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Abstract. We identify and explore in this paper an important phenomenon that the
power-law relationship appears in the distribution of itemset supports. Characterizing
such a relationship will benefit many applications such as providing the direction of
tuning the performance of the frequent-itemset mining. Nevertheless, due to the explo-
sive number of itemsets, it will be prohibitively expensive to retrieve characteristics
of the power-law relationship in the distribution of itemset supports. As such, we also
propose in this paper a valid and cost-effective algorithm, called algorithm PPL, to
extract characteristics of the distribution without the need of discovering all itemsets
in advance. Experimental results demonstrate that algorithm PPL is able to efficiently
extract the characteristics of the power-law relationship with high accuracy. In addi-
tion, while applying algorithm PPL prior to discover approximate frequent itemsets, a
desired result can be effectively obtained, showing its prominent advantage of being an
important pre-processing means for mining applications.

1 Introduction

The importance of mining frequent itemsets has been recognized in various applications, in-
cluding web log mining, DNA sequence mining, frequent episodes mining, periodic patterns,
to name a few [11]. Due to the data-driven nature of mining algorithms, it is believed in the
literature that the parameter tuning of the designed algorithm is usually requested in order
to achieve the better result on the targeted applications. It is beyond dispute that the deeper
knowledge about the characteristics of your data will lead to the better execution efficiency
and the better interpretation of the mining result. As such, a mechanism to precisely estimate
the data characteristics is usually deemed as an important pre-processing means for mining
applications.

Recent research advances in frequent-itemset mining algorithms are thus in the direction
of discovering characteristics of real datasets. For example, the works in [9] and [18] both
seek the relationship between different itemset lengths in the targeted dataset. Such relation-
ships can be further utilized to control the mining process [9], or to generate the realistic
synthetic datasets for the system parameter tuning [18].

To provide better understanding on real datasets, we in this paper investigate the more
important characteristic in real datasets, named the itemset support distribution. The itemset
support distribution refers to the distribution of the count of itemsets versus the itemset
support, where an itemset complies with the definition in [1]. Explicitly, we shall study
the relationship between the value of support, say 0.01, and the number of itemsets having
the support 0.01 in the dataset, as the curve illustrated in Figure 1. The itemset support
distribution, which is indeed a kind of the probability density function, will state the degree
of the cohesion between different items in the dataset. To the best of our knowledge, this
fundamental question has not been formally addressed.
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Fig. 1. The illustration of the itemset support distribution and the comparison between false positives
and false negatives in the frequency-approximation applications.

Inspired by the power-law relationship observed in many distributions of single words
(users, web pages) [3][26], it is important to examine whether the itemset support distrib-
ution also follows the power-law relationship. From observations on various retail datasets
and as validated by our empirical studies later, it is amazingly found that the power-law rela-
tionship indeed also appears in the itemset support distribution and we can characterize that
by the Zipf distribution [26].

However, to find the parameters characterizing the itemset support distribution will be
more challenging than to find the parameters in the distribution of single items since all
itemsets need to be retrieved. The extremely large time and memory consumption cannot be
avoided due to the itemset combinational explosion. Note that the costly process will dras-
tically decrease the practicability of knowing the characteristics of the itemset support dis-
tribution. To remedy this, we also propose in this paper a valid and cost-effective algorithm,
called algorithm PPL (standing for Predict the Power-Law relationship), to correctly esti-
mate the parameters of the itemset support distribution from a sample dataset while avoiding
the need of generating all itemsets. As shown in our empirical studies, algorithm PPL is able
to efficiently and precisely extract the characteristics of the power-law relationship. Hence
algorithm PPL can be utilized as an excellent pre-processing step for extensive applications
of mining frequent patterns.

