper we use access time and waiting time exchangeably.
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Symbol Description

Pi i-th device profile
D j(k) k-th version of data itemD j

NUser Number of users in the cell
λCtrl . Aggregate request rate in the cell
µCtrl . Service rate of the control channel
µSche. Service rate of the cache
µBCast. Service rate of the broadcast channel
ρSche. Standard deviation of the service time of the cache
BCtrl . Bandwidth of the control channel
BBCast Bandwidth of the broadcast channel

Table 1: Description of symbols
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Figure 5: The analytical model of the proposed transcoding proxy

by a mobile useri follow a Poisson process with rateλi , andNUser is the number of mobile users in

the cell. To facilitate the following discussion, we number the mobile users in the cell as user 1, 2,

· · ·, NUser. Due to the characteristic of the Poisson process, the aggregate data requests of all mobile

users in the cell follow a Poisson process with rateλCtrl . = ∑NUser
i=1 λi . Denote the sizes of data requests

and request acknowledgements assCtrl . andsAck., respectively. Also letBCtrl . be the bandwidth of the

control channel, and let the waiting time of the control channel for a data request (denoted asWCtrl .) be

the time interval between the user sending a data request and the user receiving the acknowledgement.

Then, we have the following lemma.
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Lemma 1: The average waiting time of the control channel is

WCtrl . =
1

BCtrl .
sCtrl .+sAck.

−λCtrl .
.

Proof: Similar to [19], we assume that the average waiting time to transmit a data request and a

request acknowledgement by the control channel is an exponential distribution with mean1
µCtrl .

. Hence,

the control channel can be modeled as an M/M/1 queue. Then, the average service rate of the control

channel is

µCtrl . =
BCtrl .

sCtrl . +sAck.
.

Omitting the equation manipulation which can be found in [12], the approximated average waiting

time for each mobile device from submitting a data request to receiving the corresponding request

acknowledgement is

WCtrl . =
1

µCtrl .−λCtrl .
=

1
BCtrl .

sCtrl .+sAck.
−λCtrl .

. (1)

Q.E.D.

Let the waiting time of the scheduler for a data request (denoted asWSche.) be, from the scheduler’s

perspective, the time interval from the arrival of the data request to the time that the requested data

object has been obtained. Since the service time of a cache manager is affected by several factors such

as cache status of the required data objects, the employed replacement scheme, the characteristics of

the input jobs, and so on, the service time of the cache manager cannot be modeled by a particular

mathematical distribution. Therefore, we model the average service time of the cache manager as an

arbitrary distribution with mean 1
µSche.

and varianceσ2
Sche.. LetρSche. =

λCtrl .
µSche.

be the load of the scheduler.

We then have the following lemma.

Lemma 2: The average waiting time of the scheduler is

WSche. =
1

µSche.
+

ρSche.
µSche.

+λCtrl .σ2
Sche.

2(1−ρSche.)
.

Proof: With assumptions 1, 2 and the characteristic ofM/M/1 queues, the input process seen by the

data request queue of the scheduler is also a Poisson process with rateλCtrl .. When receiving a data
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request, the scheduler determines the most suitable version of the requested data object according to the

profile of the mobile device and network status, and then inserts the corresponding job (including data

object id and the most suitable version number) into the data request queue. To serve a data request, the

scheduler passes the job to the cache manager, and the cache manager will retrieve the specified version

of the data object requested by the job and return the retrieved data object to the scheduler. Then, the

scheduler disseminates the returned data object to its clients via the broadcast channel.

With assumption 2, the processing of the scheduler can be modeled as an M/G/1 queue. Then, as

shown in [12], the expected system size in steady-state is

LSche. = ρSche. +
ρ2

Sche. +λ 2
Ctrl .σ

2
Sche.

2(1−ρSche.)
.

By Little’s formula, the average waiting time of this queue is

WSche. =
LSche.

λCtrl .
=

1
µSche.

+
ρSche.
µSche.

+λCtrl .σ2
Sche.

2(1−ρSche.)
. (2)

Q.E.D.

Let the waiting time of the broadcast channel for a data request be the time interval from the time

that the requested data object has been obtained by the scheduler to the time that the user has received

it. Then, we have the following lemma.

Lemma 3: The average waiting time of the broadcast channel is

WBCast=
1

µBCast(1− r0)
,

wherer0 is the root ofz= A∗[µBCast(1−z)] with value larger than zero and less than one.

Proof: Similar to the proof of Lemma 1, we assume that the average waiting time of the broadcast

channel follows an exponential distribution with mean1µBCast
. Since the broadcast channel is a dedicated

downlink channel, similar as [19], we have

1
µBCast

=
Average size of the incoming data objects

BBCast
. (3)
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As shown in Figure 5, the input process of the broadcast channel is the output process of the scheduler.

Since the service time of the scheduler (i.e., Queue 2) is an arbitrary distribution, the output process of

the scheduler does not follow a particular mathematical distribution. Suppose that the interarrival time

of the input process follows an arbitrary distribution with cumulative distribution functionA(t). The

broadcast channel can be modeled as a G/M/1 queue. LetA∗(z) be the Laplace-Stieltjes transform of

A(t). Omitting the mathematical manipulation which can be found in [12], the average waiting time of

the broadcast channel (denoted asWBCast) is

WBCast=
1

µBCast(1− r0)
, (4)

wherer0 is the root of the following equation with value larger than zero and less than one.

z= A∗[µBCast(1−z)] (5)

Q.E.D.

Finally, the average waiting time of the whole system (denoted asWSys.) is equal to the summation

of the average waiting time of the control channel, the scheduler and the broadcast channel. Then, with

Lemmas (1), (2) and (3),WSys. can be formulated as

WSys. = WCtrl . +WSche. +WBCast (6)

3.2 Transcoding Model

Suppose that the mobile devices are classified into several categories based on their capabilities, and

the capabilities of each category are described by one device profile. LetPi be thei-th device profile.

Without loss of generality, we order the device profiles according to their capabilities in ascending

order. That is, the capability ofPi is better than that ofPj when i > j. We also letDi( j) be the j-th

version of data objectDi . Again, we order all versions of a data object according to their quality in

ascending order, which means that the quality ofDi( j) is better than that ofDi(k) when j > k. For each

data object, we assume that the data size of a version with higher quality is larger than that of another

13



6 5 4 3 2 1

P3 P2 P1

Figure 6: Example device profiles

version with lower quality.

To facilitate the following discussion, the concept of viewable version set is defined below.

