A QoS-Aware and Energy-Conserving Transcoding Proxy
Using On-demand Data Broadcasting

Jiun-Long Huang Ming-Syan Chen, Fellow, IEEE
Department of Computer Science Department of Electrical Engineering
National Chiao Tung University National Taiwan University
Hsinchu, Taiwan, ROC Taipei, Taiwan, ROC

E-mail: jlhuang@cs.nctu.edu.tw E-mail: mschen@cc.ee.ntu.edu.tw

Abstract

Most research works in transcoding proxies in mobile computing environments are on the ba-
sis of the traditional client-server architecture and do not employ the data broadcast technique. In
addition, the issues of QoS provision and energy conservation are also not addressed in the prior
studies. In view of this, we design in this paper a QoS-aware and energy-conserving transcod-
ing proxy by utilizing the on-demand broadcasting technique. We first propose a QoS-aware and
energy-conserving transcoding proxy architecture, abbreviated as QETP, and model it as a queue-
ing network consisting of three queues. By analyzing the queueing network, three lemmas are
derived to estimate the load these queues. We then propose a version decision policy and a service
admission control scheme to provide QoS in QETP. The derived lemmas are used to guide the exe-
cution of the proposed version decision policy and service admission control scheme to achieve the
given QoS requirement. In addition, we also propose a data indexing method to reduce power con-
sumption of clients. To measure the performance of the proposed architecture, three experiments
are conducted. Experimental results show that the average access time reduction of the proposed
scheme over traditional client-server architecture ranges from 45% to 75%. Experimental results
also show that the proposed scheme is more scalable than traditional client-server architecture and
is able to effectively control the system load to attain the given QoS requirements. In addition,
the proposed scheme is able to greatly reduce average tuning time of clients at the cost of a slight

increase (around 5% in our experiments) in average access time.

Key words: Transcoding proxy, QoS, energy-conservation, data broadcast, on-demand broadcast

1 Introduction

In a pervasive computing environment, due to the constraints resulting from power-limited mobile de-
vices and low-bandwidth wireless networks, designing a power conserving mobile information system
with high scalability and high bandwidth utilization becomes an important research issue, and hence
attracts a significant amount of research attention. In addition, the high diversity in the capabilities of
various mobile devices such as display capabilities (e.g., screen size, color depth and supported data
formats) and computation power makes the design of mobile information systems more challenging.
This diversity also results in an increasing demand on the capabilitpritext awarenes®r mobile
information systems.

Content adaptatioywhich is an important technique to realize context awareness, emerges to rem-
edy the problem resulting from the said diversity by offering different mobile users suitatdesns
of the same object according to the capabilities of the mobile devices, the traffic of the networks and
the users’ preferences [20[ranscodingwhich transforms a data object from one version into another,
is recognized as a promising technique to realize content adaptation [20][21][23]. A proxy capable of
transcoding (referred to as a transcoding proxy) is placed between a client and an information server
to coordinate the mismatch between what the server provides and what the client prefers. Since proxy-
based approaches are transparent to the content providers and users, this kind of approach is able to
simplify the design of servers and clients, and as a result, attracts much research attention.

In recent years, data broadcast [2][3][29] has been employed as an important technique to design a
scalable and power conserving mobile information system. However, most research works in transcod-
ing proxies in mobile computing environments are on the basis of the traditional client-server architec-
ture and do not employ the data broadcast technique. Hence, the transcoding proxies are not scalable
and the network bandwidth is not well utilized. In addition, most prior studies do not consider the issue
of quality of service (abbreviated as QoS) which is crucial in a mobile computing environment.

In addition, as shown in [26], only a modest improveme&t% ~ 30%) in battery lifetime is ex-
pected in the next few years. Hence, energy conservation is raised as a key factor of the design of
mobile devices. Since data indexing is recognized as a promising means to reduce power consumption

[17], many researchers have studied the design of data indexing algorithms in push-based data broad-

casting environments [9][22][28][30]. However, most studies on on-demand data broadcasting focus
on the design of scheduling algorithms [1][3], and only a few of them consider the employment of data
indexing in on-demand data broadcasting environments [18].

In view of this, we design in this paper a scalable, QoS-aware and energy-conserving transcoding
proxy by utilizing the on-demand broadcasting technique. Explicitly, we first propose a QoS-aware and
energy-conserving transcoding proxy architecture, abbreviated as QETP, and model it as a queueing
network with three queues. By analyzing the queueing network, three lemmas are derived to formulate
the average waiting time of these queues. We then devise scheme ODB-QoS-Index to provide QoS in
QETP where ODB-QoS-Index stands for “On-demand Data Broadcasting with QoS and data Indexing.”

Scheme ODB-Qo0S-Index is an online, iterative and adaptive algorithm comprising

1. aversion decision policy to determine the suitable version for each data request according to the

users’ device profiles and the state of the server,

2. a service admission control scheme to determine whether to grant a service registration or a

service handoff according to the state of the server, and

3. a data indexing method to insert data indices into the broadcast program to reduce power con-

sumption of clients.

In each iteration, scheme ODB-QoS-Index estimates the average waiting time of each queue based
on the derived results, determines the state of each queue according to the corresponding estimation of
average waiting time, and configures the behavior of the version decision policy and the service admis-
sion control scheme in accordance with the states of these queues to attain the desired QoS. In addition,
scheme ODB-QoS-Index inserts index items into the broadcast program to reduce the clients’ power
consumption. To measure the performance of QETP, three experiments are conducted. Experimental
results show that the average access time reduction of the proposed scheme over traditional client-server
architecture ranges from 45% to 75%. Experimental results also show that scheme ODB-QoS-Index
is more scalable than traditional client-server architecture, and is able to achieve the system admin-
istrators’ QoS requirements by the devised version decision policy and the service admission control

scheme. In addition, scheme ODB-QoS-Index is able to greatly reduce average tuning time at the cost

Data Request

)

)y =] Queue Broadcast

é E’ \ D, P, P, Ps | Ds Program
= l= \

Information System ﬁ A ¢
Dat . . .
Objeit I Data] (a) Without data indexing
L] reues - Broadcast
Dl I1 D2 D3 I2 D4 DS Progran]
! , D A b AL A A Time
| — e o o
‘ =] {L t
Tablet PC Notebook PDA

(b) With data indexing
Figure 1. An example on-demand broadcast- Figure 2: Employment of data indexing

ing system
of a slight increase (around 5% in our experiments) in average access time. Access time is defined as
the summation of time periods from the moment that mobile clients submit data requests to the moment
that mobile clients receive the requested data items. On the other hand, tuning time is defined as the
summation of time periods that mobile clients operate in active mode. Access time is widely used to
evaluate the efficiency of broadcast systems, while tuning time is used to evaluate power consumption
of mobile devices. To the best of our knowledge, there is no prior research on the design of transcoding
proxies employing data broadcast. This feature distinguishes this paper from others.

The rest of this paper is organized as follows. The descriptions of related work and the proposed
transcoding proxy architecture, QETP, are given in Section 2. An analytical model and a transcoding
model are devised in Section 3. Then, Section 4 describes the proposed version decision policy, ser-
vice admission control scheme and data indexing method. The performance evaluation is shown in

Section 5, and finally, Section 6 concludes this paper.

2 Preliminaries

2.1 On-demand Data Broadcasting

Figure 1 shows an example on-demand broadcasting system. In an on-demand data broadcasting system
[1][3][4], a server maintains a data request queue and serves these requests according to the employed

scheduling algorithm. When requiring one data item, a mobile client sends a data request to the server.

After receiving a data request, the server first checks whether there exists another data request in the

data request queue with the same required data object. If yes, the new-coming data regesgtds

into that data request. This phenomenon is catkegiest mergeData requests with the same requested

data object can be safely merged since one transmission of the data object in a broadcast channel is able
to serve all merged data requests. Therefore, the higher the occurrence probability of request merge

is, the more efficient the system is. Otherwise, the new-coming data requestiitedinto the data

request queue.

A scheduling algorithm is used to prioritize all data requests in the data request queue, and the server
will serve these data requests according to their priorities. To serve a data request, the system retrieves
the required data object from the corresponding data server, and then broadcasts this object to all its
clients via a dedicated and shared broadcast channel. As a result, the on-demand broadcast system is

more scalable and can obtain higher network utilization than traditional client-server architecture.

2.2 Related Work
2.2.1 Prior Work Related to On-demand Data Broadcasting

Dykeman et al. pointed out in [10] that traditional FCFS scheduling would produce long average ac-
cess time for an on-demand broadcast system when the access frequencies of all data items were not
uniformly distributed. They proposed several scheduling algorithms and concluded that LWF could
provide the best performance among the proposed algorithms. Aksoy et al. pointed out in [3] that
although being able to produce the shortest average access time, LWF is not efficient when the num-
ber of data requests is large. To address this problem, they proposed algorithm RxW which is able to
schedule the received data requests efficiently by employing a pruning technique. Experimental results
showed that the performance (i.e., average access time) of RxW is close to that of LWF. Unfortunately,
the algorithm RxW is designed under the premise that each data item is of the same size. Hence, it
is not suitable for variable-sized data items. In [1], Acharya et al. addressed the broadcast scheduling
problem in the environments with variable-size data items. They defined a new metric, stretch, as the
ratio of the response time of a request to its service time. Based on stretch, they proposed a scheduling

algorithm, called LTSF, to minimize the stretch. Wu et al. argued that algorithm LTSF is not optimal

Bucket,

|
i IS, ‘ DS,

(D [1,(2) eeel (d) D,(1) D(2) |eee D,(d

Figure 3: Index structure

in terms of overall stretch [27]. In addition, algorithm LTSF is not scalable in a large-scale environ-
ment. Therefore, they proposed a scheduling algorithm to optimize the system performance in terms
of stretch. Moreover, the proposed scheduling algorithm is more scalable than LTSF, and hence, is
suitable for practical use.