1.1 Motiving Applications
We in the following review several applications which attract a lot of research attention, and
comment the advantage of utilizing algorithm PPL as their pre-processing step.
Frequency approximation over data streams: Recent advances in streaming research recog-
nize the importance of frequency approximation [7][14][15][22]. Among them, as the as-
sumption that the support distribution of single items following the Zipf distribution, the
work in [15] devised algorithm Space-Saving, to compute top-k single items with the mem-
ory bound equal to min(|A|,
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the database, � is the error parameter1, and θ is the parameter of the Zipf distribution. In
fact, while executing algorithm PPL in advance, algorithm Space-Saving can be further ex-
tended to approximately retrieve top-k frequent itemsets over data streams, and the appropri-
ate memory size, depending on the parameter θ identified by PPL, can be assigned prior to
the execution of algorithm Space-Saving. It will benefit the efficient implementation. For ex-
ample, since the memory to maintain itemsets can be previously allocated, we can implement

1 � is used to ensure that no item whose true frequency is less then (s− �)N will be output, where s
denotes the minimum support and N is the number of tuples in the database.



the algorithm by maintaining itemsets in an array-like structure as opposed to the dynamic
linked list-like structure, to pursue the higher execution efficiency (note that as pointed out in
[10], the dynamic data structure will in general lead to poor efficiency due to its poor spatial
locality and poor temporal locality).
False positives versus false negatives: As pointed out in [23], a challenging issue of the
frequency approximation over data streams arises from the choice between false positives or
false negatives. Specifically, the work in [14] allows false positives, i.e., allowing to identify
non-frequent itemsets as frequent ones. For reducing the memory consumption, the authors
of [23] suggest to allow false negatives, i.e., allowing to miss some frequent itemsets without
incurring any false positive. In practice, the result of our observation in the itemset support
distribution will support the argument that allowing false positives will incur more inaccurate
itemsets (non-frequent itemsets being identified as frequent) as compared to that incurred by
allowing false negatives (frequent itemsets being identified as non-frequent). It results from
that the itemset support distribution follows the power-law relationship, and the number of
small-support itemsets will be larger than the number of high-support itemsets. In addition,
while knowing the parameters of the power-law relationship in the itemset support distribu-
tion in advance, we will be able to approximately estimate the expected number of inaccurate
itemsets incurred either as false positives or as false negatives, as illustrated in Figure 1. Thus
the error parameter � in the work of [14] or the parameter δ in the work of [23] (in light of
the Chernoff bound, δ can be used to derive the value of �) can be appropriately determined
(not just being fully left unsolved to users) to balance the resulting accuracy and the memory
consumption.
Performance tuning of mining frequent patterns: As pointed out in [16], the effective-
ness of many heuristic optimizations for mining frequent itemsets usually relies on the data
characteristics, particularly depending on the sparsity/density of the targeted data. Once the
data is long and dense, i.e., the itemset support distribution is highly skewed, depth-first ap-
proaches such as FP-growth [12] will be more powerful than breath-first approaches such
as DHP [17]. Oppositely, algorithm DHP will be more suitable in the presence of sparse
data. Hence early identifying the parameters of the itemset support distribution (to indicate
the level of data sparsity) by algorithm PPL will benefit the strategy decision for the best
performance of mining frequent patterns.
Determine the appropriate minimum support: Another application of knowing the itemset
support distribution in advance lies in the help to the determination of the minimum support.
As we know, setting the minimum support is quite subtle since a small minimum support
may lead to an extremely large size of frequent itemsets. Oppositely, only a few itemsets
may be generated when the minimum support is large. In order to obtain a desired result,
users in general need to tune the minimum support over a wide range, which is very time-
consuming and indeed is a serious problem for the applicability of mining frequent itemsets.
While executing algorithm PPL as a pre-processing step, we can estimate the number of
itemsets with support exceeding a specified minimum supports, which will help users to
decide the appropriate minimum support.
Synthetic data generator: Formally, using synthetic data is the common way to perform
the sensitivity analysis of a proposed algorithm, and previous works of the association-rule
mining usually observe their results by utilizing the synthetic data generator provided in [1].
Recently, the work in [18] seeks the relationship between different itemset lengths in the
targeted dataset, to generate more realistic synthetic datasets. Going beyond this, we com-
ment that, a real dataset is able to be better characterized by also giving its itemset support
distribution. Therefore, for better capturing the characteristics of the real datasets for the
targeted application, the generation of the synthetic transactional datasets by the generators



[1][18] can be further improved by considering the characteristics in their itemset support
distributions.
1.2 Our Contributions
Our contributions is to solidly study issues related to the power-law relationship in the itemset
support distribution. More precisely:

(1) We first formalize the problem of the itemset support distribution and explore the
important phenomenon that the distribution follows the Zipf distribution.

