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Abstract

Since only a modest improvement in battery lifetime is expected in the next few years, energy

conservation is raised as a key factor of the design of mobile devices. In view of this, we propose in this

paper an energy-conserving on-demand data broadcasting system employing data indexing technique.

Different from the prior work, power consumption of turning on and turning off the wireless network

interfaces is considered. In addition, we also employ server cache to reduce the effect of the time

to retrieve data items from the corresponding data servers. Specifically, we first analyze the access

time and tuning time of data requests and propose algorithm AIDOA to adjust the degree of buckets

according to system workload. Several experiments are then conducted to evaluate the performance of

algorithm AIDOA. Experimental results show that algorithm AIDOA is able to greatly reduce power

consumption at the cost of a slight increase in average access time and adjust the index and data

organization dynamically to adapt to change of system workload.

Keywords: data indexing, on-demand data broadcasting, energy conservation, mobile information

system



1 Introduction

Owing to the constraints resulting from power-limited mobile devices and low-bandwidth wireless net-

works, designing a power conserving mobile information system with high scalability and high bandwidth

utilization becomes an important research issue, and hence attracts a significant amount of research atten-

tion. In recent years, data broadcasting is proposed to address such challenge and has been recognized

as a promising data dissemination technique in mobile computing environments [1][4][5][10][11]. Most

research works on data broadcasting focus on generating a proper broadcast program or designing schedul-

ing algorithms to minimize theaverage access time, which is defined as the average time elapsed from the

moment a client issues a query to the point the desired data item is read.

As shown in [17][19], only a modest improvement (about20%∼ 30%) in battery lifetime is expected

in the next few years. Hence, energy conservation is raised as a key factor of the design of mobile devices.

Consider a Nokia 5510 which supports AAC and MP3 playing. Compared to the power consumed on

music playing, the wireless network interface (abbreviated as WNI) consumes much more energy (as

much as 70% of the total power in Nokia 5510) [22]. Hence, reducing the power consumption on WNIs

is an effectively means to reduce the overall power consumption. Most devices can operate in two modes:

activemode anddozemode. Many studies show that the power consumed in active mode is much higher

than that consumed in doze mode. For example, a typical wireless PC card, ORiNOCO, consumes 60 mW

during the doze mode and805∼ 1400mW during the active mode [19]. As a consequence, in order to

reduce power consumption, the mobile devices should stay in doze mode as long as possible.

To evaluate the effect of data indexing algorithms on energy conservation,tuning time, which is defined

as the time that a mobile device operates in active mode in order to retrieve a data item, is introduced

in [12]. Since employing data indexing will unavoidably introduce some overhead in access time, data

indexing algorithms should reduce tuning time as much as possible at the cost of producing an acceptable

increase in access time. Since the size of an index item is usually much smaller than that of a data item,

the increment in access time is usually small. As a result, many research works study the design of data

indexing algorithms in push-based data broadcasting environments [20][21]. However, most studies on on-

demand data broadcasting focus on the design of scheduling algorithms [2][5] to reduce average access

time, and only few of them consider the employment of data indexing in on-demand data broadcasting
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Figure 1: Index structure

environments [13] to reduce average tuning time.

In [13], Lee et al. proposed an indexing algorithm for on-demand data broadcast systems. As shown

in Figure 1, the proposed broadcast program is made up of a series of buckets and each bucket consists of

one index segment and one data segment. A data segment contains a series of data items, while an index

segment consists of the index items of the data items in the corresponding data segment. For a bucket, the

number of data items in the corresponding data segment is called thedegreeof the bucket. The information

in an index item, sayIi(1), consists of the identifier of the corresponding data itemDi(1), the data size of

Di(1) and the time thatDi(1) in bucketi will be broadcast on the broadcast channel. In addition, by the

information in the current index segment, a mobile device is able to determine the broadcast time of the

index segment of the next bucket.

Although inserting index items into the broadcast program is able to significantly reduce the average

tuning time at the cost of a slight increase in average access time [13], however, the proposed data indexing

method proposed in [13] has the following drawbacks:

• Does not consider power consumption of turning on and turning off the WNIs.

As pointed out in [18], turning on and turning off the WNIs consume some time and energy, and the

transition times of a WNI from active mode to doze mode and from doze mode to active mode are

both on the order of tens milliseconds. Consider two organizations of index and data items shown in

Figure 2.1 Suppose that a mobile device tunes to the broadcast channel at timetStart and finishes the

retrieval of the desired data item at timetEnd. Without considering power consumption of turning

on and turning off the WNI, the power consumptions of organization one and organization two are

equal. However, when power consumption of turning on and turning off the WNIs is considered,

organization two outperforms organization one.

1The descriptions of symbols ‘A’, ‘D’, ‘F’ or ‘N’ will be given in Table 1 in Section 3.2.
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Figure 2: Example organizations of index and data items

Therefore, we argue that the design of an energy-conserving data indexing method should take

power consumption of turning on and turning off the WNIs into account to obtain precise power

consumption estimation. To the best of our knowledge, there is no prior work on data indexing in

on-demanding broadcast considering power consumption of turning on and turning off the WNIs,

thereby distinguishing our paper from others.

• Does not consider the data fetch time

Most studies on indexing in on-demand data broadcasting are under the premise that all data items

are immediatelyavailable for a data broadcasting system [13]. However, as pointed out in [6], the

data fetch time cannot be neglected since it is infeasible to store all data items in the local cache

of the system. Hence, the traditional data broadcasting systems [5] may not perform well. As a

consequence, we argue that the indexing algorithm in on-demand data broadcasting should also

consider the data fetch time in order to attain higher efficiency.

• Does not adapt to change of system workload

In mobile computing environments, schemes with static degree may not be able to adapt to change

of system workload. Such phenomenon shows the necessity of designing an adaptive algorithm to

dynamically adjust the degree of buckets to adapt to the change of system workload. To the best of

our knowledge, all prior works on data indexing in on-demanding broadcast employ static degree

and none of them is able to adapt to change of system workload.
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In view of this, we propose in this paper an energy-conserving on-demand data broadcasting system

by employing the data indexing technique. Different from the prior work on data indexing on on-demand

data broadcasting, power consumption of turning on and turning off the WNIs is considered. Specifically,

we first analyze the access time and tuning time of data requests and propose algorithm AIDOA to ad-

just the degree of buckets according to system workload. In essence, algorithm AIDOA consists of two

phases, statistics collection phase and adjustment phase, and switches back and forth between these two

phases periodically. The system collects some statistic information of all served data requests in statistics

collection phase, and the collected information is used to adjust the degree of buckets in adjustment phase

according to the derived analytical results. In addition, we employ server cache to eliminate the perfor-

mance degradation caused by the data fetch time. We also propose a program generation algorithm and a

cache replacement policy to cooperate with algorithm AIDOA. Several experiments are then conducted to

evaluate the performance of algorithm AIDOA. Experimental results show that due to the dynamic adjust-

ment on degree of buckets, scheme using algorithm AIDOA outperforms other schemes with static degree

in most cases.

