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Abstract

Since only a modest improvement in battery lifetime is expected in the next few years, energy
conservation is raised as a key factor of the design of mobile devices. In view of this, we propose in this
paper an energy-conserving on-demand data broadcasting system employing data indexing technique.
Different from the prior work, power consumption of turning on and turning off the wireless network
interfaces is considered. In addition, we also employ server cache to reduce the effect of the time
to retrieve data items from the corresponding data servers. Specifically, we first analyze the access
time and tuning time of data requests and propose algorithm AIDOA to adjust the degree of buckets
according to system workload. Several experiments are then conducted to evaluate the performance of
algorithm AIDOA. Experimental results show that algorithm AIDOA is able to greatly reduce power
consumption at the cost of a slight increase in average access time and adjust the index and data
organization dynamically to adapt to change of system workload.

Keywords: data indexing, on-demand data broadcasting, energy conservation, mobile information

system



1 Introduction

Owing to the constraints resulting from power-limited mobile devices and low-bandwidth wireless net-
works, designing a power conserving mobile information system with high scalability and high bandwidth
utilization becomes an important research issue, and hence attracts a significant amount of research atten
tion. In recent years, data broadcasting is proposed to address such challenge and has been recognize
as a promising data dissemination technique in mobile computing environments [1][4][5][10][11]. Most
research works on data broadcasting focus on generating a proper broadcast program or designing schedul
ing algorithms to minimize thaverage access time/hich is defined as the average time elapsed from the
moment a client issues a query to the point the desired data item is read.

As shown in [17][19], only a modest improvement (ab@0®~ 30%) in battery lifetime is expected
in the next few years. Hence, energy conservation is raised as a key factor of the design of mobile devices.
Consider a Nokia 5510 which supports AAC and MP3 playing. Compared to the power consumed on
music playing, the wireless network interface (abbreviated as WNI) consumes much more energy (as
much as 70% of the total power in Nokia 5510) [22]. Hence, reducing the power consumption on WNIs
is an effectively means to reduce the overall power consumption. Most devices can operate in two modes:
activemode andlozemode. Many studies show that the power consumed in active mode is much higher
than that consumed in doze mode. For example, a typical wireless PC card, ORINOCO, consumes 60 mW
during the doze mode ar&@D5~ 1400mW during the active mode [19]. As a consequence, in order to
reduce power consumption, the mobile devices should stay in doze mode as long as possible.

To evaluate the effect of data indexing algorithms on energy conservationg time which is defined
as the time that a mobile device operates in active mode in order to retrieve a data item, is introduced
in [12]. Since employing data indexing will unavoidably introduce some overhead in access time, data
indexing algorithms should reduce tuning time as much as possible at the cost of producing an acceptable
increase in access time. Since the size of an index item is usually much smaller than that of a data item,
the increment in access time is usually small. As a result, many research works study the design of data
indexing algorithms in push-based data broadcasting environments [20][21]. However, most studies on on-
demand data broadcasting focus on the design of scheduling algorithms [2][5] to reduce average access

time, and only few of them consider the employment of data indexing in on-demand data broadcasting
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Figure 1: Index structure

environments [13] to reduce average tuning time.

In [13], Lee et al. proposed an indexing algorithm for on-demand data broadcast systems. As shown
in Figure 1, the proposed broadcast program is made up of a series of buckets and each bucket consists o
one index segment and one data segment. A data segment contains a series of data items, while an inde;
segment consists of the index items of the data items in the corresponding data segment. For a bucket, the
number of data items in the corresponding data segment is callde@gineeof the bucket. The information
in an index item, sayi(1), consists of the identifier of the corresponding data i@ifl), the data size of
Di(1) and the time thabD;(1) in bucketi will be broadcast on the broadcast channel. In addition, by the
information in the current index segment, a mobile device is able to determine the broadcast time of the
index segment of the next bucket.

Although inserting index items into the broadcast program is able to significantly reduce the average
tuning time at the cost of a slight increase in average access time [13], however, the proposed data indexing

method proposed in [13] has the following drawbacks:

e Does not consider power consumption of turning on and turning off the WNIs.

As pointed out in [18], turning on and turning off the WNIs consume some time and energy, and the
transition times of a WNI from active mode to doze mode and from doze mode to active mode are
both on the order of tens milliseconds. Consider two organizations of index and data items shown in
Figure 2! Suppose that a mobile device tunes to the broadcast channel atigend finishes the
retrieval of the desired data item at tiryg,g. Without considering power consumption of turning

on and turning off the WNI, the power consumptions of organization one and organization two are
equal. However, when power consumption of turning on and turning off the WNIs is considered,

organization two outperforms organization one.

1The descriptions of symbols ‘A, ‘D’, ‘F’ or ‘N’ will be given in Table 1 in Section 3.2.
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Figure 2: Example organizations of index and data items

Therefore, we argue that the design of an energy-conserving data indexing method should take
power consumption of turning on and turning off the WNIs into account to obtain precise power
consumption estimation. To the best of our knowledge, there is no prior work on data indexing in
on-demanding broadcast considering power consumption of turning on and turning off the WNIs,

thereby distinguishing our paper from others.

Does not consider the data fetch time

Most studies on indexing in on-demand data broadcasting are under the premise that all data items
areimmediatelyavailable for a data broadcasting system [13]. However, as pointed out in [6], the
data fetch time cannot be neglected since it is infeasible to store all data items in the local cache
of the system. Hence, the traditional data broadcasting systems [5] may not perform well. As a
consequence, we argue that the indexing algorithm in on-demand data broadcasting should also

consider the data fetch time in order to attain higher efficiency.

Does not adapt to change of system workload

In mobile computing environments, schemes with static degree may not be able to adapt to change
of system workload. Such phenomenon shows the necessity of designing an adaptive algorithm to
dynamically adjust the degree of buckets to adapt to the change of system workload. To the best of
our knowledge, all prior works on data indexing in on-demanding broadcast employ static degree

and none of them is able to adapt to change of system workload.

3



In view of this, we propose in this paper an energy-conserving on-demand data broadcasting system
by employing the data indexing technique. Different from the prior work on data indexing on on-demand
data broadcasting, power consumption of turning on and turning off the WNIs is considered. Specifically,
we first analyze the access time and tuning time of data requests and propose algorithm AIDOA to ad-
just the degree of buckets according to system workload. In essence, algorithm AIDOA consists of two
phases, statistics collection phase and adjustment phase, and switches back and forth between these tw
phases periodically. The system collects some statistic information of all served data requests in statistics
collection phase, and the collected information is used to adjust the degree of buckets in adjustment phase
according to the derived analytical results. In addition, we employ server cache to eliminate the perfor-
mance degradation caused by the data fetch time. We also propose a program generation algorithm and &
cache replacement policy to cooperate with algorithm AIDOA. Several experiments are then conducted to
evaluate the performance of algorithm AIDOA. Experimental results show that due to the dynamic adjust-
ment on degree of buckets, scheme using algorithm AIDOA outperforms other schemes with static degree
in most cases.

