A Virtual Machine-Based Programming Environment for Rapid Sensor
Application Development

Jui-Nan Lin and Jiun-Long Huang
Department of Computer Science
National Chiao Tung University
Hsinchu, Taiwan, ROC
E-mail: {jnlin, jlhuang} @cs.nctu.edu.tw

Abstract

In recent years, TinyOS and nesC are gradually becom-
ing the de facto software development platform for imple-
menting sensor applications. However, developing sensor
applications is difficult for programmers since the program-
ming paradigm used in nesC is different from that used in
other popular programming languages. In view of this, we
propose in this paper a virtual machine-based program-
ming environment for rapid sensor application develop-
ment. With the proposed programming environment, sen-
sor applications are implemented in TinyJava, which is a
subset of Java programming language. Developing sensor
applications is very similar as developing a traditional Java
applications. Therefore, we believe that the proposed pro-
gramming environment is able to speedup the development
of sensor applications.

Keywords: Programming environment, sensor network,
embedded system

1 Introduction

The growing advance in wireless communications and
electronics makes the development of low-cost and low-
power sensors possible. These sensors are usually small
in size and are able to communicate with other sensors in
short distances wirelessly. A sensor network [1] consists of
a number of sensors which cooperates with one another to
accomplish some tasks. Sensors can be deployed either in
a random or in a predetermined manner. Since being self-
organized, sensors are able to form a sensor network auto-
matically. Due to the characteristics of wireless communi-
cation and configuration-free deployment, sensor networks
are suitable for various application areas including inven-
tory management, product quality monitoring and disaster

area monitoring.

In recent years, TinyOS [4] and nesC! are gradu-
ally becoming the de facto software development platform
for implementing applications in sensor networks. How-
ever, due to employing a programming paradigm (i.e.,
component-based architecture) different from other popu-
lar programming languages such as C++ and Java, nesC
is not apprentice-friendly. When leading several students
to implement a temperature monitoring application on sen-
sor networks, we observed that some students were reluc-
tant to learn nesC programming. Therefore, designing a
programmer-friendly programming environment is impor-
tant for the success of sensor networks.

In view of this, the community has proposed several pro-
gramming environments including TinyDT?, TinyOSIDE?
and TOSDev* to ease the process of programming in nesC.
TinyDT and TinyosIDE are plugins of Eclipse. With them,
Eclipse can recognize nesC’s syntax and perform some ad-
vanced source editing functionality such as reserve word
highlighting and code folding. TOSDev is a stand-alone
integrated development environment (IDE) for nesC. In ad-
dition to performing advanced source editing functionality,
TOSDev enables programmers to view the whole nesC pro-
gram in a visual manner. However, programmers still need
to learn the syntax and programming paradigm of nesC,
and the difficulty of learning sensor application develop-
ment still remains. In addition, the debuggers of nesC are
still under development so that debugging a nesC program
is still a difficult job.

In this paper, we propose a new programming environ-
ment to address these problems. The proposed program-
ming environment consists of the following three compo-

TinyOS and nesC will be introduced later.

2TinyDT, http://wuw.tinydt .net

3TinyosIDE, http://www.tinyoside.ucd.ie

4TOSDev, http://selab.csuohio.edu/dsnrg/tosdev/

nents:

e TinyJVM: a lightweight Java virtual machine on top of
TinyOS,

e TinyJava: a programming language resulting from re-
ducing Java programming language, and

e Sensorlet: a class library supporting sensor application
development.

With the proposed programming environment, a sensor
application is implemented in TinyJava. A standard Java
compiler is used to compile the TinyJava program into the
corresponding Java bytecodes stored in . class files. Then,
the .class files and TinyJVM are installed into sensors
running TinyOS. Finally, TinyJVM executes the sensor ap-
plication by interpreting its . class files.

The proposed programming environment has the follow-
ing advantages:

1. Eliminate the difficulties in learning new programming
languages.

The programming language supported by TinyJVM is
TinyJava, which is a programming language resulting
from discarding some constructs from Java. Hence,
programmers familiar with Java can implement sensor
applications easily.