The rest of this paper is organized as follows. Section 2 describes the proposed system architecture and

the power consumption model used in this paper. Section 3 shows the analytical model of the proposed

system architecture. Based on the analytical model, we propose algorithm AIDOA in Section 4. In

addition, the companion program generation algorithm and cache replacement policy are proposed in

Section 5. Experimental results are shown in Section 6 to evaluate the performance of algorithm AIDOA,

and finally, Section 7 concludes this paper.

2 Preliminaries

2.1 System Architecture

We adopt the index structure proposed in [13] and the adopted index structure is shown in Figure 1. As

shown in Figure 3, the proposed system architecture consists of the following components.

• Scheduler: The scheduler is in charge of receiving and processing the data requests submitted by

mobile devices. After receiving a data request, sayReqi , the scheduler will search the ready queue,
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Figure 3: System architecture

the pending list and the request queue sequentially to check whether there exists a data request, say

Reqj , with the same required data item asReqi . WhenReqj is in the pending list, the scheduler

mergesReqi into Reqj . WhenReqj is in the ready queue (respectively, the request queue), the

scheduler will mergesReqi into Reqj and updates the priorities of all data items in the ready queue

(respectively, the request queue) according to the employed scheduling algorithm such as FIFO,

LWF, RxW and so on. Otherwise, whenReqj does not exist, the scheduler will insertReqi into

the request queue and update the priorities of all data items in the request queue according to the

employed scheduling algorithm.

• Fetcher: The fetcher repeatedly retrieves the data request with highest priority from the request

queue, and fetches the required data item from the corresponding data server via Internet. Cache

is employed to reduce the performance degradation caused by the data item fetch time. To fetch a

data item, the fetcher first checks whether the required data item is cached in the local cache. If yes,

the fetcher will mark the cached data item as LOCKED and insert the data request into the ready

queue. Then, the fetcher will retrieve the data request with highest priority from the request queue

and repeat the above procedure.
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Otherwise, when the desired data item is not cached, the fetcher will submit a data request message

to the data server of the required data item and insert the data request into the pending list. Then,

the fetcher will check the number of pending data requests and will stop if the number of pending

data requests is equal to a predetermined threshold. Otherwise, the fetcher will repeat the above

procedure until the number of pending data requests is equal to a predetermined threshold or the

request queue is empty.

When a data server responds with a data item, the fetcher will retrieve the corresponding data request

from the pending list and insert the data request into the ready queue. In addition, the fetcher will

insert the received data item into the cache. Several cached data items may be replaced by the

employed replacement policy when the free space of the cache is not enough to store the received

data item.

• Program generator:

The program generator employs a program generation algorithm to compose all buckets of broadcast

programs. After a bucket is generated, the index and data items in the current bucket are broadcast

sequentially. The program generator will start to compose another bucket after all index items and

data items in the current bucket have been broadcast.

2.2 Power Consumption Model

Denote the time for a mobile device to switch the WNI from active mode to doze mode asTOn and the

time to switch the WNI from doze mode to active mode asTO f f . To evaluate the power consumption of

turning on and turning off the WNIs, we assume that the power consumption of a mobile device spending

in time intervalsTOn (respectively,TO f f ) is equal to that of a mobile device staying in active mode for

time α1×TOn (respectively, timeα2×TO f f ). Similar to [22], the values ofα1 andα2 can be obtained by

profiling.

Denote the traditional (i.e., without considering the turning-on and turning-off time of WNIs) average

tuning time of a data request asTTuning. To evaluate the overall power consumption, we define theeffective

tuning timeof a data request asTE f f.
Tuning= TTuning+n1×α1×TOn+n2×α2×TO f f , wheren1 andn2 are the

numbers of times of turning on and turning off the WNI, respectively, andTTuning is the traditional tuning
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Figure 4: Categories of buckets

time. To ease the presentation, we use the term tuning time to represent effective tuning time, and assume

α1 = α2 = 1 in the rest of this paper.

3 Analytical Model

3.1 Client Access Protocol

After submitting a data request, a mobile client will retrieve the desired data item according to the em-

ployed client access protocol. We adopt the client access protocol described in [20], and the protocol

consists of the following phases.

• Initial probe phase:After submitting a data request, the mobile device tunes to the broadcast channel

and listens on the broadcast channel to wait for the appearance of an index segment.

• Index search phase:The mobile device enters index search phase after retrieving an index segment.

In index search phase, the mobile device determines whether the desired data item will be broadcast

in the corresponding data segment. If not, the mobile device will switch to doze mode and then

switch back to active mode when the next index segment is broadcast. Otherwise, the mobile device

will enter data retrieval phase.

• Data retrieval phase:If the desired data item will be broadcast in the current data segment, the

mobile device will retrieve the time that the desired data item will be broadcast from the current

index segment and switch to doze mode. Then, when the desired data item is broadcast, the mobile

device will switch back to active mode and retrieve the desired data item.

Consider the example shown in Figure 4 that a mobile device submits a data request. LettStart be the

time that the mobile device starts to listen on the broadcast channel after submitting the data request, and
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tEnd be the time that the mobile device receives the desired data item. According to the employed client

access protocol, the buckets within the time interval fromtStart to tEnd can be divided into the following

three categories:

• Probe bucket:The bucket whichtStart lies on is called the probe bucket. In Figure 4,Bucket(i) is

the probe bucket. There is only one probe bucket for each data request.

• Search bucket:The bucket whose index segment is retrieved by the mobile device and whose

data segment is skipped by the mobile device is called search bucket. In Figure 4,Bucket(i + 1),

Bucket(i +2), · · ·, Bucket( j−1) are all search buckets. For a data request, there may be zero, one

or multiple search bucket(s).

• Retrieval bucket:The bucket whichtEnd lies on is called the probe bucket. That is, retrieval bucket

is the bucket where the mobile device retrieves the desired data item. In Figure 4,Bucket( j) is the

retrieval bucket. For each data request, there is only one probe bucket. In addition, the probe bucket

and the retrieval bucket of a data request may be the same or different.

3.2 Derivations of Access Time and Tuning Time

To facilitate the following derivations, we have the following assumptions:

• All data items are of equal sizeSD.

• The time to broadcast a data item (i.e.,SD
B ) is larger thanTOn+TO f f

Note that both assumptions are not the limitations of algorithm ADIOA and are made only to ease the

derivations in Section 3 and Section 4. Hence, they will be relaxed in Section 5 and Section 6.

In Bucket(i), denote the moment that the mobile device starts to turn on and turn off the WNI as

tWakeU p(i) andtSleep(i), respectively. In addition, we also denote that the starting time and the ending time

of Bucket(i) asBucket(i).Start andBucket(i).End, respectively. For a data request, we also partition the

time interval fromtStart to tEnd into several segments and each segment is marked as ‘A’, ‘D’, ‘F’ or ‘N’.