Definition 1: A viewable version setof a device profilePi and a data objectD j (denoted asVVS(i, j))

is a set of versions ofD j which are able to be displayed by mobile devices with profilePi .

Then, we have the following example.

Example 1: Consider the example shown in Figure 6. Mobile devices are classified into three cat-

egories: notebook, PDA and smart phone, and their capabilities are described in device profilesP3,

P2 andP1, respectively. In addition, there are six versions of data objectD j . VVS(3, j), VVS(2, j)

andVVS(1, j) are{3,4,5,6}, {3,4} and{1,2}, respectively. We haveVVS(2, j) ⊂ VVS(3, j) since

devices with profileP3 (e.g., notebooks) are capable of displaying all versions ofD j viewable by

devices with profileP2 (e.g., PDAs). On the other hand, we haveVVS(3, j)
⋂

VVS(1, j) = φ and

VVS(2, j)
⋂

VVS(1, j) = φ since devices with profileP1 (e.g., smart phone) employ special data for-

mats (e.g., WML and WBMP) that are not supported by devices with profileP2 andP3.

Let the functionBEST(i, j) = k (respectively,WORST(i, j) = k) represent that the best (respec-

tively, worst) viewable version of data objectD j for a mobile device with device profilePi is versionk.

In practice, we haveBEST(i, j) ≥ BEST(l , j) andWORST(i, j) ≥WORST(l , j) wheni > l . We also

haveBEST(i, j) = max{VVS(i, j)} andWORST(i, j) = min{VVS(i, j)}.

Example 2: Consider the example shown in Figure 6. The best viewable versions ofP3, P2 andP1

areD j(6), D j(4) andD j(2), respectively. As a result, we haveBEST(3, j) = 6, BEST(2, j) = 4 and

BEST(1, j) = 2. In addition, we also haveWORST(3, j) = 3, WORST(2, j) = 3 andWORST(1, j) = 1.
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When a user registers the service, the user’s mobile device will transmit the identifications of the

user and the corresponding device profile to the server. Suppose that the device profile of the mobile

device isPi . Then, when the mobile user requestsD j , the server will return a suitable version ofD j , say

thek-th version ofD j wherek ∈VVS(i, j), according to the result of the underlying version decision

policy.

4 Design of Scheme ODB-QoS-Index

An overview of scheme ODB-QoS-Index is given in Section 4.1. The proposed version decision policy

and admission control scheme are described in Section 4.2 and Section 4.3, respectively. Finally, the

description of the proposed data indexing method is given in Section 4.4.

4.1 Overview

In this paper, we take the average waiting time of the system as the QoS metric. Before executing

scheme ODB-QoS-Index, system administrators should specify a QoS requirement by setting two

thresholds of average access time,W1 andW2 whereW1 < W2. The meanings of these two thresh-

olds are as follows. The users are guaranteed to receive the best viewable versions of the requested data

objects when the average waiting time is smaller thanW1. On the other hand, scheme ODB-QoS-Index

will try its best to prevent the average waiting time from being larger thanW2.
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Scheme ODB-QoS-Index is an online, iterative and adaptive algorithm which comprises a version

decision policy, a service admission control scheme and a data indexing method. The flowchart of

scheme ODB-QoS-Index is shown in Figure 7. Scheme ODB-QoS-Index is executed periodically, and

the following three steps are executed in each iteration. First, in the average waiting time estimation

step, scheme ODB-QoS-Index measures the average waiting time of each queue according to the an-

alytical results derived in Section 3. Since only Queue 2 is physical, only the average waiting time

of Queue 2 (i.e.,WSche.) can be directly observed. In view of this, we propose an approximation al-

gorithm to estimate the average waiting times of Queue 1 and Queue 3 (i.e.,WCtrl . andWBCast). For

better readability, the proposed approximation algorithm is described in Appendix A. Then, scheme

ODB-QoS-Index measures the load of each queue based on the estimated average waiting time, and

determines the current state of each queue according to the load of each queue. Finally, scheme ODB-

QoS-Index configures the version decision policy and the service admission control scheme according

to the state of each queue. In addition, a data indexing method is employed by the scheduler to insert

index items into the broadcast program to reduce power consumption of mobile clients. The details of

scheme ODB-QoS-Index are described in the following subsections.

4.2 Version Decision Policy

4.2.1 Overview

Figure 8 shows the relationship between the average waiting time and the load of a queue. It is intuitive

that when the load is larger than or equal to one, the system is not stable since the average waiting time

does not converge and will approach to infinity. In addition, when the load is smaller than one, the

average waiting time increases as the load increases, and the increment will increase drastically when

the load approaches one.

With the above observations, the rationale of our scheduling algorithm isto keep the system loads of

the scheduler (i.e., Queue 2 in Figure 5) and the broadcast channel (i.e., Queue 3 in Figure 5) smaller

than the predetermined thresholds at the cost of degrading the quality of requested data objects. As

a consequence, when the load of the scheduler or the load of the broadcast channel is high, for each

data request, the system will return the version of quality worse than the best viewable version. This
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strategy has the following two effects:

1. Decrease the average waiting time of the broadcast channel (1
µBCast

). Since the data size of a data

object with lower quality is usually smaller than that of the same data object with higher quality,

transmitting data objects with lower quality is able to reduce the load of the broadcast channel

(ρBCast).

2. Increase the occurrence probability of request merge.Consider the device profiles shown in

Figure 6, and two data requests ofD j for device profilesP2 andP3, respectively. These two data

requests will not be merged together when the load of the scheduler or the broadcast channel is

light since the system will return the best viewable versions ofD j for P2 andP3, respectively.

When the load is heavy, the system decides to return the third version ofD j . Hence, these two

data requests can be merged together, and the arrival rates of the input processes of the cache and

the broadcast channel decrease. As a result, this strategy is able to reduce the load of the cache

(ρSche.) and the broadcast channel (ρBCast).

The proposed version decision policy consists of three phases: state determination phase, candidate

version selection phase and version decision phase. First, in state determination phase the server deter-

mines the states of the scheduler and the broadcast channel according to the loads of the scheduler and

the broadcast channel. Then, in candidate version selection phase, several versions, called candidate

versions, are selected according to the states of the scheduler and the broadcast channel. Finally, the

server decides the resultant version from the candidate versions according to the content of the request

queue and the objects stored in the cache.

4.2.2 State Determination Phase

Two thresholds,ρSche.
1 andρSche.