(2) We present a valid and cost-effective algorithm, called algorithm PPL, to identify
characteristics of the itemset support distribution without the need of discovering all itemsets
in advance.

(3) We complement our analytical and algorithmic results by a thorough empirical study
on real data and demonstrate the prominent advantage of algorithm PPL to be an important
pre-processing means for mining applications.

We then individually present those issues in the following sections.

2 Identify the Power-Law Relationship in the Itemset Support
Distribution

2.1 Review of the Power-Law Relationship
Since the first observation of the power-law relationship in [26], which discovered the fre-
quency of the nth most-frequently-used word in the natural language is approximately in-
versely proportional to n, the power-law relationship has been successively discovered in
many real world data, including WWW characteristics, Internet topology, to name a few2.
Specifically, the power-law relationship can be characterized by several mathematical mod-
els, including the well-known Zipf distribution and its variations such as the DGX distribu-
tion [2]. Among them, the Zipf distribution is the most widely used form due to its simplicity,
as shown by fi ∝

³
1/rφi

´
, where fi denotes the frequency of words (users, events, ...) that

are ranked as the rthi most frequent words (users, events, ...) in the dataset, and φ is the
parameter characterizing the skewness of the distribution. In practice, the Zipf distribution
can be further extended to characterize the "count-frequency" relationship, which is stated
as fi ∝

³
1/cφi

´
, where fi is the count of distinct words that appear ci times in the dataset

[2]. Without loss of generality, we will discuss the "count-frequency" relationship in the se-
quel because the "count-frequency" relationship can be deemed as a kind of the probability
density function, which is more desirable.

In essence, the Zipf distribution is often demonstrated by scatterplotting the data with the
x axis being log(ci) and the y axis being log(fi). The distribution will be deemed following
the power-law relationship if the points in the log-log plot are close to a single straight line,
as shown by

log(fi) = θ log(ci) +Ω. (1)
In particular, the slope θ and the Y -intercept Ω in Eq. 1 can be estimated by the linear
regression3:

θ =

Pk
i=1 log(ci) log(fi)−

( k
i=1 log(ci))×(

k
i=1 log(fi))

kPk
i=1 log

2(ci)− (
k
i=1 log(ci))

2

k

, (2)

2 See http://www.nslij-genetics.org/wli/zipf/ for the power-law references from different domains.
3 Other measurements to estimate the parameters of the power-law distribution include the non-linear

regression and the maximum likelihood estimation. Among them, the linear regression is the most
widely utilized approach due to its feasibility and simplicity.



Ω =

Pk
i=1 log(fi)

k
− θ ×

Pk
i=1 log(ci)

k
, (3)

where k denotes the number of points in the log-log plot. Note that the linear regression
technique is a method based on the least-square errors. The correlation coefficient4 (or said
the goodness of fit of the regression line) can be utilized to examine whether those points in
the log-log plot exactly lie in the line log(fi) = θ log(ci) +Ω or not [19]. Due to space lim-
itations, we only describe the Zipf distribution here. For details of the regression technique,
which will be out of scope for this paper, the reader is asked to follow the pointers in some
well-known materials such as [19].

Note that previous observations mostly concentrate on the power-law relationship in the
distribution consisting of single events, e.g., single words or single items [3][26]. Naturally,
it is important to investigate whether the prevalent power-law relationship also appears in
the support distribution of units consisting of a set of words or items. Such cases were first
investigated in the computational linguistics literature [8], where the power-law relationship
of N-grams had been demonstrated (N-grams denote phrases consisting of N consecutive
words). Their studies show that the "count-frequency" relationship of N-grams (with a fixed
N ) follows the Zipf distribution.