2. Make programming sensor applications more conve-
nient by leveraging existing IDEs.

Since the syntax of TinyJava is a subset of Java, exist-
ing Java IDEs such as Eclipse and Netbeans can sup-
port TinyJava without modification. Advanced source
editing functionality is hence available for TinyJava
programmers.

3. Simplify the debugging process.

Up to now, there is no mature debugger for nesC. With
the proposed programming environment, debugging a
TinyJava program is similar to debugging an ordinary
Java program.

4. Facilitate cheap dynamic code update

Since TinyOS is a monolithic operating system, dy-
namic code update is hence costly. With TinyJVM,
since performing code update is just transmitting byte-
codes, which are very small in size, to sensors, dy-
namic code update is cheap.

The rest of this paper is organized as follows. An intro-
duction to the execution environments for sensor networks
is given in Section 2. In addition, nesC programming will

also be introduced. Then, the design of the proposed pro-
gramming environment will be described in Section 3. An
illustrative example of TinyJava is given in Section 4. Fi-
nally, Section 5 gives our future work.

2 Preliminaries

The related work of execution environments is described
in Section 2.1 while an overview of nesC programming is
given in Section 2.2.

2.1 Related Work

Essentially, a sensor node can be seen as a small em-
bedded system with small memory, limited storage, an lim-
ited computation power. Several operating systems are de-
signed on top of sensor nodes to provide programmers with
friendly execution environments. Han et. al. [2] classified
the execution environments for sensor nodes into three cat-
egories: monolithic, modular and virtual machine-based.

With a monolithic operating system such as TinyOS, the
user program and the operating system are linked together
into an image. The image is then loaded to a sensor node
to perform its task. Since the user program and the mono-
lithic operating system is tightly coupled, global optimiza-
tions can be performed in compilation time. Hence, appli-
cations using monolithic operating systems are usually of
high performance and consume less memory.

With a modular operating system such as SOS> [3], the
application is divided into two parts. One is the kernel and
the other is loadable components. The kernel provides sev-
eral APIs to perform I/O, communication, memory man-
agement, etc. Since components are loaded dynamically,
the interactions between components are usually performed
in an indirect manner. Therefore, the performance of appli-
cations using modular operating systems are usually less ef-
ficient than that using monolithic operations systems. How-
ever, modular operating systems enable users to perform
some dynamic behavior such as dynamic code update.

Consider the scenario to update application code. With
monolithic operating systems, the whole image including
operating systems should be transmitted to sensor nodes
even the operating systems are not revised. With modu-
lar operating systems, only the images of the revised com-
ponents should be transmitted to sensor nodes. Hence, the
cost of code update with modular operating systems is much
cheaper than that with monolithic operating systems.

Mate® [6] is a virtual machine on TinyOS. The instruc-
tion set of Mate is designed for compactness. With Mate, an

5S0S, http://nesl.ee.ucla.edu/projects/S0S/
®Mat, http://www.cs.berkeley.edu/~pal/mate-web/

Module | usinteface | Module | usinterface | Module
| MainC I Boot Bl i nkC Leds ° LedsC
—_—— ‘ —_————

useinterface
Timer<M1li>
Module
ITi merM I i CI
L egend

I”" 7| pre-built module || user-developed module

Figure 1. The structure of program BlinkApp

application is implemented in TinyScript, which is designed
to hide the event-driven behavior of TinyOS. The applica-
tion is then compiled into Mate instructions and deployed
to sensor nodes. When updating software, only instruc-
tions of user programs are needed to be transmitted. Hence,
the cost of code update is also cheap. Mate is extended in
[7] to support application specific virtual machines to fur-
ther reduce the size of user programs and the interpreta-
tion overhead. However, due to the overhead of virtual ma-
chines, virtual machine-based approaches inherently con-
sume higher memory than monolithic and modular ones.