2 (respectively,ρBCast
1 andρBCast

2 ), are specified to divide the load of the

scheduler (respectively, the broadcast channel) into three states: LIGHT, FAIR and HEAVY. Figure 9

shows the state transition diagram of the scheduler. The state transition scenarios are as follows. When

the previous state is LIGHT, the current state will transit to FAIR ifρSche. > (1+α)×ρSche.
1 . Otherwise,

the current state will still be LIGHT. When the previous state is FAIR, the current state will transit to
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Figure 9: State transition diagram

LIGHT whenρSche. < (1−α)×ρSche.
1 and transit to HEAVY whenρSche. > (1+α)×ρSche.

2 . Otherwise,

the current state will still be FAIR. When the previous state is HEAVY, the current state will transit to

FAIR if ρSche. < (1−α)× ρSche.
2 . Otherwise, the current state will still be HEAVY. The factorα,

where0 < α < 1, is used to avoid state oscillation. We assume that(1+ α)× ρSche.
2 < 1 without

loss of generality. To facilitate fine-grained control, system administrators can divide FAIR state into

several sub-states. Suppose that there aren sub-states of FAIR state. The interval(ρSche.
1 ,ρSche.

2 ) is then

divided inton partitions byn−1 thresholds,ρSche.(1),ρSche.(2), · · · ,ρSche.(n−1), whereρSche.(k) =
(

ρSche.
1 +k× (ρSche.

2 −ρSche.
1 )

n

)
. The transition between these sub-states is similar to that between LIGHT,

FAIR and HEAVY states. The state transition diagram and transition scenarios of the broadcast channel

are as shown in Figure 9 by substitutingρBCast
1 and ρBCast

2 for ρSche.
1 and ρSche.

2 , respectively. The

determination of the values ofρSche.
1 , ρSche.

2 , ρBCast
1 andρBCast

2 is described in Appendix B.

We also define theaggregate stateof the scheduler and the broadcast channel as follows. The

aggregate state is LIGHT when the loads of the scheduler and the broadcast channel are both LIGHT.

The aggregate state is HEAVY when at least one of the loads the scheduler and broadcast channel is

HEAVY. Otherwise, the aggregate state is FAIR. In FAIR state, the current sub-state is determined as the

heaviest of the current sub-states (i.e., the heaviest load) of the scheduler and the broadcast channel. For

each new-coming data request, the scheduler will decide a suitable version, fill the version information

into the data request according to the aggregate state, and insert it into the data request queue. The

scheduler will also inform the mobile client of the decided version by replying an acknowledgement

message.
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4.2.3 Candidate Version Selection Phase

Let degradationand maxDegradationindicate the suggested and maximal degrees of degradation,

respectively. The value ofmaxDegradationis determined by

maxDegradation= max
∀Pk,D j

{BEST(k, j)−WORST(k, j)}.

In candidate version selection phase, the server will determine a proper value ofdegradationaccording

to the state of the server, and versionsBEST(k, j),BEST(k, j)−1, · · · ,BEST(k, j)−degradationare

called candidate versions. The procedure in candidate version select phase is described below.

• Case I: Aggregate state is LIGHT.

The scheduler operates in the traditional on-demand broadcast mode when the aggregate state is

LIGHT. Hence, the server guarantees that each client will receive the best viewable versions of

the requested data objects. That is, the system will return theBEST(i, j)-th version ofD j when

a user requestsD j by a mobile device belonging to device profilePi . Therefore, the value of

degradationis set to zero.

• Case II: Aggregate state is FAIR.

In FAIR state, the quality of the received data objects may be degraded. Suppose that FAIR state

consists ofn sub-states. Then, the value ofdegradationis set todk× maxDegradation
n+1 e when the

server is in thek-th sub-state of FAIR state.

• Case III: Aggregate state is HEAVY

When the aggregate state is HEAVY, the server will suggest to return theWORST(i, j)-th version

of D j when a user requestsD j by a mobile device belonging to device profilePi . Therefore, the

value ofdegradationis set tomaxDegradation.

4.2.4 Version Decision Phase

In this phase, the server should pick a proper one from candidate versions (i.e.,BEST(i, j), BEST(i, j)−
1, · · · ,BEST(i, j)−degradation). Suppose that the incoming request is forDi . The steps of the decision
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are as follows.

• Step I: In this step, the server checks the data requests in the request queue. If in request

queue, there is a data request forDi , sayReq, with versionv, BEST(i, j) ≤ v≤ BEST(i, j)−
degradation, versionv is selected since this incoming request can be merged intoReqwithout

increasing the load of the server. The server will perform step two if there is no such data request

in the request queue.

• Step II: In this step, the server checks the objects stored in the cache. If there is an objectDi(v),

BEST(i, j) ≤ v≤ BEST(i, j)− degradation, stored in cache, versionv is selected so that the

server need not neither retrieveDv from its data server nor perform transcoding. Otherwise, the

server will perform step three if there is no such object in the cache.

• Step III: Select the versionv which is covered by the most profiles among versionsBEST(i, j),

BEST(i, j)− 1, · · · ,BEST(i, j)− degradation. Although the server load cannot be reduced by

this decision, the probability that successive requests can perform request merge will increase.

4.3 Service Admission Control Scheme

The proposed service admission control scheme consists of two phases: state determination phase and

admission control phase. To perform service admission control, the server first determines the state

of the control channel in state determination phase, and then determines whether to grant a service

registration or a service handoff in admission control phase. The procedures of these two phases are

described in the following subsections.

4.3.1 State Determination Phase

The proposed service admission control scheme is employed in each service manager to determine

whether to grant a service registration or a service handoff by considering the number of users in

service, the network status, and so on. The rate that a service registration is blocked is calledservice

blocking rate(abbreviated as SBR), while the rate that a service handoff is forced to terminate is called

service dropping rate(abbreviated as SDR). The rationale of our service admission control scheme isto
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keep the system load of the control channel (i.e., Queue 1 in Figure 5) smaller than the predetermined

thresholds at the cost of increasing SBR and SDR. To achieve this, two thresholds,ρCtrl .
1 andρCtrl .

2

whereρCtrl .
1 < ρCtrl .

2 < 1, are specified to divide the load of the control channel into three states:

LIGHT, FAIR and HEAVY. The state transition diagram and transition scenario of the service manager

are shown in Figure 9 by substitutingρCtrl .
1 andρCtrl .

2 for ρSche.
1 andρSche.