The descriptions of these four symbols are given in Table 1.

According to the relationship of the probe and retrieval buckets, a data request may be belonging to

one of the following two types.
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Symbol Description

A The mobile device is in active mode
D The mobile device is in doze mode
F The mobile device is turning off its WNI
N The mobile device is turning on its WNI

Table 1: The symbols of time frames

A F N
Time

Bucket(i) Bucket(i+1)Bucket(i-1)

Ii(1) Di(1)Ii(2) Ii(d) Di(2) Di(d)

A
tEndtStart tSleep(i) tWakeUp(i)D

Figure 5: A probe bucket in a Type I data request

3.2.1 Type I: The probe and retrieval buckets are the same

As shown in Figure 5, in a Type I data request,tStart andtEnd are within the same bucket. In addition,

according to the employed client access protocol,tStart must be located in the index segment. Otherwise,

tStart andtEnd will not be in the same bucket, and such result conflicts with the definition of Type I data

requests. In order to minimize power consumption,tSleep(i) is determined as the moment that the mobile

device has finished the retrieval of the corresponding index item of the desired data item, andtWakeU p(i)

is determined as the moment that the mobile device has to start to turn on the WNI in order to retrieve the

desired data item.

We observe from Figure 5 that one Type I data request will increase the aggregate access time of all

data requests bytEnd− tStart. On the other hand, the contribution of a Type I data request on the aggregate

tuning time of all data requests is determined by the length of the time interval(tSleep(i), tWakeU p(i)). When

tWakeU p(i)− tSleep(i) > TO f f , the data request will increase aggregate tuning time by

tSleep(i)− tStart+ tEnd− tWakeU p(i)+TOn

= tSleep(i)− tStart+
SD

B
+TOn+TO f f .

Otherwise, whentWakeU p(i)− tSleep(i) ≤ TO f f (i.e., the mobile must start to turn on the WNI before the

WNI has been turned off), the time interval(tSleep(i), tWakeU p(i)) is too short to turn on and then turn off
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Figure 6: Probe buckets in a Type II.I and a Type II.II data requests

the WNI. Hence, the data request will increase aggregate tuning time bytEnd− tStart.

3.2.2 Type II: The probe and retrieval buckets are different

The time interval(tStart, tEnd) of a Type II data request consists of one probe bucket, zero, one or multiple

search bucket(s) and one retrieval bucket. Next, we will derive the contributions of the probe bucket, the

search buckets and the retrieval bucket of a Type II data request, separately, on the aggregate access time

and aggregate tuning time of all data requests.

Probe bucket Consider the example shown in Figure 6. According to the location oftStart, Type II data

requests can be divided into the following two subtypes.

Type II.I: tStart is in the index segment.

Consider a Type II.I data request. Since the desired data item is not in the probe bucket (i.e,Bucket(i)),the

probe bucket of a Type II.I data request will increase the aggregate access time of all data requests by

Bucket(i +1).Start− tStart.

On the other hand, to maximize power-saving, the mobile device should start to turn off the WNI after

retrieving the latest index item inISi , and must turn on the WNI onBucket(i +1).Start to retrieve the first

index item inISi+1. Hence,tWakeU p(i) is equal toBucket(i +1).Start−TOn. As a consequence, a Type II.I

data request will increase the aggregate tuning time of all data requests bytSleep(i)− tStart+TO f f +TOn.

Type II.II: tStart is in the data segment.

WhentStart is in the data segment, according to the employed client access protocol, the mobile device

has to listen on the broadcast channel to wait for the appearance of the index segment of the next bucket

(i.e.,ISi+1). Hence, inBucket(i), the mobile device is in active mode fromtStart to Bucket(i +1).Start, and
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Figure 7: A search bucket in a Type II data request

A F N
Time
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A
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Figure 8: A retrieval bucket in a Type II data request

the contributions of the probe bucket of a Type II.II data request on aggregate access time and aggregate

tuning time are bothBucket(i +1).Start− tStart.

Search bucket Consider the example shown in Figure 7. In a search bucket, the mobile device operates

in active mode to retrieve the index segment and starts to turn off the WNI after retrieving all index items in

the index segment. Then, the mobile device has to start to turn on the WNI to ensure that the mobile device

just enters active mode onBucket(k+1).Start. Hence, in a search bucketBucket(k), the contributions on

aggregate access time and aggregate tuning time of all data requests are

Bucket(k+1).Start−Bucket(k).Start= d× SI +SD

B
,

and

tSleep−Bucket(k).Start+TOn+TO f f = d× SI

B
+TOn+TO f f ,

respectively.

Retrieval bucket Consider the example shown in Figure 8. In the retrieval bucket, the mobile device

retrieves the index items in the index segment sequentially until the index item of the desired data item

has been retrieved. Then, the mobile starts to turn off the WNI to wait for the appearance of the desired
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data item. In order to retrieve the desired data item, the mobile device has to start to turn on the WNI so

that the mobile device is able to enter active mode in the moment that the desired data item is just being

broadcast. Hence, the retrieval bucket of a Type II data request will increase aggregate access time by

tEnd−Bucket( j).Start. In addition, the retrieval bucket of a Type II data request will increase aggregate

tuning time by

tSleep( j)−Bucket( j).Start+ tEnd− tWakeU p( j)+TOn+TO f f

= tSleep−Bucket(k).Start+
SD

B
+TOn+TO f f ,

when tWakeU p( j)− tSleep( j) > TOn. Otherwise, the data request increases total tuning time bytEnd−
Bucket( j).Start.

With the above discussions, for a Type II data request, its contributions on aggregate access time and

tuning time are equal to the summations of access time and tuning time, respectively, of its probe bucket,

search buckets and retrieval bucket.

4 AIDOA: Adaptive Index and Data Organizing Algorithm

With the analysis in Section 3, we propose in this section algorithm AIDOA (standing for Adaptive In-

dex and Data Organizing Algorithm) to dynamically adjust the degree of buckets according to the system

workload. Basically, algorithm AIDOA consists of two phases: statistics collection phase and degree

adjustment phase, and switches between statistics collection phase and degree adjustment phase period-

ically. In statistics collection phase, the server will keep track of information of all data requests and

the recorded information will be used to guide the adaptation procedure in the successive execution of

adjustment phase.

4.1 Statistics Collection Phase

In each execution of statistics collection phase, the server will collect statistic information of all data

requests served in the current execution of statistics collection phase. A data request isservedwhen the

desired data item has been broadcasted.
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Two data structures,StatI andStatII , are defined to store the collected information of Type I and Type

II (including Type II.I and Type II.II) data requests, respectively. The details ofStatI andStatII are as

follows.