However, most studies on on-demand data broadcasting focus on the design of scheduling algo-
rithms [1][3], and only a few of them consider the employment of data indexing in on-demand data
broadcasting environments [18]. Figure 2a and Figure 2b show the examples that a mobile client is-
sues a data request at timen broadcast programs without and with data indexing, respectively. In
Figure 2a and Figure 2b, the time periods marked as ‘A’ and ‘D’ indicate that the time periods that the
mobile device is in active and doze mode, respectively. Since the sizes of index items are much smaller
than those of data items, employing data indexing is able to greatly reduce the average tuning time at
the cost of a slight increase in the average access time.

In[18], Lee et al. proposed a data indexing method in an on-demand data broadcasting environment.
As shown in Figure 3, the proposed broadcast program is partitioned into a series of buckets and each
bucket contains an index segment and a data segment. The number of the index items in an index
segment is equal to the number of data items in the corresponding data segment in the same bucket.
In bucketBy, thei-th index item (i.e.Jx(i)) contains (1) the identifier and the version number of the
corresponding data item in buckg (i.e., Di(i)), (2) the time offset thabDy(i) will be broadcast and
(3) the size oDy(i). The number of index items within an index segment is calleditrggeeof the
broadcast program. In [18], the degree of all buckets are the fixed, and the experimental results suggest

to set degree of broadcast programs to two for better performance.

2.2.2 Prior Work Related to Transcoding Proxy

Han et al. proposed in [13] an image transcoding proxy which is able to control the data retrieval time

to meet users’ requirements. The proposed transcoding proxy can adaptively adjust the sizes of the
objects transmitted to users by using an aggressive lossy compression method. They also presented an
analytical framework for determining whether to transcode and how much to transcode an image, and
a process used by the transcoding proxy to adapt its image coding to meet an upper bound on the delay
tolerated by the end user.

In [7], Cardellini et al. analyzed how network proxies can work collaboratively in content transcod-
ing and caching. They proposed a distributed algorithm to distribute the computation load caused by
transcoding throughout a collaborative proxy system. They also proposed two extended strategies to
cache data objects. In [8], Chang et al. explored the aggregate effect when caching multiple versions of
the same Web object in the transcoding proxy. They argued that the aggregate profit of caching multiple
versions of an object is not simply equal to the sum of the profits of caching individual versions, but
rather, depends on the transcoding relationships among them. They devised the notion of a weighted
transcoding graph and formulated a generalized profit function. Based on the weighted transcoding
graph and the generalized profit function, an innovative cache replacement algorithm for transcoding
proxies was proposed, and the proposed cache replacement algorithm was shown to perform well in
terms of the delay saving ratios and cache hit ratios.

Hsiao et al. proposed the architecture of versatile transcoding proxy in [14]. Based on the con-
cept of the agent system, the proposed architecture can accept and execute the transcoding preference
script provided by the client or the server to transform the corresponding data or protocol according
to the user’s specification. Fine granularity control is achieved by building a weighted transcoding
graph which depicts the transcoding relationship among transcodable versions dynamically. Based on
the weighted transcoding graph, the transcoding proxy performs cache replacement according to the
content in the caching candidate set, which is generated by the concept of dynamic programming.

In the early study [15] of this paper, we proposed a QoS-aware transcoding proxy architecture to use
on-demand broadcast to transmit the requested data objects. However, the issue of energy conservation

is not considered. Therefore, for energy conservation, we in this paper extend the prior architecture to

Back End

Transcoder
Storage| Cache Manager
Scheduler | >oTVICe SEIVICe o eduler
Manager Manager

Front End-. Front End Server

Service Area

Figure 4: The architecture of QETP

support data indexing techniques. In addition, we also revise the version decision policy and the service

admission control scheme proposed in [15] for better performance.

2.3 System Architecture

Figure 4 shows the proposed architecture of QETP. In a cellular environment, the whole service area of
a mobile environment is divided into a number of cells. Two dedicated channels, one control channel
and one broadcast channel, are provided in each cell. A control channel is used to transmit control mes-
sages such as registration messages, data requests, acknowledgements, and so on. On the other hand
a broadcast channel is used by the transcoding proxy to disseminate data objects to its clients. In ac-
cording to the locations of these components, QETP comprises the following two types of components:
front-end and back-end.

A front-end, which comprises a service manager and a scheduler, is allocated to each cell. These

two components are described below.

e Service ManagerA service manager is in charge of all service-related operations such as service
registration, service termination, service admission control and so on. Each service manager

owns a profile database storing the users’ profiles and the profiles of these users’ devices.

e Scheduler:A scheduler is a software component which handles the data requests of the corre-
sponding cell. After receiving a data request, the scheduler will first determine a suitable version
for this data request according to the user’s device profile and the network state. Then, the sched-
uler will check whether the received data request can be merged to an existing data request in
the data request queue. Different from the traditional on-demand broadcasting architecture de-
scribed in Section 2.1, request merge occurs only when there exists another data request in the
data request queue asking for the same version of the same required data object of the received
data request. Otherwise, the scheduler will insert the received data request into the data request

queue.

In addition, a scheduling algorithm is employed to determine the service order of the data requests

in the data request queue. While serving a data request, the scheduler will send this request to
the cache manager and the cache manager will respond with the content of the required data
object. The scheduler then broadcasts the required data object via the broadcast channel, and
serves the next data request in the data request queue. Moreover, scheduler will broadcast index

items through the broadcast channel to reduce the power consumption of mobile clients.

A back-end, which comprises a cache manager and a transcoder, behaves like a traditional transcod-

ing proxy. These two components are described below.

e Cache ManagerAfter receiving a data request from a scheduler, the cache manager is responsi-
ble for returning the required version of the required data object to the scheduler. Suppose that
the cache manager receives a data request of-theversion of data objedD(i). If the j-th
version ofD;j is cached, the cache manager will return the cached data object to the scheduler
immediately. If thej-th version ofD; is not cached, the cache manager will check whether there
exists another version &; which can be transcoded into tlpe¢h version ofD;. If yes, the cache
manager will ask the transcoder to generatejttie version ofD;. Otherwise, the cache man-
ager will request the original version of the requested data object from the data server, ask the
transcoder to transform the returned data object into the required version, and then transmit the

result of transcoding to the scheduler.

e Transcoder: A transcoder is in charge of the transformation of data objects among different

versions according to the received transformation requests generated by the cache manager.

Since the design of the back-end is similar to the systems proposed in some prior works [7][8][13][25],

we focus in this paper on the design of the front-end.

3 Analytical and Transcoding Models

3.1 Analytical Model

In this subsection, we derive the worst case of the average accesfiQETP, and use the derived
results to propose a version decision policy and a service admission control scheme in Section 4. To

facilitate the following discussion, we first make the following assumptions.

1. The employed scheduling scheme of the scheduler is FCFS (standing for first come, first serve).
2. No request merge occurs in the data request queue of the scheduler.
3. One transmission of a data object in the broadcast channel is received by exactly one client.

4. The messages of registration, de-registration and handoff are negligible.

Assumptions 2 and 3 occur when the users’ interests are highly diverse, and hence the effect of on-
demand broadcast diminishes. We make these two assumptions since we focus on the worst case
of the transcoding proxy. Assumption 4 is made since we focus on the situation that the number of
data requests is much higher than the number of control messages (i.e., registration, de-registration,
handoff and service termination). These assumptions will be relaxed in our simulation model. For
better readability, a list of used symbols is shown in Table 1.

We model QETP as a queueing network as shown in Figure 5. Queue 2 is a physical queue which
is located in the scheduler. On the contrary, Queue 1 and Queue 3 are logical queues which are only
used to model the control and broadcast channels in order to derive the average waiting time of a data

request on the control and broadcast channels, respectively. Suppose that the data requests submitted

LIn this paper we use access time and waiting time exchangeably.

9

Symbol | Description

R

i-th device profile

Dj (k)

k-th version of data iter;

NU ser

Number of users in the cell

Actr.

Aggregate request rate in the cell

Hctrl.

Service rate of the control channel

Hsche

Service rate of the cache

MBcCast

Service rate of the broadcast channel

Psche

Standard deviation of the service time of the cache

BCtrl.

Bandwidth of the control channel

BBCast

Bandwidth of the broadcast channel

Table 1: Description of symbols

Queue 2

e

Scheduler

pULRYD
1e0pR019

puURyD [04U0D

|4 Data
y| | Request

Figure 5: The analytical model of the proposed transcoding proxy

by a mobile user follow a Poisson process with radg, andNyser is the number of mobile users in

the cell. To facilitate the following discussion, we number the mobile users in the cell as user 1, 2,

.-+, Nyser- Due to the characteristic of the Poisson process, the aggregate data requests of all mobile

users in the cell follow a Poisson process with raig = zi'\i’fef)\i. Denote the sizes of data requests

and request acknowledgementssgg. andsack, respectively. Also leBgy. be the bandwidth of the

control channel, and let the waiting time of the control channel for a data request (dendigg abe

the time interval between the user sending a data request and the user receiving the acknowledgement.

Then, we have the following lemma.

10

Lemma 1: The average waiting time of the control channel is

1
V\btrl' BCtrl

Scul +Sack /\Ctrl

Proof: Similar to [19], we assume that the average waiting time to transmit a data request and a
request acknowledgement by the control channel is an exponential distribution wittbémeahlence,
the control channel can be modeled as an M/M/1 queue. Then, the average service rate of the control

channel is

BC’[rl.