The rest of this paper is organized as follows. Section 2 describes the proposed system architecture and
the power consumption model used in this paper. Section 3 shows the analytical model of the proposed
system architecture. Based on the analytical model, we propose algorithm AIDOA in Section 4. In
addition, the companion program generation algorithm and cache replacement policy are proposed in
Section 5. Experimental results are shown in Section 6 to evaluate the performance of algorithm AIDOA,

and finally, Section 7 concludes this paper.

2 Preliminaries

2.1 System Architecture

We adopt the index structure proposed in [13] and the adopted index structure is shown in Figure 1. As

shown in Figure 3, the proposed system architecture consists of the following components.

e Scheduler: The scheduler is in charge of receiving and processing the data requests submitted by

mobile devices. After receiving a data request, Ray, the scheduler will search the ready queue,
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Figure 3: System architecture

the pending list and the request queue sequentially to check whether there exists a data request, say
Req, with the same required data item Req. WhenReq is in the pending list, the scheduler
mergesReq into Req. WhenReq is in the ready queue (respectively, the request queue), the
scheduler will mergeReq into Req and updates the priorities of all data items in the ready queue
(respectively, the request queue) according to the employed scheduling algorithm such as FIFO,
LWF, RxW and so on. Otherwise, whdéXeq does not exist, the scheduler will inséteq into

the request queue and update the priorities of all data items in the request queue according to the

employed scheduling algorithm.

Fetcher: The fetcher repeatedly retrieves the data request with highest priority from the request
gueue, and fetches the required data item from the corresponding data server via Internet. Cache
is employed to reduce the performance degradation caused by the data item fetch time. To fetch a
data item, the fetcher first checks whether the required data item is cached in the local cache. If yes,
the fetcher will mark the cached data item as LOCKED and insert the data request into the ready
gueue. Then, the fetcher will retrieve the data request with highest priority from the request queue

and repeat the above procedure.



Otherwise, when the desired data item is not cached, the fetcher will submit a data request message
to the data server of the required data item and insert the data request into the pending list. Then,
the fetcher will check the number of pending data requests and will stop if the number of pending

data requests is equal to a predetermined threshold. Otherwise, the fetcher will repeat the above
procedure until the number of pending data requests is equal to a predetermined threshold or the

request queue is empty.

When a data server responds with a data item, the fetcher will retrieve the corresponding data request
from the pending list and insert the data request into the ready queue. In addition, the fetcher will

insert the received data item into the cache. Several cached data items may be replaced by the
employed replacement policy when the free space of the cache is not enough to store the received

data item.

e Program generator:

The program generator employs a program generation algorithm to compose all buckets of broadcast
programs. After a bucket is generated, the index and data items in the current bucket are broadcast
sequentially. The program generator will start to compose another bucket after all index items and

data items in the current bucket have been broadcast.

2.2 Power Consumption Model

Denote the time for a mobile device to switch the WNI from active mode to doze modg,asd the
time to switch the WNI from doze mode to active modelgs;. To evaluate the power consumption of
turning on and turning off the WNIs, we assume that the power consumption of a mobile device spending
in time intervalsTon, (respectively,Tof¢) is equal to that of a mobile device staying in active mode for
time ay x Ton (respectively, timax, x Tof). Similar to [22], the values afi; anda» can be obtained by
profiling.

Denote the traditional (i.e., without considering the turning-on and turning-off time of WNIs) average
tuning time of a data request &suning. TO evaluate the overall power consumption, we defineffestive

ff

tuning timeof a data request && uning= Truning+ N1 x a1 X Ton+ N2 x az x Tof ¢, Wwhereny andn, are the

numbers of times of turning on and turning off the WNI, respectively, Bngingis the traditional tuning

6



| ProbeBucket | Search Bucket oo o Retrieval Bucket
\ \ \

DS, | eee I§| D§
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time. To ease the presentation, we use the term tuning time to represent effective tuning time, and assume

a1 = ao = 1in the rest of this paper.

3 Analytical Model

3.1 Client Access Protocol

After submitting a data request, a mobile client will retrieve the desired data item according to the em-
ployed client access protocol. We adopt the client access protocol described in [20], and the protocol

consists of the following phases.

¢ Initial probe phaseAfter submitting a data request, the mobile device tunes to the broadcast channel

and listens on the broadcast channel to wait for the appearance of an index segment.

¢ Index search phaserhe mobile device enters index search phase after retrieving an index segment.
In index search phase, the mobile device determines whether the desired data item will be broadcast
in the corresponding data segment. If not, the mobile device will switch to doze mode and then
switch back to active mode when the next index segment is broadcast. Otherwise, the mobile device

will enter data retrieval phase.

o Data retrieval phase:lf the desired data item will be broadcast in the current data segment, the
mobile device will retrieve the time that the desired data item will be broadcast from the current
index segment and switch to doze mode. Then, when the desired data item is broadcast, the mobile

device will switch back to active mode and retrieve the desired data item.

Consider the example shown in Figure 4 that a mobile device submits a data requést,Lbet the

time that the mobile device starts to listen on the broadcast channel after submitting the data request, and
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teng be the time that the mobile device receives the desired data item. According to the employed client
access protocol, the buckets within the time interval fitgp: to teng can be divided into the following

three categories:

e Probe bucket:The bucket whichist4t lies on is called the probe bucket. In FigureBcketi) is

the probe bucket. There is only one probe bucket for each data request.

e Search bucket:The bucket whose index segment is retrieved by the mobile device and whose
data segment is skipped by the mobile device is called search bucket. In Figduekéti + 1),
Bucketi + 2), ---, Bucket j — 1) are all search buckets. For a data request, there may be zero, one

or multiple search bucket(s).

¢ Retrieval bucketThe bucket whichignq lies on is called the probe bucket. That is, retrieval bucket
is the bucket where the mobile device retrieves the desired data item. In FigBuekkt j) is the
retrieval bucket. For each data request, there is only one probe bucket. In addition, the probe bucket

and the retrieval bucket of a data request may be the same or different.

3.2 Derivations of Access Time and Tuning Time

To facilitate the following derivations, we have the following assumptions:

¢ All data items are of equal siZ®.

e The time to broadcast a data item (i%) is larger thanTon+ Tot ¢

Note that both assumptions are not the limitations of algorithm ADIOA and are made only to ease the
derivations in Section 3 and Section 4. Hence, they will be relaxed in Section 5 and Section 6.