Details ofStatI

• ReqNo:The number of Type I data requests served in the current statistics collection phase

• AggAT:Aggregate Access Time of Type I data requests served in the current statistics collection

phase

• AggTT:Aggregate Tuning Time of Type I data requests served in the current statistics collection

phase

Details ofStatII

• ReqNo:The number of Type II data requests served in the current statistics collection phase

• AggATP/AggTTP:Aggregate Access/Tuning Time of Probe buckets of Type II data requests served

in the current statistics collection phase

• AggATS/AggTTS:Aggregate Access/Tuning Time of Search buckets of Type II data requests served

in the current statistics collection phase

• AggATR/AggTTR:Aggregate Access/Tuning Time of Retrieval buckets of Type II data requests

served in the current statistics collection phase

Each field, exceptReqNo, of StatI andStatII has anaverageversion with new names by replacing prefix

Agg to Avg. For example, the fieldAvgAT of StatI indicates theaverageaccess time of all Type I data

requests served in the current statistics collection phase. We also define the structureRequestto indicate

data requests which are merged together. Elements in the request queue, pending list and the ready queue

are all instance of structureRequest. An instance of structureRequestis said in the server when it is in the

request queue, pending list or the ready queue. The details of structureRequestare as follows.

Details of structureRequest

• ReqNo: The number of data requests which are merged together and are represented by the instance

of Request
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• AvgTIS: Average Time In Search buckets of the data requests represented by the instance ofRequest

After receiving a data request, the server first determines the type of this data request. If the data

request is belonging to Type I, the server calculates the contributions of the data request on aggregate

average and tuning time based on the analysis in Section 3.2.1, and updatesStatI accordingly. Since being

able to be served by the current bucket, a Type I data request will neither be merged into a structure

Requestnor be inserted into the request queue, the ready queue and the pending list.

On the other hand, when the data request is belonging to Type II, the server first checks whether it can

be merged into an instance of structureRequestin the server. If yes, the server updates the fields (i.e.,

ReqNoandAvgTIS) of the instance of structureRequestaccordingly. Otherwise, the server creates a new

instance of structureRequestand inserts the instance into the request queue. Finally, the server calculates

the contribution on aggregate access time and tuning time of the probe bucket of the data request according

to the derivations in Section 3.2.2, and updatesStatII accordingly.

While an instance ofRequest, sayr, is retrieved from the ready requests2, the server first calculates the

average number of search buckets that each data request inr has by

AvgSBNo← Bucket( j).start− r.ATIS
d× (SD +SI )

.

The contributions of these search buckets on aggregate access time and aggregate tuning time can be

obtained from the derivations in Section 3.2.2, andStatII .AggATSandStatII .AggTTSare updated accord-

ingly. The server the calculates the time that the desired data item ofr can be retrieved (i.e.,tEnd). Finally,

with tEnd, the server calculates the aggregate contributions of the retrieval buckets of all data requests

in r on aggregate access time and tuning time according to the derivations in Section 3.2.2, and updates

StatII .AggATRandStatII .AggTTRaccordingly. The algorithmic form of the procedure to updateStatII

when an instance of structureRequestis served is as follows.

Procedure RequestServed(Request r)
1: StatII .ReqNo← StatII .ReqNo+ r.ReqNo
2: AvgSNo← Bucket( j).start−r.ATIS

d×(SD+SI )

3: StatII .AggATS← StatII .AggATS+
(

d× SI +SD
B

)
×AvgSBNo× r.ReqNo

4: StatII .AggTTS← StatII .AggTTS+
(

d× SI
B +TOn+TO f f

)
×AvgSBNo× r.ReqNo

2Readers can refer to Section 5 to see how the system retrieves instances ofRequestfrom the ready queue.
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5: CalculatetEnd of r
6: StatII .AggATR← StatII .AggATR+(tEnd−Bucket( j).Start)× r.ReqNo
7: Let TTRbe the tuning time ofr in the retrieval bucket
8: StatII .AggTTR← StatII .AggTTR+TTR× r.ReqNo

4.2 Degree Adjustment Phase

In each execution of degree adjustment phase, the server will adjust the degree (i.e., the value ofd) of

buckets according to the statistic information collected in the precedent execution of statistics collection

phase. LetTAccess(d) andTTuning(d) be the average access time and average tuning time, respectively,

when the degree of the broadcast programs isd. For each field, the value of theaverageversion is equal

to the value of theaggregateversion divided by the number of data requests. For example, the value of

StatI .AvgTT is equal toStatI .AggTT
StatI .ReqNo. Then, according to the analysis in Section 3, we have

TAccess(d) = WI × (StatI .AvgAT)+WII × (StatII .AvgATP+StatII .AvgATS+StatII .AvgATR), and

TTuning(d) = WI × (StatI .AvgTT)+WII × (StatII .AvgTTP+StatII .AvgTTS+StatII .AvgTTR),

whereWI andWII are the weights of Type I and Type II data requests, respectively. The values ofWI and

WII are defined as the ratios of the numbers of Type I and Type II data requests. Hence, we have

WI =
StatI .ReqNo

StatI .ReqNo+StatII .ReqNo
, and

WII =
StatII .ReqNo

StatI .ReqNo+StatII .ReqNo
.

In addition,TOverAll(d) is employed as the metric of the system performance, and is defined as

TOverAll(d) = β ×TAccess(d)+(1−β )×TTuning(d).

In the above equation,β is an administrator-specified parameter to reflect the relative importance of av-

erage access time (i.e.,TAccess(d)) and average tuning time (i.e.,TTuning(d)). Hence, there is no optimal

setting ofβ . The objective of degree adjustment phase is to determine the new value ofd to minimize

TOverAll(d). However, since globally minimizingTOverAll(d) is difficult, algorithm AIDOA is designed to
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find the new value ofd, saydNext, whereTOverAll(dNext) is local minimum. That is, we will find a value of

dNext so thatTOverAll(dNext) is smaller thanTOverAll(dNext+1) andTOverAll(dNext−1). Since the exact val-

ues ofTAccess(dNext) andTTuning(dNext) whendNext 6= dCurr. cannot be obtained from the collected statistic

information, we adopt the following approximation method to estimateTAccess(dNext) andTTuning(dNext).

Let StatdNext
I andStatdNext

II be the approximations of the values of structureStatI andStatII when the

degree of buckets isdNext. Then, we have the following lemmas:

Lemma 1 StatdNext
I .AvgATandStatdNext

I .AvgTTcan be approximated by

StatdNext
I .AvgAT= StatI .AvgAT+(dNext−dCurr.)× SI

B

and

StatdNext
I .AvgTT= StatI .AvgTT,

respectively.