Hcirl. = —————.
Scirl. + Sack

Omitting the equation manipulation which can be found in [12], the approximated average waiting

time for each mobile device from submitting a data request to receiving the corresponding request

acknowledgement is

1 1
BCtrl (1)

Scul.+Sack)\Ct”

V\btrl. =

Hcirl. —)\Ctrl.

Q.E.D.

Let the waiting time of the scheduler for a data request (denotéé&ag) be, from the scheduler’s
perspective, the time interval from the arrival of the data request to the time that the requested data
object has been obtained. Since the service time of a cache manager is affected by several factors such
as cache status of the required data objects, the employed replacement scheme, the characteristics of
the input jobs, and so on, the service time of the cache manager cannot be modeled by a particular
mathematical distribution. Therefore, we model the average service time of the cache manager as an
arbitrary distribution with mealﬂﬁ and variance .. Letpsche = ﬁg—;:e be the load of the scheduler.

We then have the following lemma.
Lemma 2: The average waiting time of the scheduler is

Psch
1 IJSEhe + /\Ctrl aSche

Hsche 2(1— psche)

WSche =

Proof: With assumptions 1, 2 and the characteristié/ofM /1 queues, the input process seen by the

data request queue of the scheduler is also a Poisson process witiifateWhen receiving a data

11

request, the scheduler determines the most suitable version of the requested data object according to the
profile of the mobile device and network status, and then inserts the corresponding job (including data
object id and the most suitable version number) into the data request queue. To serve a data request, the
scheduler passes the job to the cache manager, and the cache manager will retrieve the specified version
of the data object requested by the job and return the retrieved data object to the scheduler. Then, the
scheduler disseminates the returned data object to its clients via the broadcast channel.

With assumption 2, the processing of the scheduler can be modeled as an M/G/1 queue. Then, as

shown in [12], the expected system size in steady-state is

2 2 2
pSche + /\Ctrl . OSche
2(1 - pSche)

I—Sche = Psche t+

By Little’s formula, the average waiting time of this queue is

Psche 2
Lsche 1 Hsche +Actrl. Oche

Actrl. B HMsche 2(1— psche)

(2)

WSche =

Q.E.D.

Let the waiting time of the broadcast channel for a data request be the time interval from the time
that the requested data object has been obtained by the scheduler to the time that the user has received

it. Then, we have the following lemma.

Lemma 3: The average waiting time of the broadcast channel is

1

Wecast= ——+———
Cast Hecast(1—Tro)

whererg is the root ofz= A*[pcasi(1 —)] with value larger than zero and less than one.
Proof: Similar to the proof of Lemma 1, we assume that the average waiting time of the broadcast
channel follows an exponential distribution with me@ééa—st. Since the broadcast channel is a dedicated

downlink channel, similar as [19], we have

1 Average size of the incoming data objects

(3)

UBcast Bgcast

12

As shown in Figure 5, the input process of the broadcast channel is the output process of the scheduler.
Since the service time of the scheduler (i.e., Queue 2) is an arbitrary distribution, the output process of
the scheduler does not follow a particular mathematical distribution. Suppose that the interarrival time
of the input process follows an arbitrary distribution with cumulative distribution functigh The
broadcast channel can be modeled as a G/M/1 queueA‘let be the Laplace-Stieltjes transform of

A(t). Omitting the mathematical manipulation which can be found in [12], the average waiting time of

the broadcast channel (denoted/&s a5 IS

1
Whcast= —————., 4
“% Upcas(1—ro) “
whererg is the root of the following equation with value larger than zero and less than one.
z=A"[Hpcas(1—2)])
Q.E.D.

Finally, the average waiting time of the whole system (denotedlsys) is equal to the summation
of the average waiting time of the control channel, the scheduler and the broadcast channel. Then, with

Lemmas (1), (2) and (3Y¥sys can be formulated as

WSys = Wi, +Wsche +Wacast (6)

3.2 Transcoding Model

Suppose that the mobile devices are classified into several categories based on their capabilities, and
the capabilities of each category are described by one device profil& hetthei-th device profile.

Without loss of generality, we order the device profiles according to their capabilities in ascending
order. That is, the capability d¥ is better than that oP; wheni > j. We also letD;(j) be thej-th

version of data objedD;. Again, we order all versions of a data object according to their quality in
ascending order, which means that the qualitipdf) is better than that dD;(k) whenj > k. For each

data object, we assume that the data size of a version with higher quality is larger than that of another

13

T T T T = /S b
-~ ~ /
N\
® © (@ c)le o
NN
P, P_— P_'

Figure 6: Example device profiles

version with lower quality.

To facilitate the following discussion, the concept of viewable version set is defined below.

Definition 1: A viewable version seif a device profile? and a data objed; (denoted a¥V §i, j))

is a set of versions dD; which are able to be displayed by mobile devices with prdiile

Then, we have the following example.

Example 1: Consider the example shown in Figure 6. Mobile devices are classified into three cat-
egories: notebook, PDA and smart phone, and their capabilities are described in device Byofiles
P, and Py, respectively. In addition, there are six versions of data oljgctVVS3,j), VVI2,j)
andVV{gl,j) are{3,4,5,6}, {3,4} and{1,2}, respectively. We hav¥VS2,j) C VVS3,j) since
devices with profileP; (e.g., notebooks) are capable of displaying all version® pliewable by
devices with profileP, (e.g., PDAs). On the other hand, we haw¥ S3,j)VVS1,j) = ¢ and
VVS2 j)NVVEl,j) = ¢ since devices with profil®, (e.g., smart phone) employ special data for-
mats (e.g., WML and WBMP) that are not supported by devices with prefisendP;.

Let the functionBEST(i, j) = k (respectivelyW ORSTi, j) = k) represent that the best (respec-
tively, worst) viewable version of data objeot for a mobile device with device profilg is versionk.
In practice, we havBEST(i, j) > BEST(l, j) andWORSTi, j) > WORSTI, j) wheni > 1. We also
haveBEST(i, j) = max{VV i, j)} andWORSTi, j) = min{VVSi, j)}.

Example 2: Consider the example shown in Figure 6. The best viewable versioRg & andP;
areDj(6), Dj(4) andDj(2), respectively. As a result, we haBEST(3,j) =6, BEST(2,j) = 4 and
BEST(1, j) = 2. In addition, we also haw/ ORST3, j) =3, WORSTZ2, j) =3andWORSTL1, j) = 1.

14

Start

l

Service Admission Control
Scheme Configuration
\ System Load (p)

< g

« = LIGHT >« FAIR—»«- X —

v g l T

Average Waiting Time Estimation = } 3 3
b |

! ; -

Version Decision Policy Next %
Configuration iteration T

< .

1

Figure 7: The flowchart of scheme ODB-Qo0S- Figure 8: The relationship between load and

Index average access time of a queue

When a user registers the service, the user’'s mobile device will transmit the identifications of the
user and the corresponding device profile to the server. Suppose that the device profile of the mobile
device isP. Then, when the mobile user requeiSts the server will return a suitable versiondf, say

thek-th version ofD; wherek € VV §i, j), according to the result of the underlying version decision

policy.

4 Design of Scheme ODB-Qo0S-Index

An overview of scheme ODB-Qo0S-Index is given in Section 4.1. The proposed version decision policy
and admission control scheme are described in Section 4.2 and Section 4.3, respectively. Finally, the

description of the proposed data indexing method is given in Section 4.4.

4.1 Overview

In this paper, we take the average waiting time of the system as the QoS metric. Before executing
scheme ODB-Qo0S-Index, system administrators should specify a QoS requirement by setting two
thresholds of average access tirild, andW, whereW; < W,. The meanings of these two thresh-

olds are as follows. The users are guaranteed to receive the best viewable versions of the requested data
objects when the average waiting time is smaller M&anOn the other hand, scheme ODB-QoS-Index

will try its best to prevent the average waiting time from being larger Wan

15

Scheme ODB-QoS-Index is an online, iterative and adaptive algorithm which comprises a version
decision policy, a service admission control scheme and a data indexing method. The flowchart of
scheme ODB-QoS-Index is shown in Figure 7. Scheme ODB-Qo0S-Index is executed periodically, and
the following three steps are executed in each iteration. First, in the average waiting time estimation
step, scheme ODB-QoS-Index measures the average waiting time of each queue according to the an-
alytical results derived in Section 3. Since only Queue 2 is physical, only the average waiting time
of Queue 2 (i.e.Wsche) Can be directly observed. In view of this, we propose an approximation al-
gorithm to estimate the average waiting times of Queue 1 and Queue 3\g;g.,andWscas). For
better readability, the proposed approximation algorithm is described in Appendix A. Then, scheme
ODB-QoS-Index measures the load of each queue based on the estimated average waiting time, and
determines the current state of each queue according to the load of each queue. Finally, scheme ODB-
QoS-Index configures the version decision policy and the service admission control scheme according
to the state of each queue. In addition, a data indexing method is employed by the scheduler to insert
index items into the broadcast program to reduce power consumption of mobile clients. The details of

scheme ODB-QoS-Index are described in the following subsections.

4.2 \ersion Decision Policy
4.2.1 Overview

Figure 8 shows the relationship between the average waiting time and the load of a queue. It is intuitive
that when the load is larger than or equal to one, the system is not stable since the average waiting time
does not converge and will approach to infinity. In addition, when the load is smaller than one, the
average waiting time increases as the load increases, and the increment will increase drastically when
the load approaches one.