In Bucketi), denote the moment that the mobile device starts to turn on and turn off the WNI as
twakeu di) andtsieedi), respectively. In addition, we also denote that the starting time and the ending time
of Bucketi) asBucketi).Start andBucketi).End, respectively. For a data request, we also partition the
time interval fromts;art t0 teng into several segments and each segment is marked as ‘A, ‘D’, ‘F’ or ‘N’.
The descriptions of these four symbols are given in Table 1.

According to the relationship of the probe and retrieval buckets, a data request may be belonging to

one of the following two types.



| Symbol | Description |
The mobile device is in active mode
The mobile device is in doze mode

The mobile device is turning off its WNI
The mobile device is turning on its WNI

Z| Mol >

Table 1: The symbols of time frames
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Figure 5: A probe bucket in a Type | data request

3.2.1 Type I: The probe and retrieval buckets are the same

As shown in Figure 5, in a Type | data requdstat andtgng are within the same bucket. In addition,
according to the employed client access proto®l;; must be located in the index segment. Otherwise,
tstart andteng Will not be in the same bucket, and such result conflicts with the definition of Type | data
requests. In order to minimize power consumptigpe i) is determined as the moment that the mobile
device has finished the retrieval of the corresponding index item of the desired data iteia@0¢i)
is determined as the moment that the mobile device has to start to turn on the WNI in order to retrieve the
desired data item.

We observe from Figure 5 that one Type | data request will increase the aggregate access time of all
data requests iy, —tstart. ON the other hand, the contribution of a Type | data request on the aggregate
tuning time of all data requests is determined by the length of the time intgg\al(i), twakeu di)). When

twakeu di) —tsieedi) > Tot+, the data request will increase aggregate tuning time by

tsieedi) —tstart+tEnd — twakeu i) + Ton

, S
= tsleefdi) —tstart+ g T Ton+Totf.

Otherwise, whemwakeudi) —tsieedi) < Tot¢ (i.€., the mobile must start to turn on the WNI before the

WNI has been turned off), the time interv@eedi),twakeu gi)) is too short to turn on and then turn off
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Figure 6: Probe buckets in a Type Il.I and a Type Il.1l data requests

the WNI. Hence, the data request will increase aggregate tuning tire by tstart.

3.2.2 Type ll: The probe and retrieval buckets are different

The time intervaltstarn, teng) Of @ Type Il data request consists of one probe bucket, zero, one or multiple
search bucket(s) and one retrieval bucket. Next, we will derive the contributions of the probe bucket, the
search buckets and the retrieval bucket of a Type Il data request, separately, on the aggregate access tim

and aggregate tuning time of all data requests.

Probe bucket Consider the example shown in Figure 6. According to the locatiaggf, Type Il data
requests can be divided into the following two subtypes.
Type Il tstart is in the index segment.

Consider a Type II.| data request. Since the desired data item is not in the probe bucRatket))),the
probe bucket of a Type Il.I data request will increase the aggregate access time of all data requests by
Bucketi + 1).Start— tsiar.

On the other hand, to maximize power-saving, the mobile device should start to turn off the WNI after
retrieving the latest index item %, and must turn on the WNI oBucketi + 1).Startto retrieve the first
index item inlS1. Hencefwakeu di) is equal toBucketi +- 1).Start— Ton. As a consequence, a Type 1.1
data request will increase the aggregate tuning time of all data requeisisely) — tstart+ Tof f -+ Ton.
Type IL1I: tsiart IS in the data segment.

Whentg;art IS in the data segment, according to the employed client access protocol, the mobile device
has to listen on the broadcast channel to wait for the appearance of the index segment of the next bucket

(i.e.,1Si+1). Hence, irBucketi), the mobile device is in active mode frdga: to Bucketi + 1).Start, and
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Figure 7: A search bucket in a Type Il data request
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Figure 8: A retrieval bucket in a Type Il data request

the contributions of the probe bucket of a Type Il.1l data request on aggregate access time and aggregate

tuning time are botBucketi + 1).Start— ts;ar.

Search bucket Consider the example shown in Figure 7. In a search bucket, the mobile device operates
in active mode to retrieve the index segment and starts to turn off the WNI after retrieving all index items in
the index segment. Then, the mobile device has to start to turn on the WNI to ensure that the mobile device
just enters active mode dducketk+ 1).Start Hence, in a search buckiBticketk), the contributions on

aggregate access time and aggregate tuning time of all data requests are

S+

Bucketk+ 1).Start— Bucketk).Start=d x 5

and

respectively.

Retrieval bucket Consider the example shown in Figure 8. In the retrieval bucket, the mobile device
retrieves the index items in the index segment sequentially until the index item of the desired data item

has been retrieved. Then, the mobile starts to turn off the WNI to wait for the appearance of the desired

11



data item. In order to retrieve the desired data item, the mobile device has to start to turn on the WNI so

that the mobile device is able to enter active mode in the moment that the desired data item is just being
broadcast. Hence, the retrieval bucket of a Type Il data request will increase aggregate access time by
teng — Bucket j).Start In addition, the retrieval bucket of a Type Il data request will increase aggregate

tuning time by

tsieed J) — Bucket j).Start+teng — twakeu d i) + Ton+ Toff

whentwakeud j) — tsieedj) > Ton. Otherwise, the data request increases total tuning timeg:Qy—
Bucketj).Start

With the above discussions, for a Type Il data request, its contributions on aggregate access time and
tuning time are equal to the summations of access time and tuning time, respectively, of its probe bucket,

search buckets and retrieval bucket.

4 AIDOA: Adaptive Index and Data Organizing Algorithm

With the analysis in Section 3, we propose in this section algorithm AIDOA (standing for Adaptive In-
dex and Data Organizing Algorithm) to dynamically adjust the degree of buckets according to the system
workload. Basically, algorithm AIDOA consists of two phases: statistics collection phase and degree
adjustment phase, and switches between statistics collection phase and degree adjustment phase perioc
ically. In statistics collection phase, the server will keep track of information of all data requests and
the recorded information will be used to guide the adaptation procedure in the successive execution of

adjustment phase.

4.1 Statistics Collection Phase

In each execution of statistics collection phase, the server will collect statistic information of all data
requests served in the current execution of statistics collection phase. A data regeestdsvhen the

desired data item has been broadcasted.
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Two data structuresStai andStay;, are defined to store the collected information of Type | and Type
Il (including Type Il.I and Type Il.1l) data requests, respectively. The detailStaf and Staj, are as
follows.