2 , respectively. Similarly, the

determination ofρCtrl .
1 andρCtrl .

2 is described in Appendix B.

4.3.2 Admission Control Phase

Although the proposed version decision policy can reduce the loads of the scheduler and the broadcast

channel, the effect of the proposed version decision policy is limited since it depends on several factors

such as the locality of data requests, the cache size and so on. As a consequence, in addition to the load

of the control channel, the service admission control scheme should also take the loads of the scheduler

and the broadcast channel into consideration. The procedure in admission control phase is as below.

When the load the control channel is HEAVY, the server will block all service registrations and drop

all service handoffs in order to relieve the server load. When the load of the control channel is FAIR

or LIGHT, the server will determine the values of two probabilities,ProbBlock andProbDrop. Then, a

service registration will be blocked with probabilityProbBlock, while a service handoff will be dropped

with probabilityProbDrop. It is the system administrators’ responsibility to specify how to determine of

the valuesProbBlock andProbDrop. Let curStateCtrl . be the current state of the control channel, and let

curStateAgg. be the aggregate state of the scheduler and the broadcast channel. Note that SBR should be

sacrificed first since mobile users can tolerate a service registration being blocked rather than a service

handoff being forced to terminate (i.e., dropped). Therefore, in each combination ofcurStateCtrl . and

curStateAgg., ProbBlock should be larger than or equal toProbDrop. An example setting for determining

ProbBlock andProbDrop in an environment with three sub-states in FAIR state is given in Table 2.

Consider the case that the server decides to reject a service registration of a service handoff since

the server’s load cannot afford it. If the owner of the service registration or the service handoff, say

useri, has the same interest to other users using the service, granting this service registration or the

service handoff will not increase the server load since all the useri’s requests are expected to be able to
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curStateAgg.

LIGHT
FAIR

HEAVY
FAIR1 FAIR2 FAIR3

curStateCtrl .
LIGHT 0/0 0/0 0.33/0 0.66/0.15 1/0.3
FAIR 0/0 0.25/0 0.5/0 0.75/0.3 1/0.6

ProbBlock/ProbDrop

Table 2: An example setting for determiningProbBlock andProbDrop

be merged to other users’ requests. Hence, to decrease SBR and SDR, the server should grant useri’s

service registration or service handoff. From the above example, we observe that we can aggressively

grant a server registration or a service handoff as long as the owner and other users are of common

interest.

To measure the similarity of interest of useri and other users using the service, we define similarity

factor as the probability that a user’s request will be merged to another request. When receiving a data

request, the server will check whether the data request is merged into another request and update the

user’s similarity factor stored in the user’s profile. The system administrators have to specify a threshold

β , 0≤ β ≤ 1, so that a service registration or a service handoff will be granted (even the server cannot

afford it) as long as the value of the owner’s similarity factor is larger than or equal toβ .

4.4 Data Indexing

As shown in [18], setting degree of broadcast programs to a smaller value will make mobile devices

meet index segments more quickly, thus reducing energy consumption. However, it is true only in the

cases that turning on and turning off WNIs do not consume energy. As pointed out in [24], in reality

turning on and turning off the WNIs consume some time and energy, and the transition times of a WNI

from active mode to doze mode and from doze mode to active mode are both on the order of tens

milliseconds.

Consider two organizations of index and data items shown in Figure 10. Note that the time periods

marked as ‘A’ and ‘D’ indicate the time periods that the mobile device is in active and doze mode,

respectively, while the time periods marked as ‘F’ and ‘N’ indicate that the time periods that the mobile

device in turning off and turning on the wireless network interfaces (abbreviated as WNIs). Suppose

that a mobile device tunes to the broadcast channel at timetStart and finishes the retrieval of the desired
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Figure 10: Example organizations of index and data items

data item at timetEnd. As observed in Figure 10, when the value of degree of broadcast programs

decreases, mobile devices will switch back and forth between active and doze modes (i.e., turn on

and turn off WNIs) more frequently, and therefore, may consume more energy. As a result, the value

of degree of broadcast programs should be set to a proper value to minimize energy consumption of

mobile devices.

In view of this, we adopt an adaptive data indexing method [16] which is able to dynamically

adjust the degree of broadcast programs according to system workload. The employed data indexing

method consists of two phases, statistics collection phase and degree adjustment phase, and switches

back and forth between these two phases periodically. In statistics collection phase, the system collects

the arrival time, finish time and other statistical information of each served data request. Then, in

the successive degree adjustment phase, the server determines a proper value of degree of broadcast

programs according to the collected information. For the interest of space, we omit the description of

the determination of the value of degree of broadcast programs. Interested readers can refer to [16] for

details.

After determining the current value of degree of broadcast programs, the server then generates

the broadcast program accordingly. Since the data items are of different sizes, we use the parameter

budget, which is defined as the maximal length of the data segments of all buckets, to control the

length of each bucket. Initially, the bucket is empty and the scheduler fetches as many data items as

possible from the cache under the constraint that the summation of the sizes of the fetched data items is
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smaller than or equal tobudget. In addition, the scheduler marks the fetched data items as LOCKED.

Then, the scheduler inserts the corresponding index items in front of these data items. Finally, the

scheduler broadcasts the index and data items in the bucket sequentially. An index item or a data item

is removed from the bucket once it has been broadcast. In addition, the state of a data item which

has been broadcast is marked as UNLOCKED. The above procedure repeats until the bucket becomes

empty. To employ data indexing, the cache replacement policy should be also modified to consider

only data items in UNLOCKED states as the candidates to be replaced.

4.5 Remarks

Currently, the proposed version decision policy and service admission control scheme are designed on

the goal of reducing the overall average waiting time and average tuning time. Therefore, if two users

submit two data requests (each user submits one request) for the same data object at the same time,

their priorities and version numbers will be the same.

It is possible to implement differentiated QoS control in the proposed architecture. For example,

we can add a classifier in front of the scheduler to classify the received data requests according to some

administrator-specified rules. Hence, the version decision policy is able to assign their version numbers

according to their classes. In addition, when processing a service registration or a service handoff, the

server first classifies the service according to the user’s profile, and then takes action according to the

user’s class. Consider the case that the server receives two service registrations. Suppose that one is

submitted by a VIP user, and the other is submitted by a normal user. The latter will be rejected if the

server can accept only one service registration.