2.2 Overview of nesC Programming

nesC is an extension of C to facilitate event-driven,
component-based programming paradigm. Specifically, a
nesC program consists of several components and the inter-
actions among these components. A component is called
a module in nesC. A module may export several interfaces
for other modules. Modules will interact with one another
via their interfaces. The interactions between modules are
called wirings in nesC. The wirings of the modules used in a
nesC program are specified a configuration file. In addition
to using the modules pre-built in TinyOS, programmers can
develop their own modules.

We use a simple application, called BlinkApp, to de-
scribe the structure of a nesC program. This program will
ask sensor nodes to blink one of its LEDs with period 2000
ms. The structure of BlinkApp is as shown in Figure 1 while
the source code is as follows.

configuration BlinkAppC {

}

implementation {
components MainC, BlinkC, LedsC;
components new TimerMilliC() as TimerO;
BlinkC -> MainC.Boot;
BlinkC.TimerO -> TimerO;

BlinkC.Leds -> LedsC;

Configuration BlinkAppC.nc

BlinkC {

interface Leds;

interface Boot;

interface Timer<TMilli> as TimerO;

module
uses
uses
uses
}
implementation {
event void Boot.booted() {
call TimerO.startPeriodic(1000);
}
event void TimerO.fired() {
call Leds.led2Toggle();
}

}
Module BlinkC.nc

As shown in Figure 1, as the core of the whole appli-
cation, module BlinkC is wired to three pre-built modules,
TimerMillC, MainC and LedsC to perform the task. The
used components and the interactions among them are spec-
ified in file BlinkApp.nc. In these four components, BlinkC
is a user-defined module specified in file BlinkC.nc and the
other three components are pre-built in TinyOS.

When booting, event booted is generated and the sensor
node executes the event handler Boot . booted to set up the
timer TimerO to be fired once per 1000 ms. When TimerO
is fired, event handler TimerO.fired will be executed to
toggle the third LED from on to off, or from off to on. As
a result, the LED will blink will periodicity 2000 ms. In-
terested readers can refer to the official site of nesC” for the
details of the nesC programming language.

3 The Proposed Programming Environment

Figure 2 shows the architecture of the proposed pro-
gramming environment and the corresponding development
process of sensor applications. The proposed tool-kit of
the proposed programming environment will be depicted in
Section 3.1 while the proposed development process will be
described in Section 3.2.

3.1 The Proposed Tool-Kit for Sensor Ap-
plication Development

3.1.1 TinyJVM: A Lightweight Virtual Machine for
TinyOS

To interpret Java bytecodes, we implement a lightweight
Java virtual machine called TinyJVM on top of TinyOS.

"nesC, http://nescc.sourceforge.net/

1. Editing
@ —==1p,
Programmer Ordinary o
Java|DE javac g
G
2
o
=}

y
.class

3-1. Emulation j i 3-2. Execution

Sensor Node Sensor!et Se_nsorlet .class
Emulation .class Library
Emulator Librar
Yy TinydVM
VM
TinyOS
Hardware + OS Hardware
Host Side Sensor Side

Development Phase Deployment Phase
Figure 2. The proposed programming envi-
ronment and software development process
and system architecture

Since sensor nodes are usually of small memory and lim-
ited computation power, some advanced functions such as
just-in-time compilation, garbage collection, exception han-
dling and multi-threading are not implemented in TinyJVM.
In addition, to reduce the footprint of TinyJVM, some
infrequently-used bytecodes are not implemented, either.
The design rationale of TinyJVM is to implement just
enough functionality to execute TinyJava programs.

3.1.2 The TinyJava Programming Language

TinyJava is the standard programming language in the pro-
posed programming environment. When designing Tiny-
Java, we keep the following rationale in mind.

1. TinyJava should be a subset of Java.

To avoid the burden of learning new programming lan-
guage, TinyJava is designed to be a subset of Java.
That is, TinyJava is designed by removing some un-
necessary language constructs from Java.

2. The implementation of the language constructs of
TinyJava cannot consume too much memory and com-
putation power, and should adhere to the constraints
imposed by TinyJVM.