2.2 Observations on the Itemset Support Distribution
In this paper, our first goal is to investigate whether the power-law relationship appears in the
distribution of itemset supports in real datasets, where an itemset complies with the definition
in [1]. Specifically, let I = {x1, x2, ..., xm} be a set of distinct items in the dataset. A set
X ⊆ I with k = |X| is called a k-itemset or simply an itemset. Let the support of an itemset
X in the database D be the fraction of transactions in D that contain X5. We would like to
investigate whether the support distribution of itemsets follows the Zipf distribution, as the
form shown by

log(fi) = θ log(si) +Ω, (4)

where si denotes the support of itemsets and fi denotes the frequency of itemsets whose sup-
ports are si. Note that the "support-frequency" relationship in Eq. 4 is physically equivalent
to the "count-frequency" relationship since the "count" presents the absolute support count.
For interest of space, we in this paper concentrate on the investigation of retail datasets,
which are skewed and sparse, and most association-rule discovery algorithms were designed
for such types of data [25] (interested readers can find observations on other types of real
datasets in http://arbor.ee.ntu.edu.tw/~doug/paper/PPL/index.html).

Dataset Is |D| Tmax Tavg
BMS-POS 1,657 515,596 164 6.5

Retail 16,470 88,162 76 10.3
3C_chain 130,108 8,000,000 87 5.4

Book 12,082 100,000 13 2.3
Table 1: Parameters of real datasets

To examine whether the support distribution of itemsets in retail datasets follows the Zipf
distribution, four real datasets are investigated in this paper, including two well-known retail

4 For convenience of discussion, we will postpone the formula of the correlation coefficient to Eq. 5
in Section 3.3.

5 The support is considered as the relative occurrence frequency. Note that it is defined in some
literature as the absolute one, i.e., the occurrence frequency in the database.
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(c) 3C_chain (d) Book
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Fig. 2. The support distribution of four real datasets.

benchmark datasets6, and two transaction datasets from a 3C chain store and a large book
store in Taiwan. Those datasets are summarized in Table 1, where Is denotes the distinct
items in the dataset, |D| denotes the number of transactions, Tmax denotes the maximum
itemset length and Tavg denotes the average itemset length. Furthermore, we execute algo-
rithm FP-growth downloaded from Christian Borgelt’s website7 to obtain itemsets with their
supports. Since the number of all itemsets is extremely large (there are 2Is − 1 possible
itemsets at most), it is very difficult to discover all itemsets in a reasonable execution time.
For efficiency reasons, we did not retrieve all itemsets in the BMS-POS and the 3C_chain
datasets, but instead retrieve itemsets whose support counts exceed 30, where 30 is a suffi-
cient number in the statistical sense [19].

The observations are shown in Figure 2, where the curve of the original support distrib-
ution presents the log-log relationship of the itemset support versus the number of itemsets
with the corresponding support (the curve of the quantized support distribution will be dis-
cussed in the next section). As can be seen, the log-log plot is very Zipf-like, meaning that
the power-law relationship indeed appears in the distribution of the itemset support. In addi-
tion, the "top-concavity"8 phenomenon, which is prevalent in the distribution of single items
[2][26], is insignificant in the distribution of itemset supports. As such, the Zipf distribution
is enough to correctly characterize the power-law relationship in the itemset support distri-
bution. We accordingly demonstrate the fact that the power-law relationship appears in the
itemset support distribution.

6 Downloaded from the website, http://fimi.cs.helsinki.fi/data/, of the ICDM workshop on Frequent
Itemset Mining, 2003.

7 The URL is http://fuzzy.cs.uni-magdeburg.de/~borgelt/fpgrowth.html.
8 The "top concavity" phenomenon refers to that the top part of the log-log curve tilts vertically (with

relatively concave shapes).
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Fig. 3. The support distribution after sampling (the BMS-POS dataset).

3 Design of Algorithm PPL

As mentioned above, recognizing characteristics of the support distribution will benefit the
proper mining system design. However, although we have demonstrated in Section 2 that
the power-law relationship appears in the support distribution, it is prohibitively expensive
to find all itemsets and further estimate the characteristics of the Zipf distribution, i.e., the
slope θ and the Y -intercept Ω in Eqs. 2 and 3. The extremely large time consumption results
from the expensive process to retrieve all itemsets without the support pruning. An efficient
approach is still demanded to correctly estimate those parameters.