Details ofStat

e ReqNo:The number of Type | data requests served in the current statistics collection phase

e AQQAT: Aggregate Access Time of Type | data requests served in the current statistics collection

phase

e AggTT:Aggregate Tuning Time of Type | data requests served in the current statistics collection

phase

Details ofStati,

e RegNo:The number of Type Il data requests served in the current statistics collection phase

e AggATP/AggTTPAggregate Access/Tuning Time of Probe buckets of Type Il data requests served

in the current statistics collection phase

e AggATS/AggTTAggregate Access/Tuning Time of Search buckets of Type Il data requests served

in the current statistics collection phase

¢ AggATR/AggTTRAggregate Access/Tuning Time of Retrieval buckets of Type Il data requests

served in the current statistics collection phase

Each field, excepReqNo of Staf andStaf; has amaverageversion with new names by replacing prefix
Aggto Avg For example, the fieldvgAT of Stai indicates theaverageaccess time of all Type | data
requests served in the current statistics collection phase. We also define the siRecjuesto indicate

data requests which are merged together. Elements in the request queue, pending list and the ready queu
are all instance of structuRRequestAn instance of structurBequests said in the server when it is in the
request queue, pending list or the ready queue. The details of striRgqreestre as follows.

Details of structurékequest

e ReqNo The number of data requests which are merged together and are represented by the instance

of Request

13



e AvgTIS Average Time In Search buckets of the data requests represented by the insiReqaext

After receiving a data request, the server first determines the type of this data request. If the data
request is belonging to Type I, the server calculates the contributions of the data request on aggregate
average and tuning time based on the analysis in Section 3.2.1, and upiddtascordingly. Since being
able to be served by the current bucket, a Type | data request will neither be merged into a structure
Requesnor be inserted into the request queue, the ready queue and the pending list.

On the other hand, when the data request is belonging to Type I, the server first checks whether it can
be merged into an instance of structi®requestn the server. If yes, the server updates the fields (i.e.,
RegNoandAvgT I of the instance of structuiRequestccordingly. Otherwise, the server creates a new
instance of structurBequestind inserts the instance into the request queue. Finally, the server calculates
the contribution on aggregate access time and tuning time of the probe bucket of the data request according
to the derivations in Section 3.2.2, and upd&es; accordingly.

While an instance dRequestsayr, is retrieved from the ready requéstthe server first calculates the

average number of search buckets that each data requdsagby

Bucketj).start—r.ATIS

AvgSBNG— dx (5+9)

The contributions of these search buckets on aggregate access time and aggregate tuning time can be
obtained from the derivations in Section 3.2.2, &bdi .AggAT SandStat .AggT T Sare updated accord-

ingly. The server the calculates the time that the desired data itemeant be retrieved (i.etgng). Finally,

with tgnhg, the server calculates the aggregate contributions of the retrieval buckets of all data requests
in r on aggregate access time and tuning time according to the derivations in Section 3.2.2, and updates
Staf; .AggAT Rand Staf; .AggT T Raccordingly. The algorithmic form of the procedure to updaiaf,

when an instance of structuRequests served is as follows.

Procedure RequestServBgquest ¥
. Staf.RegNo— Stat; .RegNot-r.RegNo

. Bucketj).start—r.ATIS
2: AvgSNo— (5 FS)

. Staf).AggAT S— Stat .AggAT S+ (d X %) x AvgSBNox r.RegNo
. Stat;.AggT T S— Stat; .AggT T St (d X % +T0n+Toff> x AvgSBNox r.RegNo

=

w

I

2Readers can refer to Section 5 to see how the system retrieves instaRezgiesfrom the ready queue.
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. Calculategpg of r

. Staf;.AggAT R— Stat; .AggAT Rt (teng — Bucket j).Start) x rrRegqNo
. Let T T Rbe the tuning time of in the retrieval bucket

. Staf) .AggT T R— Stat .AggT TR+ TTRx r.RegNo

00 ~N O O

4.2 Degree Adjustment Phase

In each execution of degree adjustment phase, the server will adjust the degree (i.e., the dalok of
buckets according to the statistic information collected in the precedent execution of statistics collection
phase. LefTacceséd) and Truning(d) be the average access time and average tuning time, respectively,
when the degree of the broadcast progrants iBor each field, the value of treverageversion is equal

to the value of theaggregateversion divided by the number of data requests. For example, the value of

Staj . AggT T

Stai.AvgT Tis equal t Staf ReqNG

Then, according to the analysis in Section 3, we have

Tacceséd) =W x (Stat.AvgAT) + W, x (Stat .AvgAT P+ Stat; .AvgAT St Stat .AvgATR, and

Truning(d) =W x (Staf.AvgT T) +W; x (Stat .AvgT T P+ Stafy .AvgT T St Staf AvgT TR,

whereW, andW,, are the weights of Type | and Type Il data requests, respectively. The valW¢saofl

W, are defined as the ratios of the numbers of Type | and Type Il data requests. Hence, we have

B Stai.RegNo
W= Stai.RegNo+ Stai; .ReqNd and
Staf;.RegNo
Wi h-Req

- Stat.ReqNo+ Stat; .ReqNo

In addition, Toverai(d) is employed as the metric of the system performance, and is defined as

Toverall(d) = B x Tacceséd) + (1 —B) x TTuning(d)~

In the above equatior§ is an administrator-specified parameter to reflect the relative importance of av-
erage access time (i.&acceséd)) and average tuning time (i.€ltuning(d)). Hence, there is no optimal
setting of 3. The objective of degree adjustment phase is to determine the new vadu® ohinimize

Toveran(d). However, since globally minimizingoveran(d) is difficult, algorithm AIDOA is designed to
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find the new value ofl, saydnex, WhereToyerall(dnext) is local minimum. That is, we will find a value of
dnext SO thatToyeran(dnext) is smaller thamMoyerali(dnext+ 1) andToveran(dnext— 1). Since the exact val-
ues ofTaccesédnext) aNdTruning(dnext) Whendnext # deurr. Cannot be obtained from the collected statistic
information, we adopt the following approximation method to estinTatges{next) aNd Truning(dnext)-

Let Stafj'\“*Xt and StaﬂNEXt be the approximations of the values of struct8tej andStat; when the

degree of buckets dyext. Then, we have the following lemmas:

Lemmal Staf“ext.AngTandStaf’NeX‘.AngTcan be approximated by

w| W

StafNEX‘.AVgATZ Stat . AvgAT+ (dnext— deurr.) X

and
StafVe AvgT T= Stat.AvgT T,

respectively.
Lemma 2 StaﬂNEXt.AngT PandStaﬂNEXt.AngT Pcan be approximated by

S
+S

StafNe AvgAT P= 515 StafNe . AvgAT Pt 5 D Stafer AvgATR

+S

and

StafNet AvgT TP= 5 3 x Staffet AvgT TP

S
x StatNetCAvgT T P+
S ﬂ.| g S

+S

respectively, where

Staﬂ'\.IIEXt-AVgAT P= Staf; .AvQAT P+ (dnext— dcurr.) X (% ™ %) ;

StafiNet AvgT T P= Stat; .AvgT T P+ (dnext— deurr.) X

Y

W wlw»

Staf{Net AvgAT P= Stat; . AvgAT P+ (dnext— deurr.) %

and

@/

StafNe AvgT T P= Stat; . AvgT T P+ (dnext— deurr.) X
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As mentioned in Lemma 2, setting the degree of buckets figin. to dyext Will increase the numbers
of index and data items in each probe bucket of Type Il data requesksely- dcurr.. Suppose that these

extra index and data items are from the search buckets. Then, we have

Lemma 3 StaﬂNEXt.AngT SandStaﬂNEXt.AngTScan be approximated as

Staﬂ”e“.AngTS: AVOSBN Qext X Onext X (SLB%),

and
StaﬂNeXt.AngTS: AVgSBN Qext X (dNext X % +Toff+ TOn) ,
where
Staf . AVgATSx B dnext— deurr.
AVgSBNQext = _ :
g e Onext X (S + SD) dnext

respectively.