With the above observations, the rationale of our scheduling algorithtmkeep the system loads of
the scheduler (i.e., Queue 2 in Figure 5) and the broadcast channel (i.e., Queue 3 in Figure 5) smaller
than the predetermined thresholds at the cost of degrading the quality of requested data obgects
a consequence, when the load of the scheduler or the load of the broadcast channel is high, for each

data request, the system will return the version of quality worse than the best viewable version. This

16

strategy has the following two effects:

1. Decrease the average waiting time of the broadcast chaqﬂg;o. Since the data size of a data
object with lower quality is usually smaller than that of the same data object with higher quality,

transmitting data objects with lower quality is able to reduce the load of the broadcast channel

(PCas)-

2. Increase the occurrence probability of request mergsonsider the device profiles shown in
Figure 6, and two data requestsif for device profiled? andPs, respectively. These two data
requests will not be merged together when the load of the scheduler or the broadcast channel is
light since the system will return the best viewable version® pfor P, and Ps, respectively.
When the load is heavy, the system decides to return the third version dfience, these two
data requests can be merged together, and the arrival rates of the input processes of the cache and
the broadcast channel decrease. As a result, this strategy is able to reduce the load of the cache

(psche) @and the broadcast channgktas)-

The proposed version decision policy consists of three phases: state determination phase, candidate
version selection phase and version decision phase. First, in state determination phase the server deter-
mines the states of the scheduler and the broadcast channel according to the loads of the scheduler and
the broadcast channel. Then, in candidate version selection phase, several versions, called candidate
versions, are selected according to the states of the scheduler and the broadcast channel. Finally, the
server decides the resultant version from the candidate versions according to the content of the request

gueue and the objects stored in the cache.

4.2.2 State Determination Phase

Two thresholdspM® andpSehe (respectivelypEC@StandpB©as), are specified to divide the load of the
scheduler (respectively, the broadcast channel) into three states: LIGHT, FAIR and HEAVY. Figure 9
shows the state transition diagram of the scheduler. The state transition scenarios are as follows. When
the previous state is LIGHT, the current state will transit to FAIBsifhe > (14 a) x pf'Che. Otherwise,

the current state will still be LIGHT. When the previous state is FAIR, the current state will transit to

17

otherwise otherwise otherwise otherwise otherwise

P > A XP™ (@) P >(Ar@)xp™(n=1) [)oan >+ a) "

Pape <(1-Q)xp e @ Pare <L-a)xp e 2 Pse <(1-a)xp e (n-1 Sche.
" Pae. <L) % p;

Pave <(L-@) x5

.

FAIR

Figure 9: State transition diagram

LIGHT whenpsche < (1—a) x p® and transit to HEAVY whemsche > (1+a) x p5"e. Otherwise,

the current state will still be FAIR. When the previous state is HEAVY, the current state will transit to
FAIR if psche < (1—0a) X pZSChe. Otherwise, the current state will still be HEAVY. The factor
where0 < a < 1, is used to avoid state oscillation. We assume fiat a) x p$"® < 1 without

loss of generality. To facilitate fine-grained control, system administrators can divide FAIR state into
several sub-states. Suppose that there atéo-states of FAIR state. The interyalce, pSehe) is then
divided inton partitions byn — 1 thresholds pS¢"¢(1), pS¢¢(2), ... pSce(n — 1), wherepSche(k) =

Sche

<p1$che+ K (P5

7p18che

-)>. The transition between these sub-states is similar to that between LIGHT,

FAIR and HEAVY states. The state transition diagram and transition scenarios of the broadcast channel
are as shown in Figure 9 by substitutip§©ast and pSC¢ast for p$ehe and pShe, respectively. The
determination of the values pfche, pSche, pBCastand pBCastis described in Appendix B.

We also define thaggregate statef the scheduler and the broadcast channel as follows. The
aggregate state is LIGHT when the loads of the scheduler and the broadcast channel are both LIGHT.
The aggregate state is HEAVY when at least one of the loads the scheduler and broadcast channel is
HEAVY. Otherwise, the aggregate state is FAIR. In FAIR state, the current sub-state is determined as the
heaviest of the current sub-states (i.e., the heaviest load) of the scheduler and the broadcast channel. For
each new-coming data request, the scheduler will decide a suitable version, fill the version information
into the data request according to the aggregate state, and insert it into the data request queue. The
scheduler will also inform the mobile client of the decided version by replying an acknowledgement

message.

18

4.2.3 Candidate Version Selection Phase

Let degradationand maxDegradatiornindicate the suggested and maximal degrees of degradation,

respectively. The value shaxDegradatiorns determined by
maxDegradation= Vrg(%x{BES'I'(k, j) —WORSTK, j)}.
Dj

In candidate version selection phase, the server will determine a proper valegratiationaccording
to the state of the server, and versi®dsST(k, j),BESTK, j) —1,---,BESTk, j) — degradationare

called candidate versions. The procedure in candidate version select phase is described below.

e Case I: Aggregate state is LIGHT.

The scheduler operates in the traditional on-demand broadcast mode when the aggregate state is
LIGHT. Hence, the server guarantees that each client will receive the best viewable versions of
the requested data objects. That is, the system will returBE®Ti, j)-th version ofD; when

a user request®; by a mobile device belonging to device proffle Therefore, the value of

degradationis set to zero.
e Case II: Aggregate state is FAIR.
In FAIR state, the quality of the received data objects may be degraded. Suppose that FAIR state

consists ofn sub-states. Then, the value aégradationis set to[k x %rfdaﬂo"] when the

server is in thék-th sub-state of FAIR state.

e Case lll: Aggregate state is HEAVY

When the aggregate state is HEAVY, the server will suggest to retul RSTi, j)-th version
of Dj when a user requesi®; by a mobile device belonging to device profie Therefore, the

value ofdegradationis set tomaxDegradation

4.2.4 \ersion Decision Phase

In this phase, the server should pick a proper one from candidate versiorB&iSTi, j), BEST, j) —
1,---,BEST(i, j) —degradation. Suppose that the incoming request ispr The steps of the decision

19

are as follows.

e Step I:In this step, the server checks the data requests in the request queue. If in request
queue, there is a data request Byr sayReq with versionv, BEST(i, j) <v < BEST(i, j) —
degradation versionv is selected since this incoming request can be mergedRatpithout
increasing the load of the server. The server will perform step two if there is no such data request

in the request queue.

e Step Il:In this step, the server checks the objects stored in the cache. If there is anbigct
BEST(i, j) < v <BEST, j) — degradation stored in cache, versionis selected so that the
server need not neither retrieldg from its data server nor perform transcoding. Otherwise, the

server will perform step three if there is no such object in the cache.

e Step Il Select the versiom which is covered by the most profiles among versiBEST(, j),
BEST(,j)—1,---,BEST, j) — degradation Although the server load cannot be reduced by

this decision, the probability that successive requests can perform request merge will increase.

4.3 Service Admission Control Scheme

The proposed service admission control scheme consists of two phases: state determination phase and
admission control phase. To perform service admission control, the server first determines the state
of the control channel in state determination phase, and then determines whether to grant a service
registration or a service handoff in admission control phase. The procedures of these two phases are

described in the following subsections.

4.3.1 State Determination Phase

The proposed service admission control scheme is employed in each service manager to determine
whether to grant a service registration or a service handoff by considering the number of users in
service, the network status, and so on. The rate that a service registration is blocked iserailtesl
blocking rate(abbreviated as SBR), while the rate that a service handoff is forced to terminate is called

service dropping ratéabbreviated as SDR). The rationale of our service admission control scheime is

20

keep the system load of the control channel (i.e., Queue 1 in Figure 5) smaller than the predetermined
thresholds at the cost of increasing SBR and SDD&Rachieve this, two thresholdpf”'- and pgt”'

where pSt"- < pSt- < 1, are specified to divide the load of the control channel into three states:
LIGHT, FAIR and HEAVY. The state transition diagram and transition scenario of the service manager
are shown in Figure 9 by substitutim§'"- andpS'" for pSehe and pSche, respectively. Similarly, the

determination op$t"! andpS'"!- is described in Appendix B.

4.3.2 Admission Control Phase

Although the proposed version decision policy can reduce the loads of the scheduler and the broadcast
channel, the effect of the proposed version decision policy is limited since it depends on several factors
such as the locality of data requests, the cache size and so on. As a consequence, in addition to the load
of the control channel, the service admission control scheme should also take the loads of the scheduler
and the broadcast channel into consideration. The procedure in admission control phase is as below.
When the load the control channel is HEAVY, the server will block all service registrations and drop
all service handoffs in order to relieve the server load. When the load of the control channel is FAIR
or LIGHT, the server will determine the values of two probabilitiesgbg|ocx andProbprop. Then, a
service registration will be blocked with probabilBrobgock, While a service handoff will be dropped
with probabilityProbprop. Itis the system administrators’ responsibility to specify how to determine of
the valuesProbg|qcx andProbprop. Let curStatey,. be the current state of the control channel, and let
curStategg be the aggregate state of the scheduler and the broadcast channel. Note that SBR should be
sacrificed first since mobile users can tolerate a service registration being blocked rather than a service
handoff being forced to terminate (i.e., dropped). Therefore, in each combinatiamStlate, and
curStategg, Probgjock should be larger than or equalRsobprop. An example setting for determining
Probgock andProbprop in an environment with three sub-states in FAIR state is given in Table 2.
Consider the case that the server decides to reject a service registration of a service handoff since
the server’s load cannot afford it. If the owner of the service registration or the service handoff, say
useri, has the same interest to other users using the service, granting this service registration or the

service handoff will not increase the server load since all theilsserquests are expected to be able to

21

curStategq
FAIR

LIGHT FAIR; | FAIR; | FAIR3 HEAVY
LIGHT | 0/0 0/0 | 0.33/0| 0.66/0.15] 1/0.3

FAIR 0/0 0.25/0| 0.5/0 | 0.75/0.3| 1/0.6
Probgjock/Probprop

Table 2: An example setting for determiniRgobg)ocx andProbprop

curState|.

be merged to other users’ requests. Hence, to decrease SBR and SDR, the server should ggant user
service registration or service handoff. From the above example, we observe that we can aggressively
grant a server registration or a service handoff as long as the owner and other users are of common
interest.