Lemma 2 StatdNext
II .AvgATPandStatdNext

II .AvgTTPcan be approximated by

StatdNext
II .AvgATP=

SI

SI +SD
×StatdNext

II .I .AvgATP+
SD

SI +SD
×StatdNext

II .II .AvgATP,

and

StatdNext
II .AvgTTP=

SI

SI +SD
×StatdNext

II .I .AvgTTP+
SD

SI +SD
×StatdNext

II .II .AvgTTP,

respectively, where

StatdNext
II .I .AvgATP= StatII .AvgATP+(dNext−dCurr.)×

(
SI

B
+

SD

B

)
,

StatdNext
II .I .AvgTTP= StatII .AvgTTP+(dNext−dCurr.)× SI

B
,

StatdNext
II .II .AvgATP= StatII .AvgATP+(dNext−dCurr.)× SD

B

and

StatdNext
II .II .AvgTTP= StatII .AvgTTP+(dNext−dCurr.)× SD

B
.
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As mentioned in Lemma 2, setting the degree of buckets fromdCurr. to dNext will increase the numbers

of index and data items in each probe bucket of Type II data requests bydNext−dCurr.. Suppose that these

extra index and data items are from the search buckets. Then, we have

Lemma 3 StatdNext
II .AvgATSandStatdNext

II .AvgTTScan be approximated as

StatdNext
II .AvgATS= AvgSBNoNext×dNext× (SI +SD)

B
,

and

StatdNext
II .AvgTTS= AvgSBNoNext×

(
dNext× SI

B
+TO f f +TOn

)
,

where

AvgSBNoNext =
StatII .AvgATS×B
dNext× (SI +SD)

− dNext−dCurr.

dNext
,

respectively.

Lemma 4 StatdNext
II .AvgATRandStatdNext

II .AvgTTRcan be approximated as

StatdNext
II .AvgATR= StatII .AvgATR+(dNext−dCurr.)× SI

B
,

and

StatdNext
II .AvgTTR= StatdNext

II .AvgTTR,

respectively.

The approximations ofTAccess(dNext) andTTuning(dNext) can be calculated based on the above approxi-

mations. From the above lemmas, we have the following observations:

1. Increasing the value of degree will increase average tuning time in probe buckets since the number

of data items in a bucket increases. In addition, increasing the value of degree will also reduce the

aggregate tuning time of search buckets since the average number of search buckets decreases. The
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increase of average tuning time in probe buckets and the decrease of aggregate tuning time of search

buckets are, respectively, the benefit and the cost of increasing the value of degree.

2. To minimize average tuning time, decreasing the value of degree is encouraged when average access

time it short. It is because that decreasing the value of degree will reduce the average tuning time in

probe buckets by slightly increasing aggregate tuning time of search buckets. Such increase results

from the increase in the average number of the search buckets.

We then devise procedure DegreeAdjustment to find the value ofdNext whereTOverAll(dNext) is local min-

imum. In procedure DegreeAdjustment, the server first checks whether increasing or decreasing the value

of degree will reduce the value ofTOverAll(dNext). After that, the server repeatedly increases or decreases

the value of degree by one untilTOverAll(dNext) is local minimum. Finally, the system sets the value of de-

gree (i.e.,dCurr.) to the return value of procedure DegreeAdjustment. The algorithmic form of procedure

DegreeAdjustment is as follows.

Procedure DegreeAdjustment
Note: The new value ofd (i.e,dNext)is returned

1: if (TOverAll(dCurr. +1) < TOverAll(dCurr.)) then
2: δ ← 1
3: else if(TOverAll(dCurr.−1) > TOverAll(dCurr.)) then
4: δ ←−1
5: else
6: return dCurr.
7: dNext← dCurr.
8: while (TOverAll(dNext+δ )) < TOverAll(dNext)) do
9: dNext← dNext+δ

10: return dNext

4.3 Complexity Analysis

To derive the worst time complexity of algorithm AIDOA, we consider the case that no request merge

occurs. Suppose that the number of received requests in one execution of statistics collection phase isn.

Then, the time complexity of one execution of statistics collection phase isO(n) since the time complex-

ity of one execution of procedure RequestServed isO(1). Suppose that the maximal value of degree is

dMax. The time complexity of procedure DegreeAdjustment isO(dMax). Since algorithm AIDOA executes

procedure DegreeAdjustment once in each execution of degree adjustment phase, the time complexity of

one execution of degree adjustment phase isO(dMax). To implement algorithm AIDOA, we have to spend
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storage space to store structuresStatI andStatII . Since the sizes of structuresStatI andStatII are fixed and

are independent ofn, the space complexity of algorithm AIDOA isO(1).

5 Design of Program Generation Algorithm and Cache Replace-

ment Policy

After determining the new value of degree, the program generator will generate the successive buckets

accordingly. Since data items may be cached in the server cache, the adopted program generation algo-

rithm should cooperate with the employed cache replacement policy. Each cached data item is initially

marked as LOCKED and only the cached data items in UNLOCK state are candidates of replacement. To

facilitate the design of cache replacement policy, the system maintains a min heapCandwhich stores all

data items in UNLOCKED state according to their priorities. The definition of the priority of a data item

will be given later in this section. Note that in this and the following section, we relax the assumption that

all data items are of the same size, and denote the size ofDi assize(Di) and the average data size asSD.

The server maintains a listbucketwhich contains the index items and data items of the current bucket.

Initially, bucketis empty. Then, the server retrievesdCurr. data items from the head of the ready queue,

inserts them intobucketand marks them as LOCKED. In addition, the corresponding index items of the

data items inbucketare also inserted intobucket. Then, the server broadcasts the index items and data

items inbucketsequentially. Once an item has been broadcast, it will be removed frombucket. If the item

is a data item, it will be marked as UNLOCKED. Oncebucketbecomes empty, the server retrievesdCurr.

data items from the head of the ready queue and repeats the above procedure. The algorithmic form of the

proposed program generation algorithm is as follows.

Algorithm ProgramGeneration
1: while (true)do
2: bucket←BucketGeneration()
3: while (bucketis not empty)do
4: item←the head ofbucket
5: Remove the head ofbucket
6: Broadcastitem
7: if (item is a data item)then
8: Mark itemas UNLOCKED
9: Calculate the priority ofitemand insertitem into Cand

Procedure BucketGeneration
1: budket← empty
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2: for (i=1 todCurr.) do
3: if (ready queue is empty)then
4: break
5: Fetch a data item (denoted asitem) from the head of ready queue
6: Mark itemas LOCKED
7: Appenditem into bucket
8: Insert the corresponding index items of the data items inbucketinto the head ofbucket
9: return bucket

We now consider the design of server cache. Similar to other cache replacement policies, we define

an evict function to determine the cache priorities of all data items. The profit of caching a data item is

defined as the overall data fetch time saving when the data item is cached, The cost of caching a data item

is defined as the size of the data item. The cache replacement policy is designed to maximize the aggregate

profit of all cached data items under the limitation on the aggregate cost (i.e., size) of all cached data items.

Hence, the cache priority of a data itemDi is defined as below.

priority(Di) =
f etch(Di)× rate(Di)

size(Di)
,

where f etch(Di) is the time for the server to fetchDi from the data server ofDi andrate(Di) is the request

rate of Di . When retrievingDi from the corresponding data server, the server calculates the value of

f etch(Di) and stores it for further uses. The server also stores the time of the previous cache hit ofDi ,

denoted astPrevHit(Di). In addition, for each cache hit ofDi , rate(Di) is set to

1
tCurHit − tPrevHit(Di)

,

where tCurHit is the time of the current cache hit ofDi . After the calculation of request rate ofDi ,

tPrevHit(Di) is set totCurHit .