Lemma 4 Staﬁ”e“.AngT RandStaﬂNeX‘.AngT Rcan be approximated as
StaﬂNeXt.AngT R= Stat| .AvgAT Rt (dnext— dcurr.) X %,
and

StafNe AvgT TR= StafM* AvgT TR

respectively.

The approximations Ofacces§dnext) @ndTruning(Onext) Can be calculated based on the above approxi-

mations. From the above lemmas, we have the following observations:

1. Increasing the value of degree will increase average tuning time in probe buckets since the number
of data items in a bucket increases. In addition, increasing the value of degree will also reduce the

aggregate tuning time of search buckets since the average number of search buckets decreases. Th

17



increase of average tuning time in probe buckets and the decrease of aggregate tuning time of search

buckets are, respectively, the benefit and the cost of increasing the value of degree.

2. To minimize average tuning time, decreasing the value of degree is encouraged when average access
time it short. It is because that decreasing the value of degree will reduce the average tuning time in
probe buckets by slightly increasing aggregate tuning time of search buckets. Such increase results

from the increase in the average number of the search buckets.

We then devise procedure DegreeAdjustment to find the valdgf whereToyerail(dnext) is local min-

imum. In procedure DegreeAdjustment, the server first checks whether increasing or decreasing the value
of degree will reduce the value @yerai(dnext). After that, the server repeatedly increases or decreases
the value of degree by one unfihyerai(dnext) IS local minimum. Finally, the system sets the value of de-

gree (i.e.dcyrr) to the return value of procedure DegreeAdjustment. The algorithmic form of procedure

DegreeAdjustment is as follows.

Procedure DegreeAdjustment
Note: The new value ofl (i.e, dnexyis returned

1: if (Toveran(deurr. +1) < Toveran(dcurr.)) then

01
else if (Toveran(dcurr. — 1) > Toveran(deurr.)) then

o0——-1
else
return deyrr.
dNe_xt<— deurr.
while (Toverail(dnext+ 9)) < Toverai(dnext)) do

ONext < Onext+ O
return dyext

L X®NOUR W

=

4.3 Complexity Analysis

To derive the worst time complexity of algorithm AIDOA, we consider the case that no request merge
occurs. Suppose that the number of received requests in one execution of statistics collectionrphase is
Then, the time complexity of one execution of statistics collection pha®énssince the time complex-

ity of one execution of procedure RequestServe@(i). Suppose that the maximal value of degree is
dviax- The time complexity of procedure DegreeAdjustmer@(dviax). Since algorithm AIDOA executes
procedure DegreeAdjustment once in each execution of degree adjustment phase, the time complexity of

one execution of degree adjustment phas@(dax). To implement algorithm AIDOA, we have to spend
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storage space to store structugtaj andStat, . Since the sizes of structur8sat andStat, are fixed and

are independent af, the space complexity of algorithm AIDOA B(1).

5 Design of Program Generation Algorithm and Cache Replace-
ment Policy

After determining the new value of degree, the program generator will generate the successive buckets
accordingly. Since data items may be cached in the server cache, the adopted program generation algo-
rithm should cooperate with the employed cache replacement policy. Each cached data item is initially
marked as LOCKED and only the cached data items in UNLOCK state are candidates of replacement. To
facilitate the design of cache replacement policy, the system maintains a miChedpvhich stores all
data items in UNLOCKED state according to their priorities. The definition of the priority of a data item
will be given later in this section. Note that in this and the following section, we relax the assumption that
all data items are of the same size, and denote the sReassizeD;) and the average data sizeSs

The server maintains a lisucketwhich contains the index items and data items of the current bucket.
Initially, bucketis empty. Then, the server retrievés,; data items from the head of the ready queue,
inserts them intdoucketand marks them as LOCKED. In addition, the corresponding index items of the
data items irbucketare also inserted intbucket Then, the server broadcasts the index items and data
items inbucketsequentially. Once an item has been broadcast, it will be removedducket If the item
is a data item, it will be marked as UNLOCKED. Onoecketbecomes empty, the server retriedeg,:
data items from the head of the ready queue and repeats the above procedure. The algorithmic form of the

proposed program generation algorithm is as follows.

Algorithm ProgramGeneration

1: while (true)do
bucket—BucketGeneration()
while (bucketis not empty)do

Eeee%ﬁé‘? %er?é’adb&u‘éﬁ
|tem|s a Jnta itemjhen

Mark item LOCK
Cgcufatet e p’?lloﬁ)ty 0 emand inseriteminto Cand

©O NI WIN

Procedure BucketGeneration
1: budket— empty
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fOI’ (|=1 tO dCurr) dO
if (ready queue is emptyhen

break
Fetc% a data item (denotedigsm) from the head of ready queue

Marklt mas. LO% Ek
Appen iteminto bucke

8: Insert the corresponding mdex items of the data itenmiicketinto the head obucket
9: return bucket

N gk W

We now consider the design of server cache. Similar to other cache replacement policies, we define
an evict function to determine the cache priorities of all data items. The profit of caching a data item is
defined as the overall data fetch time saving when the data item is cached, The cost of caching a data item
is defined as the size of the data item. The cache replacement policy is designed to maximize the aggregate
profit of all cached data items under the limitation on the aggregate cost (i.e., size) of all cached data items.

Hence, the cache priority of a data iténis defined as below.

fetch(D;) x rate(D;)
sizegDy) 7

priority (D) =

wherefetch D;) is the time for the server to fetd) from the data server d@; andrate(D;) is the request
rate of D;. When retrievingD; from the corresponding data server, the server calculates the value of
fetch(D;) and stores it for further uses. The server also stores the time of the previous cachBjhit of

denoted a$prevHit(Di). In addition, for each cache hit &, rate(D;) is set to

1
tcurHit — tPrevH it(Di )

Y

wheretcyryit IS the time of the current cache hit &f. After the calculation of request rate &f,
trrevhit(Di) is set totcyrHit-

The proposed cache replacement policy is as follows. When a data itei;,Sayetrieved from the
data server, it will be inserted into the cache. When insefingto the cache, the server first checks
whether the cache is of enough free spacelforlf yes, the system stord3; into the cache, calculates
priority (D;j) and markdD; as LOCKED. Otherwise, the system repeatedly removes “the data item with
the smallest priority among all data itemsGand’ from Canduntil the free space of the cache becomes
enough. Then, the system stol®sinto the cache, calculatgwiority (D;) and marksD; as LOCKED.