5 Performance Evaluation

To evaluate the performance of scheme ODB-QoS-Index, we build an event-driven simulator with SIM

[5]. In order to measure the reduction of power consumption of scheme ODB-QoS-Index, we also

implement scheme ODB-QoS which only employs the proposed version decision policy and service

admission control scheme. Both scheme ODB-QoS-Index and scheme ODB-QoS are executed period-
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Parameter Value

Data object number 4000
Data object sizes Lognormal dist. (mean 18 KB)
Index item size 1 KB
Data access probabilities Zipf dist. with parameter 1.1
Cache replacement schemeAE
Cache capacity 0.01×∑object size
Object fetch delay Exponential dist. withµ = 2
Transcoding rate 30 KB/sec
Client number 1000
Cell residence time Exp. dist. withµ = 40minutes
Cell holding time Exp. dist. withµ = 15minutes
Cell establishing time Exp. dist. withµ = one hour

Table 3: Default system parameters

Profile Viewable version set

P1 {2,1}
P2 {4,3,2,1}
P3 {6,5}
P4 {8,7,6,5}
P5 {10,9,8,7,6,5}

Table 4: Device profiles and
viewable version sets

ically with period two minutes and the simulation is run for 12 hours. Scheme CS (standing for tradi-

tional Client-Server) and scheme ODB (standing for On-Demand Broadcasting) are also implemented

for comparison purposes. The average access time and tuning time are employed as the performance

metrics of experiments. In addition, the average value ofdegradation, SBR and SDR are taken as the

metrics of the cost of scheme ODB-QoS-Index. The average value ofdegradationis used to measure

the degree of quality degradation of the received data objects.

5.1 Simulation Model

We set the cell topology as a 4×4 cells wrapped-around mesh topology. Scheme AE [8] is employed

as the cache replacement policy since it outperforms the other replacement policies for transcoding

proxies. Each cell provides one control channel and one download channel with network bandwidth

10 KByte/sec and 100 KByte/sec, respectively. Analogous to [8], we assume that there are 4000 data

objects and the sizes follow a lognormal distribution with a mean of 18 KBytes. The sizes of a control

message (e.g., data request message and acknowledgement message) and an index item are both set to

be 1 KByte. The access probabilities of data objects are assumed to follow a Zipf distribution, which is

widely adopted as a model for real Web traces [6]. The parameter of the Zipf distribution is set to be 1.1

with a reference to the analyses of real Web traces [6]. Since small objects are much more frequently

accessed than large ones [11], we assume that there is a negative correlation between the object size and

its access probability [8]. The default capacity of the cache is set to be “0.01×∑object size” and the

fetch delays of data objects follow an exponential distribution with mean two seconds [8]. The values
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of W1 andW2 (i.e., the QoS requirement) are set to be six seconds and 15 seconds, respectively.

In the client model, as in [7] and [8], we assume that the mobile clients are classified into five

device profiles, and the distribution of these five device profiles is modeled as a device vector of

〈15%,20%,30%,20%,15%〉. Without loss of generality, we also assume that all objects could be

transcoded into ten versions, and the sizes of the ten versions (from version one to version ten) are

assumed to be 10%, 20%, 30%,· · · and 100% of the original object sizes [8]. The viewable version set

of each device profile is shown in Table 4. By a reference to [8], we assume that a more detailed version

can be transcoded into a less detailed one and the transcoding delay is determined as the quotient of

the object size to the transcoding rate. The transcoding rate is set to be 30 KBytes/sec [7]. The number

of users in the network is set to be 1000. The cell residence time, service holding time and service

establishing time for each user are set to be exponential distributions with means of 40 minutes, 15

minutes and one hour, respectively. We also assume that the data requests of each user follow a Possion

process with parameter1λ = 60seconds.

5.2 The Effects of Cache Size

In this experiment, we investigate the effect of varied cache size in average waiting time, average

tuning time, SBR, SDR and average value ofdegradation. Figure 11 shows the experimental results

with the cache size varied. The cache size is set to beCacheSizeRatio×∑ object size. The value

of CacheSizeRatioranges from 0.001 to 0.1. As shown in Figure 11a, the average waiting time of

all schemes decreases as the value ofCacheSizeRatioincreases. This is because the cache with large

size is able to effectively reduce the average waiting time by storing data objects with high access

probabilities.

Consider the average waiting time of scheme ODB and scheme CS. The average waiting time

reduction of scheme ODB over scheme CS increases from 30% to 60% as the value ofCacheSizeRatio

decreases from 0.1 to 0.001. Since scheme ODB can effectively reduce the number of requests from

the cache’s perspective by request merge, the system load of scheme ODB is lighter than that of scheme

CS. Hence, scheme ODB outperforms scheme CS especially when the cache size is small (i.e., high

system load). Although scheme ODB can minimize average waiting time, the performance of scheme
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Figure 11: The effect of cache size

ODB does not satisfy system administrators’ expectation since the average waiting time is larger than

the value ofW2.

To fulfill system administrators’ requirement when system load is high, scheme ODB-QoS and

scheme ODB-QoS-Index will reduce the quality of the requested data objects and reject some service

registrations and service handoffs. Reducing the quality of the requested data objects will increase the

probabilities of request merge, and hence reduce the number of data requests from the cache’s perspec-

tive. In addition, when the system load is still high, scheme ODB-QoS and scheme ODB-QoS-Index

will block service registrations to limit the number of users in service. If blocking service registrations

still cannot reduce the average waiting time to the administrators’ requirement, the service manager will

then reject service handoffs. As shown in Figure 11a, the average waiting time of scheme ODB-QoS

and scheme ODB-QoS-Index is still smaller thanW2 as the value ofCacheSizeRatiodecreases. This re-

sult shows that scheme ODB-QoS and scheme ODB-QoS-Index are able to control the average waiting

time to satisfy the specified QoS requirement. In addition, since scheme ODB-QoS-Index inserts index

items into the broadcast program, the average waiting time of scheme ODB-QoS-Index is longer than

that of scheme ODB-QoS. Due to the small size of index items, the increment on average waiting time

of scheme ODB-QoS-Index over scheme ODB-QoS is quite small (around 5% in this experiment).

Figure 11b shows the average tuning time of all schemes. Without employing data indexing, the

average tuning time and the average waiting time of all schemes except scheme ODB-QoS-Index are

the same. In scheme ODB-QoS-Index, when the current bucket does not contain the desired data items,

mobile clients can go to doze mode to save power consumption and wake up on the starting point of

the next bucket. Therefore, as shown in Figure 11b, scheme ODB-QoS-Index is able to greatly reduce
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the tuning time (around 93% in this experiment), showing the advantage of data indexing.