To measure the similarity of interest of us@nd other users using the service, we define similarity
factor as the probability that a user’s request will be merged to another request. When receiving a data
request, the server will check whether the data request is merged into another request and update the
user’s similarity factor stored in the user’s profile. The system administrators have to specify a threshold
B,0< B <1, so that a service registration or a service handoff will be granted (even the server cannot

afford it) as long as the value of the owner’s similarity factor is larger than or equil to

4.4 Data Indexing

As shown in [18], setting degree of broadcast programs to a smaller value will make mobile devices
meet index segments more quickly, thus reducing energy consumption. However, it is true only in the
cases that turning on and turning off WNIs do not consume energy. As pointed out in [24], in reality
turning on and turning off the WNIs consume some time and energy, and the transition times of a WNI
from active mode to doze mode and from doze mode to active mode are both on the order of tens
milliseconds.

Consider two organizations of index and data items shown in Figure 10. Note that the time periods
marked as ‘A" and ‘D’ indicate the time periods that the mobile device is in active and doze mode,
respectively, while the time periods marked as ‘F’ and ‘N’ indicate that the time periods that the mobile
device in turning off and turning on the wireless network interfaces (abbreviated as WNIs). Suppose

that a mobile device tunes to the broadcast channel atgxeand finishes the retrieval of the desired

22

l, |1, |1, | D, | D, | D, | D,

revd A R N[A}

of D3 tf S - ~ t * Time
Sart D End

(a) Example broadcast program with degree four

l,b| Db | ILb| D, | Ig| D | I, | D,
Retrieval
A [FE4N| A [Ff4N A ——
b, A AN A E S
Sart D D End

(b) Example broadcast program with degree one

Figure 10: Example organizations of index and data items

data item at timdgng. As observed in Figure 10, when the value of degree of broadcast programs
decreases, mobile devices will switch back and forth between active and doze modes (i.e., turn on
and turn off WNIs) more frequently, and therefore, may consume more energy. As a result, the value
of degree of broadcast programs should be set to a proper value to minimize energy consumption of
mobile devices.

In view of this, we adopt an adaptive data indexing method [16] which is able to dynamically
adjust the degree of broadcast programs according to system workload. The employed data indexing
method consists of two phases, statistics collection phase and degree adjustment phase, and switches
back and forth between these two phases periodically. In statistics collection phase, the system collects
the arrival time, finish time and other statistical information of each served data request. Then, in
the successive degree adjustment phase, the server determines a proper value of degree of broadcast
programs according to the collected information. For the interest of space, we omit the description of
the determination of the value of degree of broadcast programs. Interested readers can refer to [16] for
details.

After determining the current value of degree of broadcast programs, the server then generates
the broadcast program accordingly. Since the data items are of different sizes, we use the parameter
budget which is defined as the maximal length of the data segments of all buckets, to control the
length of each bucket. Initially, the bucket is empty and the scheduler fetches as many data items as

possible from the cache under the constraint that the summation of the sizes of the fetched data items is

23

smaller than or equal tbudget In addition, the scheduler marks the fetched data items as LOCKED.
Then, the scheduler inserts the corresponding index items in front of these data items. Finally, the
scheduler broadcasts the index and data items in the bucket sequentially. An index item or a data item
is removed from the bucket once it has been broadcast. In addition, the state of a data item which
has been broadcast is marked as UNLOCKED. The above procedure repeats until the bucket becomes
empty. To employ data indexing, the cache replacement policy should be also modified to consider

only data items in UNLOCKED states as the candidates to be replaced.

4.5 Remarks

Currently, the proposed version decision policy and service admission control scheme are designed on
the goal of reducing the overall average waiting time and average tuning time. Therefore, if two users
submit two data requests (each user submits one request) for the same data object at the same time,
their priorities and version numbers will be the same.

It is possible to implement differentiated QoS control in the proposed architecture. For example,
we can add a classifier in front of the scheduler to classify the received data requests according to some
administrator-specified rules. Hence, the version decision policy is able to assign their version numbers
according to their classes. In addition, when processing a service registration or a service handoff, the
server first classifies the service according to the user’s profile, and then takes action according to the
user’s class. Consider the case that the server receives two service registrations. Suppose that one is
submitted by a VIP user, and the other is submitted by a normal user. The latter will be rejected if the

server can accept only one service registration.

5 Performance Evaluation

To evaluate the performance of scheme ODB-QoS-Index, we build an event-driven simulator with SIM
[5]. In order to measure the reduction of power consumption of scheme ODB-QoS-Index, we also
implement scheme ODB-QoS which only employs the proposed version decision policy and service

admission control scheme. Both scheme ODB-QoS-Index and scheme ODB-QoS are executed period-

24

Parameter | Value \

Data object number 4000

Data object sizes Lognormal dist. (mean 18 KB

Index item size 1KB | Profile | Viewable version set
Data access probabilities | Zipf dist. with parameter 1.1 P {2,1}

Cache replacement schemeAE P {4,3,2,1}

Cache capacity 0.01x Y object size P; {6,5}

Obiject fetch delay Exponential dist. withu = 2 Py {8,7,6,5}
Transcoding rate 30 KB/sec Ps {10,9,8,7,6,5}
Client number 1000

Cell residence time Exp. dist. withu = 40 minutes Table 4: Device profiles and
Cell holding time Exp. dist. withu = 15 minutes viewable version sets

Cell establishing time Exp. dist. withy = one hour

Table 3: Default system parameters

ically with period two minutes and the simulation is run for 12 hours. Scheme CS (standing for tradi-
tional Client-Server) and scheme ODB (standing for On-Demand Broadcasting) are also implemented
for comparison purposes. The average access time and tuning time are employed as the performance
metrics of experiments. In addition, the average valuéegfradation SBR and SDR are taken as the
metrics of the cost of scheme ODB-QoS-Index. The average valdegrhdationis used to measure

the degree of quality degradation of the received data objects.

5.1 Simulation Model

We set the cell topology as a<4 cells wrapped-around mesh topology. Scheme AE [8] is employed

as the cache replacement policy since it outperforms the other replacement policies for transcoding
proxies. Each cell provides one control channel and one download channel with network bandwidth
10 KByte/sec and 100 KByte/sec, respectively. Analogous to [8], we assume that there are 4000 data
objects and the sizes follow a lognormal distribution with a mean of 18 KBytes. The sizes of a control
message (e.g., data request message and acknowledgement message) and an index item are both set tc
be 1 KByte. The access probabilities of data objects are assumed to follow a Zipf distribution, which is
widely adopted as a model for real Web traces [6]. The parameter of the Zipf distribution is set to be 1.1
with a reference to the analyses of real Web traces [6]. Since small objects are much more frequently
accessed than large ones [11], we assume that there is a negative correlation between the object size and
its access probability [8]. The default capacity of the cache is set toOd# < y object size” and the

fetch delays of data objects follow an exponential distribution with mean two seconds [8]. The values

25

of Wy andWs, (i.e., the QoS requirement) are set to be six seconds and 15 seconds, respectively.

In the client model, as in [7] and [8], we assume that the mobile clients are classified into five
device profiles, and the distribution of these five device profiles is modeled as a device vector of
(15% 20%, 30%,20% 15%). Without loss of generality, we also assume that all objects could be
transcoded into ten versions, and the sizes of the ten versions (from version one to version ten) are
assumed to be 10%, 20%, 30%, and 100% of the original object sizes [8]. The viewable version set
of each device profile is shown in Table 4. By a reference to [8], we assume that a more detailed version
can be transcoded into a less detailed one and the transcoding delay is determined as the quotient of
the object size to the transcoding rate. The transcoding rate is set to be 30 KBytes/sec [7]. The number
of users in the network is set to be 1000. The cell residence time, service holding time and service
establishing time for each user are set to be exponential distributions with means of 40 minutes, 15
minutes and one hour, respectively. We also assume that the data requests of each user follow a Possion

process with parametg%rz 60 seconds.

5.2 The Effects of Cache Size

In this experiment, we investigate the effect of varied cache size in average waiting time, average
tuning time, SBR, SDR and average valuedefyradation Figure 11 shows the experimental results
with the cache size varied. The cache size is set t@&#eheSizeRatia § object size. The value

of CacheSizeRatioanges from 0.001 to 0.1. As shown in Figure 11a, the average waiting time of
all schemes decreases as the valuEatheSizeRatimmcreases. This is because the cache with large
size is able to effectively reduce the average waiting time by storing data objects with high access
probabilities.