The algorithmic form of the proposed cache replacement policy is as follows.
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Parameter | Value |
Data object number 4000

Data object sizes Lognormal dist. (mean 7 KB)
Data access probabilitiesZipf dist. with parameter 0.75
Cache capacity 0.01x S object size

Object fetch delay Exponential dist. withu = 2.3
Client number 250

Service holding time Exp. dist. withu = 10 minutes
Service establishing time Exp. dist. withu = one hour

Table 2: Default system parameters

Algorithm CacheReplacemen)

1: while (FreeSpace< sizgD;)) do

Let Dj be the data item with the smallest priority among all other data iter@sird
RemoveD; from cache

FreeSpace— FreeSpace-sizgDj)

: InsertD; into cache

: Calculate thepriority (D)

: Mark Dj as LOCKED

Suppose that the data itemsdandare organized as a min heap. In additionnigfpiacebe the number
of data items to be replaced. Therefore, the time complexity of one execution of algorithm CacheReplace-

ment iSO(Nreplacex l0g|Cand).

6 Performance Evaluation

6.1 Simulation Model

We take LWF (standing for Longest Wait First) as the underlying scheduling algorithm to prioritize the
data requests in the request queue and the ready queue. The server provides one request channel and ol
broadcast channel with network bandwidth 38.4 Kbps and 384 Kbps, respectively. Analogously to [8], we
assume that there are 4000 data objects and the sizes of data objects follow a lognormal distribution with
a mean of 7 KBytes. The size of a data request message and an index item is set to 128 bytes. The times
to turn on and turn off the WNIs are both set to 30ms. The access probability of data objects follows a
Zipf distribution, which is widely adopted as a model for real Web traces [3][7]. The parameter of the Zipf

distribution is set to 0.75 with a reference to the analyses of real Web traces [7][15]. Since small objects are
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much more frequently accessed than large ones [9], we assume that there is a negative correlation betweer
the object size and its access probability. The default capacity of the cache i<t t0y object size

and the fetch delays of data objects follow an exponential distribution with mean 2.3 seconds [8]. Similar
to [16], the number of users in the network is set to 250. Service holding time and service re-establishing
time for each user are set to exponential distributions with means of 10 minutes and one hour, respectively.
Service re-establishing time is defined as the time interval between the moment that a user terminates the
service and the moment that the user establishes the service again. We also assume that the inter-arriva
time of data requests of each user follow an exponential distribution with d@&seconds [14]. The value

of B is set to 0.5 simulate the environment that average access time and average tuning time are of equal
importance.

In order to evaluate the performance of the proposed degree adjustment method in algorithm AIDOA,
the algorithm proposed in [13] (referred to as algorithm Static) is modified to cooperate with the cache
replacement policy and the program generation algorithm proposed in Section 5. Hence, the difference
between algorithm AIDOA and algorithm Static is only on the ability of adjusting the degree of buckets.
Based on algorithm Static, we devise two schemes, Static-2 and Static-8 which set the degree of buckets
to two and 8, respectively, and the values of degree of buckets are fixed throughout the simulation. In
addition, scheme AIDOA employs algorithm AIDOA and initializes the degree of buckets to two. Hence,
scheme AIDOA will dynamically adjust the degree of buckets according to system workload. Note that all
these three schemes employ server cache to eliminate performance degradation caused by the data fetc

time.

6.2 Effect of Average Data Size

In this experiment, we investigate the effect of average data size on average access time and average tuning
time. Average data size is set from two KBytes to 11 KBytes and the experimental results are shown in
Figure 9a and Figure 9b, respectively. Due to increasing the load of the broadcast channel, it is intuitive
that increasing average data size results in the increase in average access time. In addition, when averag
data size is large enough, the load of the broadcast channel is high, and hence, a slight increase in averags
data size will cause significant increases in average access time. Since the sizes of index items are much

smaller than those of data items, the effect of the degrees of broadcast programs in average access time i
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Figure 9: The effect of average data size
quite small.

Although the values of degrees of broadcast programs only slightly affect average access time of all
schemes, they result in significant effects in average tuning time. As shown in Figure 9b, scheme Static-8
performs well only when average data size is small, and scheme Static-2 performs well only when average
data size is large. As observed in Section 4.2, increasing the value of degree will increase average tuning
time in the probe bucket. In addition, increasing the value of degree also decreases the number of search
buckets and hence reduces average tuning time in the search buckets. When average data size is large
average access time is also long. Employing a large value of degree will reduce average tuning time in the
search buckets by reducing the number of search buckets (i.e., reducing the number of times of turning-on
and turning-off the WNIs), and increase the average tuning time in the probe bucket. However, due to
the trade-off between average tuning time in the probe bucket and the search buckets, the value of degree
cannot be set to be too large. In addition, we can also observe from Section 4.2 that decreasing the value
of degree will decrease average tuning time in the probe bucket and increase the number of search buckets
Therefore, scheme with small values of degree outperforms schemes with large values of degree in the case
with small average data size. Hence, the value of degree cannot be set to be too small, either. Different
from scheme Static-2 and scheme Static-8, since scheme AIDOA is able to dynamically adjust the value
of degree to a proper value according to system workload, scheme AIDOA outperforms scheme Static-2

and scheme Static-8 in most cases.
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Figure 10: The effect of turning-on and turning-off time

6.3 Effect of Turning-on and Turning-off Time of WNIs

The effect of turning-on and turning-off time of WNIs is measured in this subsection and the experimental
results are given in Figure 10. In this experiment, we assumd#pat Toss and set the value dip, and

Toft from 5ms to 60ms. As shown in Figure 10a, the valuegafandTo s do not affect average access

time of scheme Static-2 and scheme Static-8. It is because that in these two schemes, degrees of broadca:s
buckets are fixed, and the valueslef, andTot+ do not affect the organizations of broadcast programs. On

the other hand, although scheme AIDOA is able to dynamically adjust the degree of buckets, the influence
of Ton andTp ¢ 0N average access time of scheme AIODA is small since the size of index items is much
smaller than that of data items.