The proposed cache replacement policy is as follows. When a data item, sayDi , is retrieved from the

data server, it will be inserted into the cache. When insertingDi into the cache, the server first checks

whether the cache is of enough free space forDi . If yes, the system storesDi into the cache, calculates

priority(Di) and marksDi as LOCKED. Otherwise, the system repeatedly removes “the data item with

the smallest priority among all data items inCand” from Canduntil the free space of the cache becomes

enough. Then, the system storesDi into the cache, calculatespriority(Di) and marksDi as LOCKED.

The algorithmic form of the proposed cache replacement policy is as follows.
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Parameter Value

Data object number 4000
Data object sizes Lognormal dist. (mean 7 KB)
Data access probabilitiesZipf dist. with parameter 0.75
Cache capacity 0.01×∑object size
Object fetch delay Exponential dist. withµ = 2.3
Client number 250
Service holding time Exp. dist. withµ = 10minutes
Service establishing timeExp. dist. withµ = one hour

Table 2: Default system parameters

Algorithm CacheReplacement(Di)

1: while (FreeSpace< size(Di)) do
2: Let D j be the data item with the smallest priority among all other data items inCand
3: RemoveD j from cache
4: FreeSpace← FreeSpace+size(D j)
5: InsertDi into cache
6: Calculate thepriority(Di)
7: Mark Di as LOCKED

Suppose that the data items inCandare organized as a min heap. In addition, letnReplacebe the number

of data items to be replaced. Therefore, the time complexity of one execution of algorithm CacheReplace-

ment isO(nReplace× log|Cand|).

6 Performance Evaluation

6.1 Simulation Model

We take LWF (standing for Longest Wait First) as the underlying scheduling algorithm to prioritize the

data requests in the request queue and the ready queue. The server provides one request channel and one

broadcast channel with network bandwidth 38.4 Kbps and 384 Kbps, respectively. Analogously to [8], we

assume that there are 4000 data objects and the sizes of data objects follow a lognormal distribution with

a mean of 7 KBytes. The size of a data request message and an index item is set to 128 bytes. The times

to turn on and turn off the WNIs are both set to 30ms. The access probability of data objects follows a

Zipf distribution, which is widely adopted as a model for real Web traces [3][7]. The parameter of the Zipf

distribution is set to 0.75 with a reference to the analyses of real Web traces [7][15]. Since small objects are
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much more frequently accessed than large ones [9], we assume that there is a negative correlation between

the object size and its access probability. The default capacity of the cache is set to0.01×∑object size

and the fetch delays of data objects follow an exponential distribution with mean 2.3 seconds [8]. Similar

to [16], the number of users in the network is set to 250. Service holding time and service re-establishing

time for each user are set to exponential distributions with means of 10 minutes and one hour, respectively.

Service re-establishing time is defined as the time interval between the moment that a user terminates the

service and the moment that the user establishes the service again. We also assume that the inter-arrival

time of data requests of each user follow an exponential distribution with mean10seconds [14]. The value

of β is set to 0.5 simulate the environment that average access time and average tuning time are of equal

importance.

In order to evaluate the performance of the proposed degree adjustment method in algorithm AIDOA,

the algorithm proposed in [13] (referred to as algorithm Static) is modified to cooperate with the cache

replacement policy and the program generation algorithm proposed in Section 5. Hence, the difference

between algorithm AIDOA and algorithm Static is only on the ability of adjusting the degree of buckets.

Based on algorithm Static, we devise two schemes, Static-2 and Static-8 which set the degree of buckets

to two and 8, respectively, and the values of degree of buckets are fixed throughout the simulation. In

addition, scheme AIDOA employs algorithm AIDOA and initializes the degree of buckets to two. Hence,

scheme AIDOA will dynamically adjust the degree of buckets according to system workload. Note that all

these three schemes employ server cache to eliminate performance degradation caused by the data fetch

time.

6.2 Effect of Average Data Size

In this experiment, we investigate the effect of average data size on average access time and average tuning

time. Average data size is set from two KBytes to 11 KBytes and the experimental results are shown in

Figure 9a and Figure 9b, respectively. Due to increasing the load of the broadcast channel, it is intuitive

that increasing average data size results in the increase in average access time. In addition, when average

data size is large enough, the load of the broadcast channel is high, and hence, a slight increase in average

data size will cause significant increases in average access time. Since the sizes of index items are much

smaller than those of data items, the effect of the degrees of broadcast programs in average access time is
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Figure 9: The effect of average data size

quite small.

Although the values of degrees of broadcast programs only slightly affect average access time of all

schemes, they result in significant effects in average tuning time. As shown in Figure 9b, scheme Static-8

performs well only when average data size is small, and scheme Static-2 performs well only when average

data size is large. As observed in Section 4.2, increasing the value of degree will increase average tuning

time in the probe bucket. In addition, increasing the value of degree also decreases the number of search

buckets and hence reduces average tuning time in the search buckets. When average data size is large,

average access time is also long. Employing a large value of degree will reduce average tuning time in the

search buckets by reducing the number of search buckets (i.e., reducing the number of times of turning-on

and turning-off the WNIs), and increase the average tuning time in the probe bucket. However, due to

the trade-off between average tuning time in the probe bucket and the search buckets, the value of degree

cannot be set to be too large. In addition, we can also observe from Section 4.2 that decreasing the value

of degree will decrease average tuning time in the probe bucket and increase the number of search buckets.

Therefore, scheme with small values of degree outperforms schemes with large values of degree in the case

with small average data size. Hence, the value of degree cannot be set to be too small, either. Different

from scheme Static-2 and scheme Static-8, since scheme AIDOA is able to dynamically adjust the value

of degree to a proper value according to system workload, scheme AIDOA outperforms scheme Static-2

and scheme Static-8 in most cases.
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Figure 10: The effect of turning-on and turning-off time

6.3 Effect of Turning-on and Turning-off Time of WNIs

The effect of turning-on and turning-off time of WNIs is measured in this subsection and the experimental

results are given in Figure 10. In this experiment, we assume thatTOn = TO f f and set the value ofTOn and

TO f f from 5ms to 60ms. As shown in Figure 10a, the values ofTOn andTO f f do not affect average access

time of scheme Static-2 and scheme Static-8. It is because that in these two schemes, degrees of broadcast

buckets are fixed, and the values ofTOn andTO f f do not affect the organizations of broadcast programs. On

the other hand, although scheme AIDOA is able to dynamically adjust the degree of buckets, the influence

of TOn andTO f f on average access time of scheme AIODA is small since the size of index items is much

smaller than that of data items.