Although scheme ODB-QoS and scheme ODB-QoS-Index outperform scheme ODB and scheme

CS, scheme ODB-QoS and scheme ODB-QoS-Index produce overhead in SBR, SDR and the degra-

dation on the quality of received data items. Figure 11c and Figure 11d show the degradation on the

quality of received data items and the produced SBR and SDR, respectively, of scheme ODB-QoS and

scheme ODB-QoS-Index with the value ofCacheSizeRatiovaried. The SBR and SDR produced by

scheme CS and scheme ODB are omitted in this and the following experiments since both schemes

always grant service registrations and service handoffs (i.e., both SBR and SDR are always zero).

When the cache size is large enough (i.e.,CacheSizeRatio≥ 0.03 in this experiment), most hot

data items are cached and the average waiting time is under the predetermined threshold. Hence, the

average value ofdegradationis around 0.6 and the quality of the received data items is quite good. In

the same condition, SDR is equal to zero and SBR is only a little bit larger than zero. When the cache

size becomes small (CacheSizeRatio= 0.01 in this experiment), the average value ofdegradationin-

creases significantly to keep the average waiting time between the predetermined thresholds. When

the cache size becomes smaller (CacheSizeRatio≤ 0.003in this experiment), only increasing the value

of degradationis not able to effectively relieve the increase of the average waiting time. Hence, the

system will block some service registrations to keep the average waiting time under the predetermined

threshold. Service registrations is rejected before service handoffs since users can tolerate a service reg-

istration to be blocked rather than a service handoff to be dropped. When the value ofCacheSizeRatio

is very small, some service handoffs are dropped since only blocking service registrations is not able

to keep the average waiting time under the threshold. With above mechanisms, scheme ODB-QoS and

scheme ODB-QoS-Index are able to keep the average waiting time in the predetermined range.

5.3 The Effects of the Number of Users

Figure 12 shows the experimental results with the number of users varied. The number of users is set

from 400 to 1400. From Figure 12a, we observe that when the number of users is small (400 in this

experiment), the system load is light and the average waiting times of all schemes are close. When the

number of users increases, the average waiting time of scheme CS and scheme ODB also increases.
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Figure 12: The effects of the number of users

In addition, the increment of the average waiting time of scheme CS and scheme ODB increases as

the number of users increases, especially when the number of users is larger than 1200. Since a large

number of users implies high arrival frequencies of data requests, the system load becomes heavy and

the average waiting time increases drastically. In this experiment, when the number of users is 1400,

the average waiting time of scheme CS does not converge as the time advances since the system load

is larger than one. This situation agrees to the observation in Section 4.2. This experimental result

also shows that the average waiting time reduction of scheme ODB over scheme CS increases from

47.11% to 74.2% as the number of users increases from 400 to 1400. Scheme ODB is more scalable

than scheme CS due to the employment of on-demand data broadcast.

Consider scheme ODB-QoS and scheme ODB-QoS-Index. When the number of users is small

(400 in this experiment), scheme ODB, scheme ODB-QoS and scheme ODB-QoS-Index have similar

behavior. This can be explained by the reason that when the average waiting time of scheme ODB-QoS

is smaller thanW1, scheme ODB-QoS is degenerated to scheme ODB and guarantees that each user

will receive the best viewable versions of the requested data objects. In addition, although inserting

some index items into the broadcast program, scheme ODB-QoS-Index is still able to perform almost

as well as scheme ODB-QoS since the size of index items is much smaller than that of data items. In

addition, as shown in Figure 12b, employing data indexing is able to greatly reduce the average tuning

time. In this experiment, the tuning time reduction of scheme ODB-QoS-Index over scheme ODB-QoS

is around 92%.

As shown in Figure 12c, when the number of users increases to 800, the average value ofdegradation
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increases in order to keep the average waiting time satisfying the QoS requirement. As shown in Fig-

ure 12d, when the number of users increases to 1000, the system blocks some service registrations

to satisfy the QoS requirement (i.e., in the interval(W1,W2)). Similarly, some service handoffs are

dropped when the number of users is larger than 1200. By controlling the quality of received data

objects and the number of users in service, scheme ODB-QoS and scheme ODB-QoS-Index are able

to keep the average waiting time satisfying the QoS requirement even when the offered system load is

heavy.

5.4 The Effects of Skewness of Access Probabilities

Figure 13 shows the experimental results with the skewness of access probabilities varied. The degree

of skewness is measured by the value of the Zipf parameter which is set from 1 to 1.4 in this experiment.

The larger the Zipf parameter is, the higher the degree of skewness is. As shown in Figure 13a, the

average waiting time of all schemes increases as the value of Zipf parameters decreases. It is because

that the degree of request locality is high when the access frequencies is highly skewed (i.e., large Zipf

parameter). Therefore, with the same cache size, the cache hit ratio is high and is able to effectively

reduce the average access time. Moreover, on-demand data broadcasting-based schemes (i.e., scheme

ODB, scheme ODB-QoS and scheme ODB-QoS-Index) outperform scheme CS in average waiting

time since they take advantage of the locality of data requests by request merge. We also observe

that the increment of the average waiting time of scheme CS and scheme ODB increases drastically

when the value of Zipf parameter decreases (i.e., one in this experiment). The reason is that the effect

of cache and request merge decreases as the degree of skewness decreases. Hence, the system load

becomes heavy when the degree of skewness is low, and therefore, the increment of average waiting

time increases. This result conforms to the observation in Section 4.2. In this experiment, the average

waiting time reduction of scheme ODB over scheme CS ranges from 36.9% to 65%. In addition, as

shown in Figure 13b, employing data indexing is able to greatly reduce the average tuning time. In this

experiment, the tuning time reduction of scheme ODB-QoS-Index over scheme ODB-QoS is around

90%.

As shown in Figure 13c, the average value ofdegradationis small when access probabilities are
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Figure 13: The effects of the Zipf parameters

highly skewed. We also observe from Figure 13d that when the skewness of access frequencies is high

(Zipf parameter=1.4 in this experiment), scheme ODB-QoS is degenerated to scheme ODB since the

average waiting time of scheme ODB is smaller thanW1. When the access probabilities are not skewed

enough, the system cannot fulfill the QoS requirement and will increase the value ofdegradation.