Consider the average waiting time of scheme ODB and scheme CS. The average waiting time
reduction of scheme ODB over scheme CS increases from 30% to 60% as the vaaeheSizeRatio
decreases from 0.1 to 0.001. Since scheme ODB can effectively reduce the number of requests from
the cache’s perspective by request merge, the system load of scheme ODB is lighter than that of scheme
CS. Hence, scheme ODB outperforms scheme CS especially when the cache size is small (i.e., high

system load). Although scheme ODB can minimize average waiting time, the performance of scheme

26

12

N
8
8
ol

7 ODB-QoS, SBR

— CSs CS Cs
= - | g mODB-QoS, SDR
8 100 |, = ODB 8 160 m ODB c a4t = ODB 10 gl m ODB-QoSHindex, SBR
© B ODB-Q0S © B ODB-QoS] B ODB-QoS 0 ODB-QoS-Index, SDR
£ 0 ODB-QoS-Index £ 0 ODB-QoS-Index i) 0 ODB-QoS-Index 8 '
=10 - E 120 B3l =
2 2 g &
g g S g °
Z 80 7 F 80 S22t b4
© ? 7 (] T 4
@ / g 2
¢ ? Z 40 1r 5
< | | 11
0 = 4 7 A 0 0 | . 0
0.001 0.003 0.01 0.03 0.1 0.001 0.003 0.01 0.03 0.1 0.001 0.003 0.01 0.03 0.1 0.001 0.003 0.01 0.03 0.1
Value of CacheSizeRatio Value of CacheSizeRatio Value of CacheSizeRatio Value of CacheSizeRatio

(a) Average Waiting Time (b) Average Tuning Time (c) Average Degradation (d) SBR/SDR

Figure 11: The effect of cache size

ODB does not satisfy system administrators’ expectation since the average waiting time is larger than
the value oi\,.

To fulfill system administrators’ requirement when system load is high, scheme ODB-QoS and
scheme ODB-QoS-Index will reduce the quality of the requested data objects and reject some service
registrations and service handoffs. Reducing the quality of the requested data objects will increase the
probabilities of request merge, and hence reduce the number of data requests from the cache’s perspec-
tive. In addition, when the system load is still high, scheme ODB-QoS and scheme ODB-Qo0S-Index
will block service registrations to limit the number of users in service. If blocking service registrations
still cannot reduce the average waiting time to the administrators’ requirement, the service manager will
then reject service handoffs. As shown in Figure 11a, the average waiting time of scheme ODB-Qo0S
and scheme ODB-QoS-Index is still smaller thWenas the value o€ acheSizeRatidecreases. This re-
sult shows that scheme ODB-QoS and scheme ODB-Qo0S-Index are able to control the average waiting
time to satisfy the specified QoS requirement. In addition, since scheme ODB-Qo0S-Index inserts index
items into the broadcast program, the average waiting time of scheme ODB-QoS-Index is longer than
that of scheme ODB-QoS. Due to the small size of index items, the increment on average waiting time
of scheme ODB-Qo0S-Index over scheme ODB-QoS is quite small (around 5% in this experiment).

Figure 11b shows the average tuning time of all schemes. Without employing data indexing, the
average tuning time and the average waiting time of all schemes except scheme ODB-Qo0S-Index are
the same. In scheme ODB-QoS-Index, when the current bucket does not contain the desired data items,
mobile clients can go to doze mode to save power consumption and wake up on the starting point of

the next bucket. Therefore, as shown in Figure 11b, scheme ODB-Qo0S-Index is able to greatly reduce

27

the tuning time (around 93% in this experiment), showing the advantage of data indexing.

Although scheme ODB-QoS and scheme ODB-Qo0S-Index outperform scheme ODB and scheme
CS, scheme ODB-QoS and scheme ODB-QoS-Index produce overhead in SBR, SDR and the degra-
dation on the quality of received data items. Figure 11c and Figure 11d show the degradation on the
guality of received data items and the produced SBR and SDR, respectively, of scheme ODB-QoS and
scheme ODB-Qo0S-Index with the value ©acheSizeRativaried. The SBR and SDR produced by
scheme CS and scheme ODB are omitted in this and the following experiments since both schemes
always grant service registrations and service handoffs (i.e., both SBR and SDR are always zero).

When the cache size is large enough (iGacheSizeRatig- 0.03 in this experiment), most hot
data items are cached and the average waiting time is under the predetermined threshold. Hence, the
average value afegradationis around 0.6 and the quality of the received data items is quite good. In
the same condition, SDR is equal to zero and SBR is only a little bit larger than zero. When the cache
size becomes smalCéacheSizeRatie- 0.01in this experiment), the average valuedsgradationin-
creases significantly to keep the average waiting time between the predetermined thresholds. When
the cache size becomes smallga¢heSizeRatig 0.003in this experiment), only increasing the value
of degradationis not able to effectively relieve the increase of the average waiting time. Hence, the
system will block some service registrations to keep the average waiting time under the predetermined
threshold. Service registrations is rejected before service handoffs since users can tolerate a service reg-
istration to be blocked rather than a service handoff to be dropped. When the valaeh#SizeRatio
is very small, some service handoffs are dropped since only blocking service registrations is not able
to keep the average waiting time under the threshold. With above mechanisms, scheme ODB-QoS and

scheme ODB-QoS-Index are able to keep the average waiting time in the predetermined range.

5.3 The Effects of the Number of Users

Figure 12 shows the experimental results with the number of users varied. The number of users is set
from 400 to 1400. From Figure 12a, we observe that when the number of users is small (400 in this
experiment), the system load is light and the average waiting times of all schemes are close. When the

number of users increases, the average waiting time of scheme CS and scheme ODB also increases.

28

N
8

N
8
o
N
ul

@Cs 7 - -

_ / cs 7 ODB-QoS, SBR
8 3 ObB-QoS 3 & GoB 5 | WODB ® ODB-QoS, SDR
2 150 1 | 2150 mopB-Qos § ° | moDpB-Qos 20 | m ODB-QoSIndex, SBR
E - [ODB-QoS-Index ¥ 4 | 7 OPB-QoSindex 0 ODB-QoS-Index, SDR
> Al £ SECHE
= 100 | <o g3 Y
8 g 2 5
= . B 2 € 10 f
5 1 ¢ 52
£ 50t 7 T 50 - z |
> A > 1t 5
< A | <

ol I ol m LI L .

400 600 800 1000 1200 1400 400 600 800 1000 1200 1400 400 600 800 1000 1200 1400 400 600 800 1000 1200 1400
Number of Users Number of Users Number of Users Number of Users

(a) Average Waiting Time (b) Average Tuning Time (c) Average Degradation (d) SBR/SDR

Figure 12: The effects of the number of users

In addition, the increment of the average waiting time of scheme CS and scheme ODB increases as
the number of users increases, especially when the number of users is larger than 1200. Since a large
number of users implies high arrival frequencies of data requests, the system load becomes heavy and
the average waiting time increases drastically. In this experiment, when the number of users is 1400,
the average waiting time of scheme CS does not converge as the time advances since the system load
is larger than one. This situation agrees to the observation in Section 4.2. This experimental result
also shows that the average waiting time reduction of scheme ODB over scheme CS increases from
47.11% to 74.2% as the number of users increases from 400 to 1400. Scheme ODB is more scalable
than scheme CS due to the employment of on-demand data broadcast.

Consider scheme ODB-QoS and scheme ODB-QoS-Index. When the number of users is small
(400 in this experiment), scheme ODB, scheme ODB-Qo0S and scheme ODB-QoS-Index have similar
behavior. This can be explained by the reason that when the average waiting time of scheme ODB-Qo0S
is smaller tharWy, scheme ODB-QoS is degenerated to scheme ODB and guarantees that each user
will receive the best viewable versions of the requested data objects. In addition, although inserting
some index items into the broadcast program, scheme ODB-QoS-Index is still able to perform almost
as well as scheme ODB-QoS since the size of index items is much smaller than that of data items. In
addition, as shown in Figure 12b, employing data indexing is able to greatly reduce the average tuning
time. In this experiment, the tuning time reduction of scheme ODB-QoS-Index over scheme ODB-Qo0S
is around 92%.

As shown in Figure 12c, when the number of users increases to 800, the average dalyadétion

29

increases in order to keep the average waiting time satisfying the QoS requirement. As shown in Fig-
ure 12d, when the number of users increases to 1000, the system blocks some service registrations
to satisfy the QoS requirement (i.e., in the interjdh,Ws)). Similarly, some service handoffs are
dropped when the number of users is larger than 1200. By controlling the quality of received data
objects and the number of users in service, scheme ODB-Qo0S and scheme ODB-Qo0S-Index are able
to keep the average waiting time satisfying the QoS requirement even when the offered system load is

heavy.

5.4 The Effects of Skewness of Access Probabilities

Figure 13 shows the experimental results with the skewness of access probabilities varied. The degree
of skewness is measured by the value of the Zipf parameter which is set from 1 to 1.4 in this experiment.
The larger the Zipf parameter is, the higher the degree of skewness is. As shown in Figure 13a, the
average waiting time of all schemes increases as the value of Zipf parameters decreases. It is because
that the degree of request locality is high when the access frequencies is highly skewed (i.e., large Zipf
parameter). Therefore, with the same cache size, the cache hit ratio is high and is able to effectively
reduce the average access time. Moreover, on-demand data broadcasting-based schemes (i.e., scheme
ODB, scheme ODB-QoS and scheme ODB-QoS-Index) outperform scheme CS in average waiting
time since they take advantage of the locality of data requests by request merge. We also observe
that the increment of the average waiting time of scheme CS and scheme ODB increases drastically
when the value of Zipf parameter decreases (i.e., one in this experiment). The reason is that the effect
of cache and request merge decreases as the degree of skewness decreases. Hence, the system loa
becomes heavy when the degree of skewness is low, and therefore, the increment of average waiting
time increases. This result conforms to the observation in Section 4.2. In this experiment, the average
waiting time reduction of scheme ODB over scheme CS ranges from 36.9% to 65%. In addition, as
shown in Figure 13b, employing data indexing is able to greatly reduce the average tuning time. In this
experiment, the tuning time reduction of scheme ODB-Qo0S-Index over scheme ODB-QoS is around
90%.