As a consequence, we propose in this paper a valid and cost-effective solution, named
PPL (standing for Predict the Power-Law relationship), to estimate the parameters of the
power-law relationship in the itemset support distribution. Since the time consumption is
dominated by the process of retrieving all itemsets in the large database, algorithm PPL
utilizes two approaches to improve the efficiency. The first one is to utilize sampling tech-
niques to retrieve itemsets [20]. The other approach is to retrieve only the set of high-support
itemsets with the help of the support pruning techniques [17] so as to efficiently discover
the parameters of the power-law relationship from the partial set of itemsets. Specifically,
to fully utilize the capability of these two approaches, algorithm PPL is devised as a three-
phases approach: (1) sampling; (2) obtaining high-support itemsets; (3) estimating the para-
meters of the power-law relationship by the linear regression from the high-support itemsets
discovered in the sample.

However, while pursuing the efficiency, algorithm PPL will face three challenges:
(1) The support distribution obtained in a sample will deviate from the support distrib-

ution in the original database. Note that after sampling, the supports of many low-support
itemsets will become higher, and vice versa [24]. Unfortunately, as pointed out in [24], the
number of itemsets with a specified support is likely to increase after sampling due to the
large amount of transfers from low-support itemsets (the number of low-support itemsets is
large than the number of high-support itemsets). As shown in our empirical studies in Figure
3(a), where the support distributions obtained in the original dataset and in a random sample
with 20,000 tuples are included, it can be apparently observed that the support distribution in
the sample deviates from that in the original dataset. Indeed, due to randomness, we cannot
estimate the deviation between the support distribution in a sample and that in the original
dataset. Thus after sampling, it will be difficult to correctly predict the characteristics of the
support distribution in the original dataset.

(2) It is very difficult to determine the appropriate minimum support without prior knowl-
edge. Note that PPL will only discover high-support itemsets. However, we will not know
how to determine the subtle minimum support. A large minimum support will result in too
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few itemsets to provide the sufficient information to correctly estimate the parameters of the
Zipf distribution. Oppositely, the small minimum support will generate a lot of itemsets, thus
resulting in inefficiency.

(3) It is difficult to obtain the desired regression line due to the support fluctuation on
high-support itemsets. Note that the Zipf distribution can be characterized by the regression
line. However, consider the observation in Figure 4, where a solid straight lines represents
the regression line over all points with respect to high supports, and the dotted lines show the
envelope of the support fluctuation. As can be seen, points with respect to high supports do
not exactly follow the Zipf distribution, and the support distribution of these points has the
large support fluctuation. It will incur the large least-square errors, and the regression line
over points with respect to high supports may deviate from the desired regression line9.

To overcome those challenges, several novel mechanisms will be devised in algorithm
PPL. In the following, we perform step-by-step analysis to discuss the details.

3.1 Phase I: Sampling
The goal of Phase I is to select a sample from the original dataset. Note that as mentioned
in the first challenge described above, the support distribution in a sample will deviate from
that in the original dataset, and the deviation is unpredictable. In fact, this phenomenon can
be significantly reduced in the quantized support distribution, which will be obtained by
the histogram technique [13]. Explicitly, all itemsets can be aggregated by means of the
traditional equi-width histogram and then obtain the quantized support distribution. We give
the formal definition of the quantized support distribution below.
Definition 1 (the Quantized Support Distribution): Given all points (si, fi) in the original
support distribution, where si denotes the support of itemsets and fi denotes the count of
itemsets whose supports are si. After aggregating those points by means of the equi-width
histogram, a set of new points ( bsj , bfj) will be obtained, where bsj denotes the representative
value (the default is the median value) of the support range corresponding to the jth bucket
of the histogram, and bfj denotes the count of itemsets with supports falling in the jth bucket.
The quantized support distribution is the distribution consisting of all points (bsj , bfj).

The argument that the quantized support distribution is able to reduce the influence of
support-deviation follows the observation below:
Observation: Suppose that we repeatedly generate a lot of samples of the same sample size.
The distribution of the support of X among these samples, i.e., the sampling distribution of

9 In [3], the slope of the log-log plot is obtained by using the linear regression, excluding the rightmost
100 points to avoid the serious effect of the fluctuation. However, such an approach will fail in our
cases since we may only have the rightmost 100 points which are summarized from high support
itemsets
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the support of X, will approximately follow a normal distribution with mean equal to the
support of X in the entire dataset [6]. In addition, the variance of the sampling distribution
depends on the sample size [20]. As shown in Figure 5(a), the sampling distribution of an
itemset with support equal to si in the entire database indicates that the support will be likely
larger than si with the probability equal to the shadow region. As a result, a percentage of
itemsets in the sample will have supports inconsistent with the corresponding support in the
entire dataset. Accordingly, the itemset support distribution after sampling will deviate from
the itemset support distribution in the entire dataset. This argument is demonstrated in Figure
3(a).