When Zipf parameter is around 1.2, some service registrations are blocked (SBR> 0) to satisfy the

QoS requirement. Moreover, when Zipf parameter is smaller than 1.1, some service handoffs are also

dropped. With the above mechanisms, scheme ODB-QoS and scheme ODB-QoS-Index are able to

keep the average waiting time in the predetermined range.

6 Conclusion

We explored in this paper the effect of on-demand broadcasting technique in the design of a QoS-

aware and energy-conserving transcoding proxy. We first proposed a QoS-aware and energy-conserving

transcoding proxy architecture, QETP, and modeled it as a queueing network. By analyzing the queue-

ing network, several theoretical results were derived to formulate the system average waiting time. We

then proposed a version decision policy and a service admission control scheme to provide QoS in

QETP. The derived results were used to guide the execution of the proposed version decision policy

and service admission control scheme to fulfill the given QoS requirement. In addition, we also pro-

posed a data indexing method to reduce the power consumption of clients. To measure the performance

of QETP, several experiments were conducted. Experimental results showed that the proposed scheme

is more scalable than traditional client-server systems and can effectively achieve the desired QoS. In

31



addition, the proposed scheme was able to greatly reduce power consumption of clients at the cost of a

slight increase in average access time.
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Appendix A: Average Waiting Time Estimation

Although the system average waiting time can be formulated by Equation (6), Lemmas 1, 2 and 3,

not all components can be directly obtained in practice since Queue 1 and Queue 3 are logical queues.

To overcome this problem, we propose an approximation method for each unavailable parameter to

estimate the system average waiting time.

Consider the queueing network shown in Figure 5. The input process of Queue 1 cannot be directly

observed by the transcoding proxy. However, since the control channel (i.e., Queue 1) is an M/M/1

queue, the output process of Queue 1 is identical to the input process2 of the corresponding scheduler.

Hence, the input process of Queue 1 can be observed by the scheduler, and the average waiting time of

the control channel can be obtained by Equation (1). In addition, since the average and variance of the

service time of Queue 2 can be observed by the scheduler, the average waiting time of the scheduler

can be derived by Equation (2).

To derive the average waiting time of the broadcast channel (i.e., Queue 3), the cumulative distrib-

ution function of interarrival time of the input process (i.e.,A(t)) is required. However, deriving exact

A(t) is impractical sinceA(t) is continuous. Hence, we adopt the following approach to estimateA(t).

Consider them-th execution of scheme ODB-QoS-Index. The average and the variance of the interar-

rival time of Queue 3 between the(m−1)-th andm-th executions (i.e., 1
λBCast

andσ2
BCast, respectively)

can be obtained. We then partition the interarrival time into the followingk intervals

I1 =
[

1
λBCast

− k−2
2

×σBCast,
1

λBCast
− k

2
×σBCast

)
,

· · ·

I k−1
2

=
[

1
λBCast

− 1
2
×σBCast,

1
λBCast

− 3
2
×σBCast

)
,

I k+1
2

=
[

1
λBCast

− 1
2
×σBCast,

1
λBCast

+
1
2
×σBCast

)
,

I k+3
2

=
[

1
λBCast

+
1
2
×σBCast,

1
λBCast

+
3
2
×σBCast

)
,

· · ·

Ik =
[

1
λBCast

+
k−2

2
×σBCast,

1
λBCast

+
k
2
×σBCast

)
,

2This phenomenon results from assumption 2 in Section 3.1.
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wherek is a positive odd number andk > 1. Note that although indicating the higher accuracy of

the estimation ofA(t), a largerk also implies larger memory consumption. We also define an array

of a[1],a[2], · · · ,a[k] and reset them to zero in each iteration of scheme ODB-QoS-Index. In the time

interval between them-th and(m+ 1)-th executions, for each data arrivalq, the interarrival time of

this arrival is counted. If the interarrival time ofq lies in interval Ii , the value ofa[i] is increased

by one. Otherwise, we take the interarrival time ofq as an outlier and do not change the values of

a[1],a[2], · · · ,a[k]. Let tp = 1
λBCast

+(p− k+1
2 )×σBCast, wherep = 1,2, · · · ,k, and∆t = 1

2×σBCast. We

take the discrete distribution with the following probability density function as the approximation of

the distribution of interarrival time.

f (t) =





a[i]
∑k

j=1a[ j]
× 1

2∆t , if tp−∆t ≤ t ≤ tp +∆t, wherep is an integer and1≤ p≤ k;

0, otherwise;

Let 1
λ ∗BCast

be the mean of the approximation of the distribution of interarrival time. We have1
λ ∗BCast

=

∑k
i=1 f (ti)× ti , and then, Equation (5) can be rewritten as

z=
k

∑
i=1

a[i]×e
− 1

λ∗BCast
ti(1−z)

. (7)

The value ofr0 can be estimated by applying successive substitution in Equation (7). In addition, since

the average size of incoming data objects can be observed, theµBCast can be obtained by Equation (3).

Finally, the approximatedWBCast can be calculated by Equation (4).

Appendix B: Configuration of the Version Decision Policy and the

Service Admission Control Scheme

Here, we develop an adjusting algorithm to configure the version decision policy and the service ad-

mission control scheme based on the system state by automatically adjusting the parameters used in

Section 4.2 and 4.3. In the proposed adjusting algorithm, three positive factors,γ1, γ2 andγ3 where

γ1 + γ2 + γ3 = 1, are defined to determine the values ofρCtrl .
1 , ρCtrl .

2 , ρSche.
1 , ρSche.

2 , ρBCast
1 andρBCast

2 .
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The values ofρCtrl .
1 andρCtrl .

2 are first determined so that the average waiting time of the control chan-

nel is equal toWCtrl . = γ1×W1 andWCtrl . = γ1×W2, respectively. By substitutingγ1×W1 for WCtrl . in

Equation (1), we can solve the above equation sinceλCtrl . is the only unknown variable in the above

equation. Assume that the solution ofλCtrl . is λCtrl .
1 . Then we can obtain the value ofρCtrl .

1 since

ρCtrl .
1 = λCtrl .

1
µCtrl .

. With similar approach,λCtrl .
2 andρCtrl .

2 can also be obtained.

The values ofρSche.
1 andρSche.

2 are then determined so that the average waiting time of the cache

is equal toγ2×W1 and γ2×W2, respectively. Due to assumption 2 and the characteristic of Queue

1 (i.e., an M/M/1 queue), the input process of Queue 2 is the same as the input process of Queue

1 (i.e., λSche. = λCtrl .). We rewrite Equation (2) by substitutingλCtrl .
µSche.

andλCtrl .
1 for ρSche. andλCtrl ,,

respectively. Then the only unknown variable (i.e.,µSche.) in the rewritten equation can be solved.