Consider average tuning time of these schemes shown in Figure 10b. According to the observations in
Section 4.2, increasing the value of degree will increase average tuning time in the probe bucket and reduce
the aggregate tuning time in the search buckets. Since the benefit of increasing the value of degree is in
proportion to the values dip, andTo ¢, Scheme Static-2 performs well whé&g, andTo ¢ are small. On
the contrary, scheme Static-8 outperforms scheme Static-2 in the case witfida@ed To . Although
producing more power consumption in the probe bucket than scheme Static-2 does, scheme Static-8 is
still able to reduce overall power consumption since being able to greatly reduce the power consumption
on turning-on and turning-off the WNIs by reducing the average number of search buckets. On the other
hand, with dynamic adjustment in the degree, scheme AIDOA is able to determine a suitable value of

degree for current system workload, and hence outperforms scheme Static-2 and scheme Static-8 in most
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Figure 11: The effect of the number of users

cases.

6.4 Effect of Number of Users

We evaluate in this subsection the scalability of these schemes in average access time and average tun
ing time by increasing the number of users from 200 to 450, and the experimental results are shown in
Figure 11.

Due to the characteristics of data broadcasting, it is intuitive that increasing the number of users results
in smoothly increasing in average access time. As shown in Figure 11a, when the number of users is
small, increasing the number of users produces a slight increase in average access time since the systen
load is still light. However, when the number of users is large enough, the system load becomes high and
increasing the number of users results in drastic increases in average access time. In addition, since the
size of index items is much smaller than that of data items, average access time of these schemes is close

Figure 11b shows average tuning time of these schemes with the number of users varied. We observe
that when the number of users is not large, scheme Static-2 outperforms scheme Static-8. In addition,
when the number of users is large, average tuning time of scheme Static-2 becomes longer than that of
scheme Static-8. This phenomenon agrees to the observations in Section 4.2 that in average tuning time,
the cases with short average access time favor schemes with small values of degree and the cases witt
long average access time favor schemes with large values of degree. Therefore, when the number of users

is large enough, average tuning time of scheme Static-2 becomes much longer than that of scheme Static-
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Figure 12: The effect of bandwidth of broadcast channel

8 since average access time of these schemes both becomes drastically increasing. Since being able t
adjust the values of degree according to system workload, scheme AIDOA outperforms scheme Static-2
and Static-8 when the number of users is not large. In addition, average tuning time of scheme AIDOA is

close to that of scheme Static-8 when the number of users is large.

6.5 Effect of Bandwidth of the Broadcast Channel

In this experiment, we investigate the effect of bandwidth of the broadcast channel on average access time
and average tuning by setting the bandwidth from 32 Kbps to 128 Kbps. The experimental results are
shown in Figure 12.

It is intuitive that increasing bandwidth of the broadcast channel decreases average access time. How-
ever, as shown in Figure 12a, the effect of increasing the bandwidth of the broadcast channel on average
access time diminishes when the bandwidth is large enough. It is because that average access time com:
prises several components such as the fetch time and the broadcast time of data items, the waiting time of
data requests spending in queues and the transmission time of data requests on the request channel. Sinc
increasing bandwidth of the broadcast channel only reduces broadcast time of data items, the effect of
increasing bandwidth of the broadcast channel on average access time is limited. Similar to the precedent
experiments, average access time of these schemes is close.

Now, consider the experimental results on average tuning time shown in Figure 12b. As observed in

Figure 12b, scheme Static-8 performs well only when the bandwidth of the broadcast channel is high.

26



[EEN

g’ 8
H = = =

@ 257 2 08¢ .
E E 1
= .
4 506 | S
g 15 | £ |
< 1 | —o—Sttic2 F 04 T —o— Static-2
? o | o Saics @ oo | —B— Static-8
E ' —a— AIDOA § ' —— AIDOA
< 0 ‘ ‘ < ‘ ‘

0 025 05 075 1 125 0 025 05 075 1 125

Zipf Parameter Zipf Parameter
(a) Average Access Time (b) Average Tuning Time

Figure 13: The effect of skewness of data requests

Similarly, scheme Static-2 performs well only when the bandwidth of the broadcast channel is low. Con-
sider the scenario of increasing the value of degree. As observed in Section 4.2, with the same increment
in the value of degree, increasing the bandwidth of the broadcast channel will reduce the cost of increasing
the value of degree by reducing average tuning time in the probe bucket. Since most average tuning time
in the search buckets comes from turning-on and turning-off the WNIs, average tuning time in the search
buckets does not affect by the increase of the bandwidth of the broadcast channel. Therefore, increasing
bandwidth of the broadcast channel favors increasing the value of degree. Similarly, decreasing bandwidth
of the broadcast channel makes increasing the value of degree more costly. On the other hand, scheme
AIDOA is able to adjust the value of degree according to system workload, and hence outperforms scheme
Static-2 and scheme Static-8 in most cases. This phenomenon shows the advantage of scheme AIDOA

due to its adaptability to system workload.

6.6 Effect of Skewness of Access Probabilities of Data Requests

We evaluate in this experiment the effect of skewness of access probabilities of data requests by setting
the value of Zipf parameter from zero to 1.25. The larger the value of Zipf Parameter is, the more skewed
access probabilities of data requests are. In addition, the value of Zipf parameter is set to zero to indicate
the case that access probabilities of data requests are equal. Itis intuitive that when the access probabilities
become more skewed, more data requests are merged together, and average access time becomes short

The result shown in Figure 13a agrees to this intuition.
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Figure 14: The effect of cache size ratio

Figure 13b shows average access time of all schemes with the value of Zipf parameter varied. As
observed in Figure 13b, average tuning time decreases as the value of Zipf parameter increases. It can
be explained by the observations in Section 4.2 that in average tuning time, cases with short average
access time favors schemes with small values of degree. Therefore, scheme Static-2 outperforms scheme
Static-8 especially in the cases with high value of Zipf parameter. With the change of skewness of access
probabilities, scheme AIDOA is able to adjust the value of degree to adapt to such change, and hence,

attains better performance.

6.7 Effect of Cache Size

This experiment evaluates the effect of cache size on average access time and average tuning time, anc
the experimental results are shown in Figure 14. Similar to [8], cache size is determined as “cache size
ratioxthe summation of the sizes of all data items.” The case that the value of cache size ratio is set to
zero indicates the case that the server does not employ cache.

As shown in Figure 14a, average access time decreases as the value of cache size ratio increases. Whe
the cache size is large, many data items are cached and can be obtained by the server without being fetche
from the data servers. In addition, when the cache size is large enough, the benefit of increasing cache
size diminishes since data items with high access rates are cached in the server cache. We also observ:
from Figure 14a that employing server cache, which is neglected in the prior studies on data indexing for

on-demand data broadcasting [13], is able to effectively reduce average access time.
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As the observations in Section 4.2, when it comes to average tuning time, cases with short average
access time favor schemes with small values of degree. Hence, scheme Static-2 outperforms scheme
Static-8 especially when the value of cache size ratio is large. This observation agrees with the results
shown in Figure 14b. When the value of cache size ratio is small, both schemes do not perform well
since the value of degree in scheme Static-2 is too small and the value of degree in scheme Static-8 is too
large. On the other hand, scheme AIDOA is able to dynamically adjust the value of degree to attain better

performance, showing the advantage of scheme AIDOA.