On the other hand, consider the case of the quantized support distribution. As shown in
Figure 5(b), the error probability, i.e., the probability of itemsets with supports in bucket j
changing to bucket j + 1 after sampling, will be relatively small as compared to the error
probability illustrated in Figure 5(a). The reason lies in that the supports of most itemsets
are likely to remain in the same support bucket after sampling. In other words, only itemsets
with supports in the margin of a bucket are likely to have the support not falling in the same
bucket after sampling. This argument is demonstrated in Figure 3(b), where the quantized
support distributions obtained in the original dataset and in the sample with 20,000 tuples
are shown and the parameter w denotes the number of aggregated points. It is clear to see
that the quantized support distribution in a sample will be close to the quantized support
distribution in the original dataset. ¥

Following the observation, we comment that the quantized support distribution will be
insensitive to the support-deviation, meaning that the quantized support distribution in the
sample will be close to the quantized support distribution in the entire dataset. As a result,
we will aim to obtain the quantized support distribution in the sample.

Another problem, as shown in Figure 2, is that the quantized support distribution still
deviates from the original support distribution. Importantly, assuming that the original sup-
port distribution approximately follows the Zipf distribution, Proposition 1 below indicates
that the quantized support distribution also has the same slope as the slope in the original
support distribution and has a "predictable" drift of the Y-intercept.
Proposition 1: Suppose that the itemset support distribution follows the Zipf distribution so
that we have log(fi) ≈ θ log(si) +Ω. Assuming that there are w distinct points in the orig-
inal support distribution being aggregated as a point in the quantized support distribution,
we will have an approximate Zipf distribution as the form

log( bfk) ≈ θ log(bsk) +Ω + log (w) ,

in the quantized support distribution, where bsk denotes the representative of the quantized
support in the kth bucket and bfk denotes the count of itemsets whose supports fall in the kth
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bucket. As such, the log-log plot in the quantized support distribution has the slop θ and the
Y-intercept Ω + log (w).
Proof: Note that we have eΩ × sθi,j ≈ fi,j for the point (si,j ,fi,j) in the original support
distribution since it follows the Zipf distribution. Suppose that |D| is the database size. Let
points (sk,1,fk,1), (sk,2,fk,2), ..., (sk,w,fk,w) be summarized as the kth point (bsk, bfk) in the
quantized support distribution. We have bfk =Pw

j=1 fk,j , and

bsk = sk,1 + sk,w
2

=
sk,1 +

³
sk,1 +

w
|D|

´
2

= sk,1 +
w

2× |D| .

Since w
|D| is in general much weak as compared to sk,1, we have

sθk,jbsθk =

Ã
sk,1 +

j
|D|

sk,1 +
w

2×|D|

!θ

≈ 1.

Therefore sθk,j , for 1 ≤ j ≤ w, will be approximately equal to bsθk, which yields that

bfk =Xw

j=1
fk,j ≈ eΩ ×

Xw

j=1
bsθk = eΩ × w × bsθk,

log( bfk) ≈ θ log(bsk) +Ω + log (w) . ¥

Proposition 1 indicates that the slope θ remains in the quantized support distribution,
and the Y-intercept will be changed to Ω + log (w). Figure 2 demonstrates Proposition 1,
where we can see that, for high-support points, the slope of the quantized support distribution
(w = 10 or 100) is equal to that of the quantized support distribution without sampling. As
a result, the side-effect of sampling is overcome.

Based on the foregoing, the process to overcome problems incurred by sampling, as
shown in Figure 6, will be summarized as:
(1) Obtain the characteristics of the quantized support distribution in the sample.
(2) The characteristics of the quantized support distribution in the whole dataset is expected
equal to that in the sample.
(3) In light of Proposition 1, obtain the characteristics of the original itemset support distri-
bution.

Note that while step 1 is completed, steps 2 and 3 can be straightforwardly executed with
the mathematical manipulation mentioned above. How to precisely achieve step 1 will be
discussed in Section 3.2 and Section 3.3.