Consider average tuning time of these schemes shown in Figure 10b. According to the observations in

Section 4.2, increasing the value of degree will increase average tuning time in the probe bucket and reduce

the aggregate tuning time in the search buckets. Since the benefit of increasing the value of degree is in

proportion to the values ofTOn andTO f f , scheme Static-2 performs well whenTOn andTO f f are small. On

the contrary, scheme Static-8 outperforms scheme Static-2 in the case with largeTOn andTO f f . Although

producing more power consumption in the probe bucket than scheme Static-2 does, scheme Static-8 is

still able to reduce overall power consumption since being able to greatly reduce the power consumption

on turning-on and turning-off the WNIs by reducing the average number of search buckets. On the other

hand, with dynamic adjustment in the degree, scheme AIDOA is able to determine a suitable value of

degree for current system workload, and hence outperforms scheme Static-2 and scheme Static-8 in most
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Figure 11: The effect of the number of users

cases.

6.4 Effect of Number of Users

We evaluate in this subsection the scalability of these schemes in average access time and average tun-

ing time by increasing the number of users from 200 to 450, and the experimental results are shown in

Figure 11.

Due to the characteristics of data broadcasting, it is intuitive that increasing the number of users results

in smoothly increasing in average access time. As shown in Figure 11a, when the number of users is

small, increasing the number of users produces a slight increase in average access time since the system

load is still light. However, when the number of users is large enough, the system load becomes high and

increasing the number of users results in drastic increases in average access time. In addition, since the

size of index items is much smaller than that of data items, average access time of these schemes is close.

Figure 11b shows average tuning time of these schemes with the number of users varied. We observe

that when the number of users is not large, scheme Static-2 outperforms scheme Static-8. In addition,

when the number of users is large, average tuning time of scheme Static-2 becomes longer than that of

scheme Static-8. This phenomenon agrees to the observations in Section 4.2 that in average tuning time,

the cases with short average access time favor schemes with small values of degree and the cases with

long average access time favor schemes with large values of degree. Therefore, when the number of users

is large enough, average tuning time of scheme Static-2 becomes much longer than that of scheme Static-
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Figure 12: The effect of bandwidth of broadcast channel

8 since average access time of these schemes both becomes drastically increasing. Since being able to

adjust the values of degree according to system workload, scheme AIDOA outperforms scheme Static-2

and Static-8 when the number of users is not large. In addition, average tuning time of scheme AIDOA is

close to that of scheme Static-8 when the number of users is large.

6.5 Effect of Bandwidth of the Broadcast Channel

In this experiment, we investigate the effect of bandwidth of the broadcast channel on average access time

and average tuning by setting the bandwidth from 32 Kbps to 128 Kbps. The experimental results are

shown in Figure 12.

It is intuitive that increasing bandwidth of the broadcast channel decreases average access time. How-

ever, as shown in Figure 12a, the effect of increasing the bandwidth of the broadcast channel on average

access time diminishes when the bandwidth is large enough. It is because that average access time com-

prises several components such as the fetch time and the broadcast time of data items, the waiting time of

data requests spending in queues and the transmission time of data requests on the request channel. Since

increasing bandwidth of the broadcast channel only reduces broadcast time of data items, the effect of

increasing bandwidth of the broadcast channel on average access time is limited. Similar to the precedent

experiments, average access time of these schemes is close.

Now, consider the experimental results on average tuning time shown in Figure 12b. As observed in

Figure 12b, scheme Static-8 performs well only when the bandwidth of the broadcast channel is high.
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Figure 13: The effect of skewness of data requests

Similarly, scheme Static-2 performs well only when the bandwidth of the broadcast channel is low. Con-

sider the scenario of increasing the value of degree. As observed in Section 4.2, with the same increment

in the value of degree, increasing the bandwidth of the broadcast channel will reduce the cost of increasing

the value of degree by reducing average tuning time in the probe bucket. Since most average tuning time

in the search buckets comes from turning-on and turning-off the WNIs, average tuning time in the search

buckets does not affect by the increase of the bandwidth of the broadcast channel. Therefore, increasing

bandwidth of the broadcast channel favors increasing the value of degree. Similarly, decreasing bandwidth

of the broadcast channel makes increasing the value of degree more costly. On the other hand, scheme

AIDOA is able to adjust the value of degree according to system workload, and hence outperforms scheme

Static-2 and scheme Static-8 in most cases. This phenomenon shows the advantage of scheme AIDOA

due to its adaptability to system workload.

6.6 Effect of Skewness of Access Probabilities of Data Requests

We evaluate in this experiment the effect of skewness of access probabilities of data requests by setting

the value of Zipf parameter from zero to 1.25. The larger the value of Zipf Parameter is, the more skewed

access probabilities of data requests are. In addition, the value of Zipf parameter is set to zero to indicate

the case that access probabilities of data requests are equal. It is intuitive that when the access probabilities

become more skewed, more data requests are merged together, and average access time becomes shorter.

The result shown in Figure 13a agrees to this intuition.
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Figure 14: The effect of cache size ratio

Figure 13b shows average access time of all schemes with the value of Zipf parameter varied. As

observed in Figure 13b, average tuning time decreases as the value of Zipf parameter increases. It can

be explained by the observations in Section 4.2 that in average tuning time, cases with short average

access time favors schemes with small values of degree. Therefore, scheme Static-2 outperforms scheme

Static-8 especially in the cases with high value of Zipf parameter. With the change of skewness of access

probabilities, scheme AIDOA is able to adjust the value of degree to adapt to such change, and hence,

attains better performance.

6.7 Effect of Cache Size

This experiment evaluates the effect of cache size on average access time and average tuning time, and

the experimental results are shown in Figure 14. Similar to [8], cache size is determined as “cache size

ratio×the summation of the sizes of all data items.” The case that the value of cache size ratio is set to

zero indicates the case that the server does not employ cache.

As shown in Figure 14a, average access time decreases as the value of cache size ratio increases. When

the cache size is large, many data items are cached and can be obtained by the server without being fetched

from the data servers. In addition, when the cache size is large enough, the benefit of increasing cache

size diminishes since data items with high access rates are cached in the server cache. We also observe

from Figure 14a that employing server cache, which is neglected in the prior studies on data indexing for

on-demand data broadcasting [13], is able to effectively reduce average access time.
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As the observations in Section 4.2, when it comes to average tuning time, cases with short average

access time favor schemes with small values of degree. Hence, scheme Static-2 outperforms scheme

Static-8 especially when the value of cache size ratio is large. This observation agrees with the results

shown in Figure 14b. When the value of cache size ratio is small, both schemes do not perform well

since the value of degree in scheme Static-2 is too small and the value of degree in scheme Static-8 is too

large. On the other hand, scheme AIDOA is able to dynamically adjust the value of degree to attain better

performance, showing the advantage of scheme AIDOA.