As shown in Figure 13c, the average valuadefjradationis small when access probabilities are

30

N
©
S
=
©
S
IS
2]

. 9
7 cs
g 160 @acs ,g 160 = ODB 4 ESSD 8 I o7 O0DB-QoS, SBR
k] m ODB B ODB-Q0S | y |z | ® ODB-QoS, SDR
g 10 B ODB-QoS 2 10 00DB-Qosndex | & 3) OPB-ces ndex 7 7 | m 0DB-Gos index, s8R
£ 120 [ODB-QoS-Index Z 2 3 F - 6 0 ODB-QoS-Index, SDR
2 2 B 25 ;:, 5
Z c L w L
= P g 2 g4
4] L L
2 g g 15 3
[} o < 1 2 A
S >
< < 05 | I 1 1H
2 A = 0 . . 0
1 11 12 13 14 1 11 12 13 14 1 11 12 13 14 1 11 12 13 14
Zipf Parameter Zipf Parameter Zipf Parameter Zipf Parameter

(a) Average Waiting Time (b) Average Tuning Time (c) Average Degradation (d) SBR/SDR
Figure 13: The effects of the Zipf parameters

highly skewed. We also observe from Figure 13d that when the skewness of access frequencies is high
(Zipf parameter=1.4 in this experiment), scheme ODB-QoS is degenerated to scheme ODB since the
average waiting time of scheme ODB is smaller tin When the access probabilities are not skewed
enough, the system cannot fulfill the QoS requirement and will increase the vatlegaddation

When Zipf parameter is around 1.2, some service registrations are blocked-(@BR satisfy the

QoS requirement. Moreover, when Zipf parameter is smaller than 1.1, some service handoffs are also
dropped. With the above mechanisms, scheme ODB-Qo0S and scheme ODB-Qo0S-Index are able to

keep the average waiting time in the predetermined range.

6 Conclusion

We explored in this paper the effect of on-demand broadcasting technique in the design of a QoS-
aware and energy-conserving transcoding proxy. We first proposed a QoS-aware and energy-conserving
transcoding proxy architecture, QETP, and modeled it as a queueing network. By analyzing the queue-
ing network, several theoretical results were derived to formulate the system average waiting time. We
then proposed a version decision policy and a service admission control scheme to provide QoS in
QETP. The derived results were used to guide the execution of the proposed version decision policy
and service admission control scheme to fulfill the given QoS requirement. In addition, we also pro-
posed a data indexing method to reduce the power consumption of clients. To measure the performance
of QETP, several experiments were conducted. Experimental results showed that the proposed scheme

is more scalable than traditional client-server systems and can effectively achieve the desired QoS. In

31

addition, the proposed scheme was able to greatly reduce power consumption of clients at the cost of a

slight increase in average access time.

References

[1] S. Acharya and S. Muthukrishnan. Scheduling On-demand Broadcasts: New Metrics and Algo-
rithms. InProceedings of the 4th ACM/IEEE International Conference on Mobile Computing and

Networking pages 43-94, October 1998.

[2] M. Agrawal, A. Manjhi, N. Bansal, and S. Seshan. Improving Web Performance in Broadcast-

Unicast Networks. IiProceedings of the IEEE INFOCOM Conferenbarch-April 2003.

[3] D. Aksoy and M. J. Franklin. Scheduling for Large-Scale On-Demand Data Broadcasting. In
Proceedings of IEEE INFOCOM Conferengages 651-659, March 1998.

[4] D. Aksoy, M. J. Franklin, and S. Zdonik. Data Staging for On-Demand Broadc§trdceedings
of the 27th International Conference on Very Large Data Bagsages 571-580, September 2001.

[5] D. Bolier and A. Eléns. SIM: a C++ library for Discrete Event Simulation.

http://www.cs.vu.nl/eliens/sim/October 1995.

[6] L. Breslau, P. Cao, G. Phillips, and S. Shenker. Web Caching and Zipf-like Distributions: Evi-
dence and Implications. IRroceedings of the IEEE INFOCOM Conferenbtarch 1999.

[7] V. Cardellini, P. S. Yu, and Y.-W. Huang. Collaborative Proxy System for Distributed Web Con-
tent Transcoding. lifProceedings of the 9th ACM International Conference on Information and

Knowledge Managemertiovember 2000.

[8] C.-Y. Chang and M.-S. Chen. On Exploring Aggregate Effect for Efficient Cache Replacement
in Transcoding ProxieslEEE Transactions on Parallel and Distributed Systed¥(6), January
2003.

[9] M.-S. Chen, K.-L. Wu, and P. S. Yu. Optimizing Index Allocation for Sequential Data Broad-
casting in Wireless Mobile ComputingEE Transactions on Knowledge and Data Engineering

15(1), February 2003.

32

[10] H.D. Dykeman, M.H. Ammar, and J.W. Wong. Scheduling Algorithms for Videotex Systems
Under Broadcast Delivery. IRroceedings of IEEE ICC Conferenc986.

[11] S. Glassman. A Caching Relay for the World Wide WElomputer Networks and ISDN Systems
27,1994,

[12] D. Gross and C. M. HarrisFundamentals of Queueing Theorgyohn Wiley & Sons,Inc., 3rd
edition, 1998.

[13] R. Han, P. Bhagwat, R. Lamaire, T. Mummert, V. Perret, and J. Rubas. Dynamic Adaptation in
an Image Transcoding Proxy for Mobile Web BrowsingEE Personal CommunicationS(6),

December 1998.

[14] J.-L. Hsiao, H.-P. Hung, and M.-S. Chen. Versatile Transcoding Proxy for Internet Content Adap-

tation. to appear in IEEE Transaction on Multimedia

[15] J.-L. Huang, M.-S. Chen, and H.-P. Hung. A QoS-Aware Transcoding Proxy Using On-demand
Data Broadcasting. IRroceedings of the IEEE INFOCOM Conferenbarch 2004.

[16] J.-L. Huang and W.-C. Peng. An Energy-Conserved On-Demand Data Broadcasting System. In
Proceedings of the 6th International Conference on Mobile Data Manageiegt2005.

[17] T.Imielinski, S. Viswanathan, and B. R. Badrinath. Data on Air: Organization and AcEeSE.
Transactions on Knowledge and Data Engineerié®):353-372, June 1997.

[18] S. Lee, D. P. Carney, and S. Zdonik. Index Hint for On-demand Broadcastifyoteedings of
the 19th IEEE International Conference on Data Engineerivigrch 2003.

[19] W.-C. Lee, Q. L. Hu, and D. L. Lee. A Study on Channel Allocation for Data Dissemination in
Mobile Computing EnvironmentsACM/Kluwer Mobile Networks and Application4(5):117—
129, May 1999.

[20] W. Y. Lum and F. C. M. Lau. A Context-Aware Decision Engine for Content AdaptatB&EE
Pervasive Computind.(3), July-September 2002.

33

[21] W. Y. Lum and F. C. M. Lau. On Balancing Between Transcoding Overhead and Spatial Con-
sumption in Content Adaptation. Proceedings of the 8th ACM International Conference Mobile

Computing and Networkingeptember 2002.

[22] W.-C. Peng and M.-S. Chen. Efficient Channel Allocation Tree Generation for Data Broadcasting
in a Mobile Computing EnvironmenACM/Kluwer Wireless Network9(2):117-129, 2003.

[23] C. Poellabauer and K. Schwan. Energy-Aware Media Transcoding in Wireless Systeirs- In
ceedings of the 2nd IEEE International Conference on Pervasive Computing and Communica-

tions March 2004.

[24] T. Simunic, S. Boyd, and P. Glynn. Managing Power Consumption in Networks on GEipE
Transactions on Very Large Scale Integration Systeta€l):96—107, January 2004.

[25] J. R. Smith, R. Mohan, and C.-S. Li. Content-based Transcoding on Images in the Internet. In

Proceedings of IEEE International Conference on Image Proces€ntpber 1998.

[26] M. A. Viredaz, L. S. Brakmo, and W. R. Hamburgen. Energy Management on Handheld Devices.
ACM Queuegl(7):44-52, October 2003.

[27] Y. Wu and G. Cao. Stretch-Optimal Scheduling for On-Demand Data Broadcaftsdeedings

of the 10th IEEE International Conference on Computer Communications and Net®0eks

[28] J. Xu, W.-C. Lee, and X. Tang. Exponential Index: A Parameterized Distributed Indexing Scheme
for Data on Air. InProceedings of the 2nd ACM/USENIX International Conference on Mobile

SystemsJune 2004.

[29] J. Xu, X. Tang, and W.-C. Lee. Time-Critical On-Demand Data Broadcast: Algorithms, Analysis,

and Performance EvaluatiofEEE Transactions on Parallel and Distributed Syste2G06.

[30] J. L. Xu, B. Zheng, W.-C. Lee, and D. K. Lee. Energy Efficient Index for Querying Location-
Dependent Data in Mobile Broadcast Environments.Ptaceedings of the 19th International

Conference on Data Engineeriniglarch 2003.

34

Appendix A: Average Waiting Time Estimation

Although the system average waiting time can be formulated by Equation (6), Lemmas 1, 2 and 3,
not all components can be directly obtained in practice since Queue 1 and Queue 3 are logical queues.
To overcome this problem, we propose an approximation method for each unavailable parameter to
estimate the system average waiting time.

Consider the queueing network shown in Figure 5. The input process of Queue 1 cannot be directly
observed by the transcoding proxy. However, since the control channel (i.e., Queue 1) is an M/M/1
queue, the output process of Queue 1 is identical to the input pfocksee corresponding scheduler.
Hence, the input process of Queue 1 can be observed by the scheduler, and the average waiting time of
the control channel can be obtained by Equation (1). In addition, since the average and variance of the
service time of Queue 2 can be observed by the scheduler, the average waiting time of the scheduler
can be derived by Equation (2).