The remaining issue in this phase is, what is the appropriate sample size to obtain the
quantized support distribution in the sample which is consistent with that in the entire data-
base. Formally, the level of consistency depends on the variance of the sampling distribution
of the support, and the variance relies on the sample size [20]. A small sample size will lead
to a large variance as compared to the variance in a large sample size. As pointed out in pre-
vious works of sampling for mining association rules, a sample size equal to 20,000 [20] or a



sample rate equal to 10% [24], will be sufficient to generate the accurate set of frequent item-
sets. We argue that the sample size 20,000 or 10% is also sufficient to generate the accurate
quantized support distribution by following several points: (1) the complexity to generate
the accurate quantized support distribution is analogous to the complexity to generate accu-
rate frequent itemsets; (2) in Phase II only high-support itemsets will be generated, whose
supports, as indicated in [20], can be easily preserved in samples as compared to supports of
low-support itemsets; (3) the discrepancy between counts of itemsets within a bucket in the
sample and in the entire dataset will be unapparent in the log-log scale (the characteristics of
the power-law relationship is estimated in the log-log scale); (4) the technique in Phase III
is specifically designed to be robust to the inconsistency between quantized support distrib-
utions in the sample and in the entire dataset.

As simultaneously considering execution efficiency and above points, we therefore set
the sample size as 20,000 in default since the sample can be easily executed and maintained
in main memory. The discreet users can set the size as 10% of the entire size, as the sug-
gestion in [24]. We will also investigate the issue of the sample size in our empirical studies
later.

3.2 Phase II: Discover High-Support Itemsets in the Sample
In this phase, the high-support itemsets in the sample will be discovered. Without prior
knowledge to determine the appropriate minimum support, we resort to the technique of
"discover top-k itemsets" [4][21] instead of "discover itemsets with the specified minimum
support," where top-k itemsets refer to the k most frequent itemsets in the dataset. In prac-
tice, the size of k can be easily specified a priori. As will be shown in our experimental
results, k equal to 5,000 will suffice to correctly estimate the parameters of the power-law
relationship in most cases. As such we set k as 5,000 in default, where top 5,000 itemsets can
be efficiently retrieved by the state-of-the-art algorithm for mining top-k frequent itemsets.

Previous works to discover top-k frequent itemsets include [4][21]. Formally, those works
shoot for discovering top-k itemsets with specified constraints such as discovering closed
itemsets [4]. Therefore directly extending these solutions to discover top-k itemsets (with-
out those specific constraints) will lead to inefficiency since their pruning techniques will be
infeasible. In view of this, we propose an efficient algorithm, called algorithm MTK, to ef-
ficiently retrieve top-k itemsets without such constraints while also guaranteeing the bound
of the memory consumption. For interest of space, the details of algorithm MTK are not
described in this paper, and interested readers can refer to [5]10 for the details.

3.3 Phase III: Characterize the Power-Law Relationship
The parameters of the Zipf distribution will be estimated in this phase. Suppose that {X1,
..., Xk} is the set of top-k itemsets which are obtained in Phase II. At the beginning of
this phase, we will aggregate these itemsets by means of histogram with the support bucket
width equal to w

|S| , where |S| is the size of the sample dataset and w is the number of distinct
and consecutive support counts which will be aggregated into the same bucket. Note that
the default of w is 10 in this paper since empirically w = 10 is able to preserve the slope
of the itemset support distribution, as shown in Figure 2. As such, top-k itemsets will be
aggregated into a set of points Hk ={

³bs1, bf1´,
³bs2, bf2´ , ...,

³bsz, bfz´} sorted by bsi, wherebsi < bsj iff i < j. We therefore can characterize the power-law relationship by performing
the regression analysis over the partial quantized support distribution which are summarized
from top-k itemsets discovered in the sample.

10 This technical report can be downloaded in http://arbor.ee.ntu.edu.tw/~doug/paper/PPL/mtk.pdf
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Fig. 7. The illustration of the best fit regression line.