7 Conclusion

We proposed in this paper an energy-conserving on-demand data broadcasting system employing the data

indexing technique. Different from the prior work, power consumption of turning on and turning off

the wireless network interfaces was considered. In addition, we also employed server cache to reduce

the effect of data fetch time. Specifically, we first analyzed the access time and tuning time of data

requests and proposed algorithm AIDOA to adjust the degree of buckets according to system workload.

We also devised an approximation method to estimate the effect of increasing and decreasing the values

of degree, and employed the approximation method to guide the adjustment of algorithm AIDOA. In

addition, the companion program generation algorithm and cache replacement policy were proposed to

cooperate with algorithm AIDOA. Several experiments were then conducted to evaluate the performance

of algorithm AIDOA. Experimental results showed that algorithm AIDOA is able to greatly reduce power

consumption at the cost of a slight increase in average access time and dynamically adjust the index and

data organization to adapt to change of system workload.
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Figure 15: An example scenario of Type I data requests thatdCurr. = 3 anddNext = 4

Appendix

Proof of Lemma 1:

Consider the cases thatdNext > dCurr.. Figure 15 shows an example of Type I data requests. When

the degree of buckets is set fromdCurr. to dNext, dNext−dCurr. index item(s) anddNext−dCurr. data item(s)

will be appended to each index segment and data segment, respectively. As observed from Figure 15,

setting the degree of buckets fromdCurr. to dNext increases the average access time of Type I data requests

by (dNext−dCurr.)×SI
B . In addition, we also observe that appendingdNext−dCurr. index items into each index

segment does not affect the average tuning time of Type I requests. Hence, from the above observations,

we have

StatdNext
I .AvgAT= StatI .AvgAT+(dNext−dCurr.)× SI

B
, and

StatdNext
I .AvgTT= StatI .AvgTT.

We then apply the above equations as the approximations ofStatdNext
I .AvgAT andStatdNext

I .AvgTT in

the cases thatdNext < dCurr., and hence, prove Lemma 1. Q.E.D.

Proof of Lemma 2:

Consider the example probe bucket of Type II data requests shown in Figure 16. Suppose thattStart

follows a uniform distribution betweenBucketi .Start andBucketi .End. Therefore, as observed from Fig-

ure 16, the probabilities of a Type II data request to be Type II.I and Type II.II areSI
SI +SD

and SD
SI +SD

,
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Figure 16: An example scenario of Type II data requests thatdCurr. = 3 anddNext = 4 on the probe bucket

respectively. Therefore, by the definition ofStatdNext
II .AvgATPandStatdNext

II .AvgTTP, we have

StatdNext
II .AvgATP=

SI

SI +SD
×StatdNext

II .I .AvgATP+
SD

SI +SD
×StatdNext

II .II .AvgATP, and

StatdNext
II .AvgTTP=

SI

SI +SD
×StatdNext

II .I .AvgTTP+
SD

SI +SD
×StatdNext

II .II .AvgTTP.

We now consider the cases thatdNext > dCurr. and derive the approximations ofStatdNext
II .I .AvgATP,

StatdNext
II .I .AvgTTP, StatdNext

II .II .AvgATPandStatdNext
II .II .AvgTTP. When the degree of buckets is set to fromdCurr.

to dNext, dNext−dCurr. index item(s) anddNext−dCurr. data item(s) will be appended to each index segment

and data segment. As observed from Figure 16, setting the degree of buckets fromdCurr. to dNext increases

the average access time and average tuning time of the probe buckets of Type II.I data requests (i.e.,

StatdNext
II .I .AvgATPandStatdNext

II .I .AvgTTP) by (dNext−dCurr.)×(SI +SD)
B and (dNext−dCurr.)×SI

B , respectively. Hence,

we have

StatdNext
II .I .AvgATP= StatII .AvgATP+(dNext−dCurr.)×

(
SI

B
+

SD

B

)
, and

StatdNext
II .I .AvgTTP= StatII .AvgTTP+(dNext−dCurr.)× SI

B
.

In addition, we also observe that increasing the degree of buckets fromdCurr. to dNext increases both
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the average access time and average tuning time of the probe buckets of Type II.II data requests (i.e.,

StatdNext
II .II .AvgATPandStatdNext

II .II .AvgTTP) by (dNext−dCurr.)×(SI +SD)
B . Therefore, we have

StatdNext
II .II .AvgATP= StatII .AvgATP+(dNext−dCurr.)× SD

B
, and

StatdNext
II .II .AvgTTP= StatII .AvgTTP+(dNext−dCurr.)× SD

B
.

We then apply the above equations to the approximations ofStatdNext
II .I .AvgATP, StatdNext

II .I .AvgTTP,

StatdNext
II .II .AvgATPandStatdNext

II .II .AvgTTPin the cases thatdNext < dCurr., and hence, prove Lemma 2.

Q.E.D.

Proof of Lemma 3:

In the cases that the degree of buckets isdCurr., since one data item and the corresponding index

item contributeStatII .AvgATSby SI +SD
B , the average number of data items in Type II data requests is

StatII .AvgATS× B
SI +SD

.

Consider the cases that set the degree of buckets todNext. For each Type II data request, on aver-

age,dNext− dCurr. index items anddNext− dCurr. data items move from the search buckets to the probe

bucket. Therefore, the average number of index and data items in Type II data requests both become

StatII .AvgATS× B
SI +SD

− (dNext−dCurr.). Since each search bucket containsdNext index items anddNext

data items, the average number of search buckets of Type II data requests is

AvgSBNoNext = StatII .AvgATS× B
SI +SD

− (dNext−dCurr.).

Finally, according to the derivations in Section 3.2.2, since each Type II data request containsAvgSBNoNext

search buckets on average, we have

StatdNext
II .AvgATS= AvgSBNoNext×dNext× (SI +SD)

B
, and

StatdNext
II .AvgTTS= AvgSBNoNext×

(
dNext× SI

B
+TO f f +TOn

)
.

Q.E.D.

Proof of Lemma 4:
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Figure 17: An example scenario of Type II data requests thatdCurr. = 3 anddNext = 4 on the retrieval
bucket

Consider the cases thatdNext > dCurr. and the example Type II data request shown in Figure 17. When

the degree of buckets is set to fromdCurr. to dNext, dNext−dCurr. index item(s) anddNext−dCurr. data item(s)

will be appended to each index segment and data segment, respectively. As observed from Figure 17,

setting the degree of buckets fromdCurr. to dNext increases the average access time of each Type II data

request on the retrieval bucket by(dNext−dCurr.)×SI
B . In addition, we also observe that appendingdNext−dCurr.

index items into each index segment does not affect the average tuning time of each Type II request on the

retrieval bucket. Hence, from the above observations, we have

StatdNext
II .AvgATR= StatII .AvgATR+(dNext−dCurr.)× SI

B
, and

StatdNext
II .AvgTTR= StatII .AvgTTR.

We then apply the above equations as the approximations ofStatdNext
II .AvgATRandStatdNext

II .AvgTTR

in the cases thatdNext < dCurr., and hence, prove Lemma 4. Q.E.D.

34