7 Conclusion

We proposed in this paper an energy-conserving on-demand data broadcasting system employing the date
indexing technique. Different from the prior work, power consumption of turning on and turning off
the wireless network interfaces was considered. In addition, we also employed server cache to reduce
the effect of data fetch time. Specifically, we first analyzed the access time and tuning time of data
requests and proposed algorithm AIDOA to adjust the degree of buckets according to system workload.
We also devised an approximation method to estimate the effect of increasing and decreasing the values
of degree, and employed the approximation method to guide the adjustment of algorithm AIDOA. In
addition, the companion program generation algorithm and cache replacement policy were proposed to
cooperate with algorithm AIDOA. Several experiments were then conducted to evaluate the performance
of algorithm AIDOA. Experimental results showed that algorithm AIDOA is able to greatly reduce power
consumption at the cost of a slight increase in average access time and dynamically adjust the index and

data organization to adapt to change of system workload.
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Figure 15: An example scenario of Type | data requestsdhat = 3 anddyext = 4
Appendix

Proof of Lemma 1:

Consider the cases thdfjex: > dcyurr. Figure 15 shows an example of Type | data requests. When
the degree of buckets is set fradgy,r. t0 dnext Onext— dcurr. INdeX item(s) andiyext— deurr. data item(s)
will be appended to each index segment and data segment, respectively. As observed from Figure 15,

setting the degree of buckets fradp,,r to dyextincreases the average access time of Type | data requests

by —(dNeX‘_dg“”-)XS . In addition, we also observe that appendii@x:— dcyrr. index items into each index
segment does not affect the average tuning time of Type | requests. Hence, from the above observations,
we have

StafNet AvgAT = Stat. AVgAT+ (dnext— deurr) X %, and

Staf™e¢ AygT T= Stat. AvgTT.

We then apply the above equations as the approximatioﬁﬂsaﬁ“eXt.AngT and Staf“ext.AngT in
the cases thaiyext < dcyrr., and hence, prove Lemma 1. Q.E.D.
Proof of Lemma 2:

Consider the example probe bucket of Type Il data requests shown in Figure 16. Suppotsgthat
follows a uniform distribution betweeBucket.Start andBucket End. Therefore, as observed from Fig-

ure 16, the probabilities of a Type Il data request to be Type II.I and Type II.IIQ%% and %,
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Figure 16: An example scenario of Type Il data requestsdhat = 3 anddnext = 4 on the probe bucket
respectively. Therefore, by the definition SétfaﬂNeXt.AngT PandStaﬂN‘*X‘.AngT R we have

S

exi SD
5~ StafiNet AVgAT P+

S+

Staf{Nex AVgAT P= 5 x StaffNet AvgAT P and

StafNet AvgT TP= 5 f 5 X StafNet AvgT TP+ 5 D, Staf{Net AvgT TP

+S
We now consider the cases thiijex: > dcurr. @nd derive the approximations Sttaﬂ’jeXt.AngTl?

StafNe AvgT TR StafNe AvgAT PandStafi¥e. AvgT TR When the degree of buckets is set to frdq

to dnext, Anext— deurr. INdex item(s) andinext— deurr. data item(s) will be appended to each index segment

and data segment. As observed from Figure 16, setting the degree of bucketls froo dyex increases

the average access time and average tuning time of the probe buckets of Type II.I data requests (i.e.,

Staﬂf‘,e“.AngT Pand Staﬁ“.‘leXt.Ang TH by (dNe“_dC“fé) x(S+%) 4nq —(dNe’“_dEf””‘) xS respectively. Hence,

we have

StaﬂNFXt'AVgAT P= Stat; . AvgAT P+ (dnext— dcurr.) X (% + %) , and

Staﬁ’\.lleXt'AVgTT P= Stah 'AVgTT P+ (dNext— dCurr.) X %

In addition, we also observe that increasing the degree of bucketsdggm to dyext increases both
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the average access time and average tuning time of the probe buckets of Type Il.II data requests (i.e.,

StaﬂN,‘i“.AngT Pand Staﬂ’?ﬁX‘.Ang TH by (dNex"dC”g) X(S8+%) Therefore, we have

Staﬂ“_‘ﬁ“.AngT P= Stat; .AvgAT P+ (dnext— dcurr.) X %, and

We then apply the above equations to the approximationStaf e AvgAT R Stafiet AvgT TR

StaﬂN,ﬁ“.AngT PandStaﬂN,ﬁX‘.AngTPin the cases thaiyex: < dcurr., and hence, prove Lemma 2.
Q.E.D.
Proof of Lemma 3:

In the cases that the degree of bucketsldg,;, since one data item and the corresponding index
item contributeStat, .AvgAT Sby %, the average number of data items in Type Il data requests is
Stat; .AvgAT Sx %.

Consider the cases that set the degree of buckedgd@ For each Type Il data request, on aver-
age,dnext— deurr. index items anddyext— deyrr. data items move from the search buckets to the probe
bucket. Therefore, the average number of index and data items in Type Il data requests both become

Staf) .AvgAT Sx % — (dnext— deurr ). Since each search bucket contailRgy: index items andiyext

data items, the average number of search buckets of Type Il data requests is

B
AvgSBNRQext = Stat) . AvgAT Sx m — (dnext— deurr.)-

Finally, according to the derivations in Section 3.2.2, since each Type Il data request CAMGEBBN Q ext

search buckets on average, we have

(S +S)

and
B b

StafiNet AvgAT S= AVgSBN Qext X Onext X

StaﬂNe“.AngTS: AVgSBN Qext X (dNext X % +Toff+ TOH) )

Q.E.D.

Proof of Lemma 4:
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Figure 17: An example scenario of Type Il data requestsdpat = 3 anddyext = 4 on the retrieval
bucket

Consider the cases thd{ey: > dcyrr. and the example Type Il data request shown in Figure 17. When
the degree of buckets is set to frakxy,r. to dnext, Anext— Aeurr. iINdeX item(s) andlyext— dcurr. data item(s)
will be appended to each index segment and data segment, respectively. As observed from Figure 17,
setting the degree of buckets fradg,,; to dyext increases the average access time of each Type Il data
request on the retrieval bucket M. In addition, we also observe that appendigx:— dcurr.
index items into each index segment does not affect the average tuning time of each Type Il request on the

retrieval bucket. Hence, from the above observations, we have
StaﬂNeXt.AngT R= Stat; .AvgAT Rt (dnext— dcurr.) X %, and

StafNet AvgT TR= Staf; .AvgT TR

We then apply the above equations as the approximatioSﬂ;adﬂNe“.AngT Rand StaﬂNeXt.AngTR

in the cases thalnex: < dcurr., and hence, prove Lemma 4. Q.E.D.
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