Since TinyJava is a subset of Java, programmer can use
ordinary Java IDEs to debug their sensor applications easily.
The differences between TinyJava and Java are as follows.

1. TinyJava only supports integer data types: 32-bit in-
teger (int), 16-bit integer (short) and 8-bit integer
(byte). Since most processors of sensor nodes do
not support floating point numbers, floating point data
types such as float and double are not supported
right now.

2. Exception handling related language constructs such
as try, throw, catch and finally are not included
in TinyJava.

3. Multi-threading related language constructs such as
synchronized are not included in TinyJava.

4. Since TinyJVM does not implement garbage collec-
tion, programmers should free memory by themselves
explicitly.

3.1.3 Sensorlet: A Package for Sensor Application De-
velopment

In the proposed programming environment, package
Sensorlet is implemented for a TinyJava program to
control the underlying platform (hardware and operat-
ing system) by encapsulating the modules in TinyOS. In
Sensorlet, the wirings among modules are implemented
as registering event handlers by listeners. TinyOS consists
of many pre-built modules. To reduce memory consump-
tion, only some frequently-used modules are supported in
Sensorlet. Since most sensor applications are imple-
mented to monitor some phenomena, Sensorlet currently
supports the following four functions: timer, led controller,
sensing module controller and network transmitter. The in-
terfaces of the classes in Sensorlet are listed below. Note
that the term sensor in Sensorlet is used to indicate sens-
ing modules.

static class Sensorlet {
static LED[3];
static Timer[3];
static Sensor[3];
}
final class LED {
static void toggle() {...}
static void turnOn() {...}
static void turnO0ff() {...}
}
final class Timer {
void setup(int interval, bool isPeriodic)

{...}
void addTimerListener(TimerListener 1)
{...}
void start() {...}
void stop() {...}
}
interface TimerListener {
void fired(void);
}
final class Sensor {
int read() {...}
}
final class Memory {
static void delete(class Object) {...}
}

final class Network {

The proposed programming environment consists of two
sides: the host-side and the sensor-side. TinyJVM is im-
plemented in sensor-side and Sensorlet is integrated into
TinyJVM for better performance. In addition, to make de-
velopment of sensor applications more convenient, we also
implement a sensor node emulator and an emulation library
of Sensorlet in Java. The usage of host-side and sensor-
side components is described in Section 3.2.

3.2 The Proposed Sensor Application De-
velopment Process

The corresponding development process consists of two
phases: development phase and deployment phase. In de-
velopment phase, programmers develop (including debug)
their applications using the host-side part of the proposed
programming environment. In deployment phase, the ap-
plication is executed in sensor nodes with the sensor-side
part.

3.2.1 Development Phase

In development phase, programmers use ordinary Java IDEs
to develop sensor applications in TinyJava. Since TinyJava
is a subset of Java, ordinary Java IDEs are able to perform
advanced source editing functionality for TinyJava. How-
ever, programmers can only use language constructs sup-
ported by TinyJava and Sensorlet package. After coding,
programmers can invoke a java compiler such as javac to
compile their code into Java bytecodes. With an emula-
tion library of Sensorlet and an emulator of sensor node,
the sensor application can be executed on top of Java virtual
machines. The Sensorlet emulation library and the sensor

node emulator can work together to emulate the execution
environment on sensors. The readings of sensing modules
in sensor node emulator can be obtained from existing files
(such as reading logs) or from random number generators.
In addition, sensor node emulator also emulates the network
transmission among sensor nodes by UDP. Thus, in devel-
opment phase, programmers can implement and debug sen-
sor applications in resource-rich platforms such PC. These
designs make programming sensor applications very similar
to programming in simplified Java with more constraints.

3.2.2 Deployment Phase

After the sensor application has been implemented and
tested in development phase, the development process steps
into deployment phase. In deployment phase, the bytecodes
of the sensor application, TinyJVM and TinyOS are com-
piled into one image and the image is then written to the
sensor node. When TinyOS is booted, it invokes the ini-
tialization function of TinyJVM and then asks TinyJVM to
interpret the bytecodes of the sensor application.