Suppose that the solution isµSche.
1 , and we haveρSche.

1 = λCtrl .
1

µSche.
1

. Analogously, the value ofρSche.
2 can be

obtained by similar approach.

Finally, the values ofρBCast
1 andρBCast

2 are determined so that the average waiting time of the cache

is equal toγ3×W1 andγ3×W2, respectively. To determineρBCast
1 , we first rewrite Equation (4) by

replacingγ3×W1 with WBCast, and the only unknown variabler0 can be solved. Sinceγ3 andW1 are

larger than zero,r0 is smaller than one. Ifr0 ≤−1, it indicates that the requirement is infeasible since

the required average waiting time of the broadcast channel is under the lower bound. Then, the value of

ρBCast
1 is set to 0. Otherwise, when0< r0 < 1, we rewrite Equation (7) by replacing the solvedr0, ti +δ

andλ ∗BCast+ δ with z, ti andλ ∗BCast, respectively. Then, the only unknown variableδ can be solved.

Finally, we haveρBCast
1 = λ ∗BCast+δ

µBCast
. The value ofρBCast

2 can also be derived by similar approach.

The values ofγ1, γ2 andγ3 are determined adaptively and automatically. When the system starts up,

γ1, γ2 andγ3 are initialized to1
3. In each execution, they are determined byγ1 = WCtrl .

WSys.
, γ2 = WCache.

WSys.
and

γ3 = WBCast.
WSys.

= 1− γ1− γ2. Note that in scheme ODB-QoS-Index, only QoS requirement (i.e.,W1 and

W2) is required to be specified by system administrators.

Appendix C: Signalling Procedures

Before using the transcoding proxy, a mobile user should register the service in advance by sending

a registration message via a control channel. After the transcoding proxy receives the registration
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message, a service admission control scheme is activated to determine whether to grant the service

registration. If yes, the mobile device will send the device profile to the proxy, and the proxy will

record the user profile and device profile in its profile database. Otherwise, the service registration is

blocked. The rate that a service registration is blocked is calledservice blocking rate(abbreviated as

SBR).

After the service registration is granted, the mobile user can issue data requests to the corresponding

transcoding proxy by the control channel. When receiving a data request, the transcoding proxy first

determines the suitable version of the requested data object by a version decision policy, and returns an

acknowledgement message containing the decided version information via the control channel to the

mobile user. Then, the transcoding proxy will return the decided version of the required data object

via the corresponding broadcast channel as soon as possible. After receiving the acknowledgement

message, the mobile device will tune to the broadcast channel to wait for the appearance of the decided

version of the requested data object. When the mobile user decides not to use the transcoding proxy

service, the mobile device will send a de-registration message to terminate the service.

Since a mobile user is able to freely move around these cells, a service handoff will occur. A service

admission control scheme is executed to determine whether the service handoff is granted. If yes, the

mobile user can use the service as usual. If not, the system will force the mobile user to terminate the

service (the service is said to be dropped). Since a service admission control scheme is employed, a

service handoff may be rejected. The rate that a service handoff is forced to terminate is calledservice

dropping rate(abbreviated as SDR).

Appendix D: Algorithmic Forms of the Proposed Algorithms

Version Decision Policy

As a consequence, the algorithmic form of the version decision policy is as below.

Procedure VersionDecision(Pi , D j )
Input: A user requestsD j by a mobile device belonging to device profilePi .
Output: A version ofD j .
1: Let curStateAgg. be the current aggregate state of the scheduler and the broadcast channel.
2: maxDegradation←max∀Pk {BEST(k, j)−WORST(k, j)}
3: if (curStateAgg.=LIGHT) then
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4: degradation← BEST(i, j) /* The system will return the best viewable version to the user */
5: else if(curStateAgg.=HEAVY) then
6: degradation←WORST(i, j) /* The system will return the worst viewable version to the user */
7: else/* curStateAgg.=FAIR */
8: Determine the sub-state. /* Suppose the aggregate state is in thek-th sub-state of FAIR state */
9: degradation← dk× maxDegradation

n+1 e
10: if (rule one can be applied)then
11: Perform step one to determine the versionv.
12: else if(rule two can be applied)then
13: Perform step two to determine the versionv.
14: else
15: Perform step three to determine the versionv.
16: return v

Service Admission Control Scheme

The algorithmic form of the proposed service admission control scheme is as below.

Procedure ServiceAdmission
Input: A service registration or a service handoff.
Output: Decision of the incoming service registration or service handoff.
1: Let curStateCtrl . be the current state of the control channel.
2: Let curStateAgg. be the current aggregate state of the scheduler and the broadcast channel.
3: Let similarity be the similarity factor of the owner of the service registration or the service handoff.
4: if (curStateCtrl .=HEAVY) then
5: decision← REJECT
6: else/* curStateCtrl .=FAIR or curStateCtrl .=LIGHT */
7: Determine the values ofProbBlock andProbDrop according to system administrators’ settings.
8: if (service registration)then
9: Setdecisionto REJECT with probabilityProbBlock and to GRANT with probability(1−ProbBlock).

10: else/* service handoff */
11: Setdecisionto REJECT with probabilityProbDrop and to GRANT with probability(1−ProbDrop).
12: if (decision==REJECT)then
13: if (similarity≥ β ) then
14: return GRANT
15: else
16: return REJECT
17: else/* decision==GRANT */
18: return decision

Broadcast Program Generation Algorithm

The algorithmic form of the proposed broadcast program generation algorithm is as below.

Algorithm ProgramGeneration
1: while (true)do
2: bucket←BucketGeneration();
3: while (bucketis not empty)do
4: item←the head ofbucket;
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5: Remove the head ofbucket;
6: Broadcastitem
7: if (item is a data item)then
8: Mark itemas UNLOCKED;

Function BucketGeneration()
1: available← budget;
2: budket← empty;
3: while (true)do
4: Fetch a data item (denoted asitem) from the cache;
5: Mark itemas LOCKED;
6: if (available≥the summation of the sizes ofitemand the corresponding index item)then
7: Appenditem into bucket;
8: available← available−the size ofitem-the size of the corresponding index item;
9: else

10: if (bucketis empty) then
11: Appenditem into bucket;
12: break;
13: Insert the corresponding index items of the data items inbucketinto the head ofbucket;
14: return bucket;
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