To derive the average waiting time of the broadcast channel (i.e., Queue 3), the cumulative distrib-
ution function of interarrival time of the input process (i&(t)) is required. However, deriving exact
A(t) is impractical sincé\(t) is continuous. Hence, we adopt the following approach to estif@je
Consider then-th execution of scheme ODB-Qo0S-Index. The average and the variance of the interar-

rival time of Queue 3 between tiien— 1)-th andm+th executions (i.e.—— and 02, respectively)

ABCast

can be obtained. We then partition the interarrival time into the followingervals

1 = = _k_ZXUBCasbi_EXUBCasQ;
_)\BCast 2)\BCast 2
le1 = 1 — 1- X OBCast i - § X UBCast) y
Z | ABcast 2 ABcast 2
Iy = ! — 1- X OBCast ! —l—} X UBCast))
2 | ABcast 2 ABcast 2
lkes = 1 +1- X OBCast 1 +§ X UBCast))
2 | ABcast 2 ABcast 2
lk = 1 + k;? X OBCast L ‘|—l—< X GBCast)
_)\BCast 2 ABCast 2 ’

2This phenomenon results from assumption 2 in Section 3.1.

35

wherek is a positive odd number arkd> 1. Note that although indicating the higher accuracy of
the estimation ofA(t), a largerk also implies larger memory consumption. We also define an array
of a[1],a[2],---,alk|] and reset them to zero in each iteration of scheme ODB-QoS-Index. In the time
interval between then-th and (m-+ 1)-th executions, for each data arrivgl the interarrival time of

this arrival is counted. If the interarrival time of lies in intervall;, the value ofai] is increased

by one. Otherwise, we take the interarrival timegoés an outlier and do not change the values of

a[1],a[2],---,ak. Lettp =

o (P K1) x Opcasy Wherep=1,2,---,k, andAt = $ x Ogcas: We
take the discrete distribution with the following probability density function as the approximation of

the distribution of interarrival time.

_k—m X Zit, if t, — At <t <tp+At, wherepis an integer and < p <k;

f(t) = Yi-1alil
0, otherwise;
Let A* be the mean of the approximation of the distribution of interarrival time. We I;rdve_

BCast BCast
s, f(ti) x t, and then, Equation (5) can be rewritten as

i(1-2)

7— Zl |xe ’\BCast) (7)

The value ofrg can be estimated by applying successive substitution in Equation (7). In addition, since
the average size of incoming data objects can be observedg#ag can be obtained by Equation (3).

Finally, the approximateWpscastcan be calculated by Equation (4).

Appendix B: Configuration of the Version Decision Policy and the
Service Admission Control Scheme

Here, we develop an adjusting algorithm to configure the version decision policy and the service ad-
mission control scheme based on the system state by automatically adjusting the parameters used in
Section 4.2 and 4.3. In the proposed adjusting algorithm, three positive fagtoys,and y3 where

i+ Y2+ ys = 1, are defined to determine the valuespit™:, pStrl-, pSehe, pSehe pBCast gng pBCast

36

The values op$™- andpS™- are first determined so that the average waiting time of the control chan-
nel is equal tdMcyr. = Y1 x Wp andWegr. = vi x Wh, respectively. By substitutings x Wy for Weyy . in
Equation (1), we can solve the above equation sitgg. is the only unknown variable in the above
equation Assume that the solution & is)\C”". Then we can obtain the value pf”'~ since

pgtrt = . With similar approach)$™"- andpS'""- can also be obtained.

Hc .
The values ofp"® and p5® are then determined so that the average waiting time of the cache
is equal toy, x Wy and y» x Wh, respectively. Due to assumption 2 and the characteristic of Queue
1 (i.e., an M/M/1 queue), the input process of Queue 2 is the same as the input process of Queue
1 (i.e., Asche = Actr). We rewrite Equation (2) by substituti ;:e and)\f”'- for psche andActr
respectively. Then the only unknown variable (i.Bsche) in the rewritten equation can be solved.
Suppose that the solution 5", and we haveehe = %;ﬂ,@ Analogously, the value 55" can be
obtained by similar approach.
Finally, the values 0pEC3tandpBCastare determined so that the average waiting time of the cache
is equal toys x Wy and y3 x Ws, respectively. To determinpchaSt, we first rewrite Equation (4) by
replacingys x Wy with Wacasy and the only unknown variablg can be solved. Sincg andW; are
larger than zera,g is smaller than one. Ify < —1, it indicates that the requirement is infeasible since
the required average waiting time of the broadcast channel is under the lower bound. Then, the value of
p'fcaStis setto 0. Otherwise, whéh< rg < 1, we rewrite Equation (7) by replacing the solveggt; + o
andAgc, i+ 0 With z, tj andAg-,¢, respectively. Then, the only unknown varialdean be solved.
Finally, we havepPCast= AEL?TSS; The value 0fp5°@tcan also be derived by similar approach.
The values o4, y» andys are determined adaptively and automatically. When the system starts up,
Vi, v» andys are initialized to. In each execution, they are determinedypy- \\’,\V’gty”s Vo = V‘Vﬁi,g;ze and
V3 = WBCast =1—y1 — . Note that in scheme ODB-QoS-Index, only QoS requirement Weand

Wsys

W) is required to be specified by system administrators.

Appendix C: Signalling Procedures

Before using the transcoding proxy, a mobile user should register the service in advance by sending

a registration message via a control channel. After the transcoding proxy receives the registration

37

message, a service admission control scheme is activated to determine whether to grant the service
registration. If yes, the mobile device will send the device profile to the proxy, and the proxy will
record the user profile and device profile in its profile database. Otherwise, the service registration is
blocked. The rate that a service registration is blocked is cakedice blocking rat€abbreviated as

SBR).

After the service registration is granted, the mobile user can issue data requests to the corresponding
transcoding proxy by the control channel. When receiving a data request, the transcoding proxy first
determines the suitable version of the requested data object by a version decision policy, and returns an
acknowledgement message containing the decided version information via the control channel to the
mobile user. Then, the transcoding proxy will return the decided version of the required data object
via the corresponding broadcast channel as soon as possible. After receiving the acknowledgement
message, the mobile device will tune to the broadcast channel to wait for the appearance of the decided
version of the requested data object. When the mobile user decides not to use the transcoding proxy
service, the mobile device will send a de-registration message to terminate the service.

Since a mobile user is able to freely move around these cells, a service handoff will occur. A service
admission control scheme is executed to determine whether the service handoff is granted. If yes, the
mobile user can use the service as usual. If not, the system will force the mobile user to terminate the
service (the service is said to be dropped). Since a service admission control scheme is employed, a
service handoff may be rejected. The rate that a service handoff is forced to terminate isealieel

dropping rate(abbreviated as SDR).

Appendix D: Algorithmic Forms of the Proposed Algorithms

Version Decision Policy

As a consequence, the algorithmic form of the version decision policy is as below.

Procedure VersionDecisidR(Dj)

Input: A user requestd; by a mobile device belonging to device profie

Output: A version ofD;.
1: LetcurStat@gg be the current aggregate state of the scheduler and the broadcast channel.
2: maxDegradation— max {BESTKk, j) —~-WORSTK, j)}
3: if (curStat@gg=LIGHT) then

38

degradation— BEST(i, j) /* The system will return the best viewable version to the user */
else if(curStategg=HEAVY) then

degradation— WORST], j) /* The system will return the worst viewable version to the user */
else/* curStategg=FAIR */

Determine the sub-state. /* Suppose the aggregate state iskrthteub-state of FAIR state */

degradation— [k x MeXDegradatio
if (rule one can be appliedthen

Perform step one to determine the version

. else if(rule two can be appliedhen

Perform step two to determine the version

: else

Perform step three to determine the version

s return v

Service Admission Control Scheme

The algorithmic form of the proposed service admission control scheme is as below.

Procedure ServiceAdmission

Input: A service registration or a service handoff.
Output: Decision of the incoming service registration or service handoff.

PR R RERERRRE R
NPT RWNREO

Let curStatey, be the current state of the control channel.
Let curStategg be the current aggregate state of the scheduler and the broadcast channel.
Let similarity be the similarity factor of the owner of the service registration or the service handoff.
if (curStatey =HEAVY) then
decision— REJECT
else/* curStatey; =FAIR or curState =LIGHT */
Determine the values ¢frobg|ocx andProbprep according to system administrators’ settings.
if (service registratiornthen
Setdecisionto REJECT with probabilityProbgiock and to GRANT with probability(1 — Probgjock)-
else/* service handoff */
Setdecisionto REJECT with probabilityProbpep and to GRANT with probability 1 — Probpop).

. if (decisioF=REJECT)}hen

if (similarity >) then
return GRANT
else
return REJECT

. elsef* decisiorFr=GRANT */

return decision

Broadcast Program Generation Algorithm

The algorithmic form of the proposed broadcast program generation algorithm is as below.

Algorithm ProgramGeneration

1: while (true)do

2:
3:
4.

bucket—BucketGeneration();
while (bucketis not empty)do
item<«the head obucket

39

Remove the head dfucket

Broadcasttem

if (itemis a data itemjhen
Mark itemas UNLOCKED:;

Function BucketGeneration()
1: available<— budget

2: budket— empty

3: while (true)do

4: Fetch a data item (denoteditsm) from the cache;
5: Markitemas LOCKED,;
6: if (available>the summation of the sizes bémand the corresponding index itemmen
7: Appenditeminto bucket
8: available«< available-the size oftemthe size of the corresponding index item;
9: else

10: if (bucketis empty then

11: Appenditeminto bucket

12: break;

13: Insert the corresponding index items of the data itenisicketinto the head obucket
14: return bucket

40