4 An llustrative Example

In this section, we take BlinkApp mentioned above as an
example application. The TinyJava version of BlinkApp is
below.

import Sensorlet.*;
public class BlinkApp extends Sensorlet
implements TimerListener {

public static void main(String[] argv) {

new BlinkAppQ);

}

BlinkApp() {
Sensorlet.Timer [0] .setup(1000, true);
Sensorlet.Timer [0] .addTimerListener (this);
Sensorlet.Timer[0] .start();

}

public void fired() {

Sensorlet.LED[2] .toggle();

}

¥

The constructor of BlinkApp sets up the timer to be fired
with period 1000 ms by invoking setup and sets up the
instance of BlinkApp as the listener of the timer by func-
tion addTimerListener. Hence, BlinkApp should imple-
ment interface TimerListener. When BlinkApp is exe-
cuted in sensor node emulator, the Sensorlet emulation
library will configure the sensor node emulator to fire the

Figure 3. A screenshot of sensor node emu-
lator

[Version | ROM [RAM |
TinyJava | 5558 bytes | 992 bytes
nesC 2680 bytes | 41 bytes

Table 1. Memory consumption

timer with period 1000 ms. Each time the timer is fired,
function fired is called to toggle the third LED of the sen-
sor node. Thus, the LED icon of the sensor node emulator
will blink with period 2000 ms. A screenshot of the sensor
node emulator is shown in Figure 3.

We also build the nesC version and the TinyJava version
of BlinkApp to sensor nodes and their footprints in ROM
and RAM are listed in Table 1. Due to the overhead of the
virtual machine, the memory consumption of the TinyJava
version is higher than the nesC version. This is an inherent
cost of virtual machine-based programming environments
and is a necessary cost to facilitate code update in TinyOS.

5 Future Work

The implementation of the proposed programming en-
vironment is still in progress. Currently, we have fin-
ished the implementation of the LED and Timer modules in
TinyJVM, sensor node emulator, Sensorlet and the emu-
lation library of Sensorlet. Other modules are still under
development. Our future work is as follows.

e Implement other modules such as sensing module and
network transmitter.

e Optimize TinyJVM.

We will try to optimize TinyJVM to reduce its foot-
print in ROM and RAM. We will also consider to em-
ploy some techniques to speedup the performance of
interpretation.

e Compact .class files.

According to [5] and [8], method bytecodes occupy
only 20% of an average .class file, and the constant

pool is a good target for size reduction. We will try
to remove some unused information in . class files to
reduce their sizes.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A Survey on Sensor Networks. IEEE Com-
munications Magazine, August 2002.

[2] C.-C. Han, R. Rengaswamy, R. Shea, and M. Srivas-
tava. Sensor Network Software Update Management:

A Survey. Internation Journal of Network Manage-
ment, July 2005.

[3] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and
M. Srivastava. SOS: A Dynamic Operating System for
Sensor Networks. In Proceedings of the 3rd ACM Inter-
national Conference on Mobile Systems, Applications,
And Services, June 2005.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System Architecture Directions for Net-
work Sensors. In Proceedings of the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[5] J. Koshy and R. Pandey. VM*: Synthesizing Scalable
Runtime Environments for Sensor Networks. In Pro-
ceedings of the 3rd ACM Conference on Embedded Net-
worked Sensor Systems, Novemver 2005.

[6] P. Levis and D. Culler. Mate: A Tiny Virtual Machine
for Sensor Networks. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, October
2002.

[7]1 P. Levis, D. Gay, and D. Culler. Active Sensor Net-
works. In Proceedings of the 2nd USENIX/ACM Sym-

posium on Networked Systems Design and Implementa-
tion, May 2005.

[8] W. Pugh. Compresing Java Class Files. In Proceedings
of the ACM International Conference on Programming
Language Design and Implementation, May 1999.