However, as pointed out as the third challenge described in the beginning of Section 3,
directly executing the regression analysis over all points in Hk will result in the incorrect
estimation due to the support fluctuation on high support itemsets. Therefore the problem
arises: "how to select an appropriate subset of points from Hk to correctly estimate the
parameters of the Zipf distribution?" Recall the observation in Figure 4. Points with respect
to very high-supports usually do not accurately follow the Zipf distribution. On the other
hand, without loss of generality, points with respect to low supports usually follow the Zipf
distribution. As such, one may intuitively claim a naive approach as follows.

Naive Approach: It is intuitive to suggest the regression line over first several points in Hk

since they are sufficient to correctly fit the power-law relationship. For example, we may
estimate the power-law relationship by performing the regression analysis over the first five
points in Hk, i.e., {

³bs1, bf1´, ...,
³bs5, bf5´}. Nevertheless, we indeed did not know how many

points is sufficient to obtain the desired regression line. Thus we have to examine all possible
regression lines, and then select the one with the best correlation coefficient since it will have
the best power to explain the log-log relationship in the Zipf distribution. ¥

However, such an approach suffers from the problem that the best correlation coefficient
does not imply the best fit of the Zipf distribution. In particular, sometimes few points will
result in the best correlation coefficient, but the regression line could be bias to outlier points
[19]. In addition, sampling in Phase I may incur noise, which will also affect the result of the
linear regression. As a result, we devise a novel solution, which is inspired from the training
and testing scenario in supervised learning [11], to correctly estimate the parameters of the
Zipf distribution from Hk.

Minimizing Testing Error Approach: Suppose that Hk is divided into two distinct and
consecutive subsets of points, i.e., the training set Tr and the testing set Te, where Te =n³bs1, bf1´ , ...,³bsm, bfm´o and Tr =

n³bsm+1, bfm+1´ , ...,³bsz, bfz´o. Here m is the para-
meter to adjust the size of the testing set and m < z. Consider the illustration in Figure 7,
where each point in Te is called a testing point. Our goal is to find the best fit regression
line from Tr so that all testing points in Te can well lie in the line. Formally, we give the
definition of the best fit regression line in the following.

Definition 2 (Best Fit Regression Line): Given the training set Tr and the testing set Te.
The best fit regression line, denoted by Rg(bsi) = bθg log(bsi) + bΩg, will satisfy:

(1) Rg(bsi) = bθg log(bsi) + bΩg is the regression line over the first g points in Tr, i.e.,n³bsm+1, bfm+1´ , ...,³bsg, bfg´o, where m+ 1 ≤ g ≤ z.
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Procedure: Best_fit
Input:

Top-k itemsets, Xi, where i  1, ..., k.
The number of aggregated support counts w.
The number of points in Te, i.e., |Te|.
The correlation coefficient threshold .

Output:

The best fit slope

g, and the best fit Y-intercept g

1. Let f i  0, where i  0, ..., ⌈ 1
Δ ⌉;

2. for i  1 to k;
3. f  f  1, where   supXi

Δ and supXi denotes the support of Xi;
4. find , where f  minif i≠ 0;
5. for f    |Te|1 to ⌈ 1

Δ ⌉ begin
6. [f ,f, rf]linear_reglogsm, logfm, where   |Te|1 ≤ m ≤ f;

7. Varf  ∑j1
m f logsj− logf j  f

2
;

8. end
9. find g, where g  arg minuVaru, subject to ru ≤ ;
10. return g,g with respect to g;

Fig. 8. The implementation of algorithm PPL.

(2) The correlation coefficient, rg, over the data points
n³bsm+1, bfm+1´ , ...,³bsg, bfg´o

is smaller than a pre-defined threshold δ. Note that,

rg =

Pg
i=m+1

Pg
j=m+1 (log(bsi)− us)

³
log( bfj)− uf

´
rXg

i=m+1
(log(bsi)− us)

2

rXg

j=m+1

³
log( bfj)− uf

´2 , (5)

where us and uf are the mean of log(bsi) and log( bfj), respectively.

(3) g = argminu
½Pm

j=1

³
Ru(bsj)− log( bfj)´2¾ , subject to the correlation coefficient

rf ≤ δ and m+ 1 ≤ u ≤ z.

The whole procedure to find the best fit regression line is outlined in Procedure Best_fit
in Figure 8(a), where the function linear_reg() will return three parameters, the intercept
Ω (see Eq. 3), the slope θ (see Eq. 2) and the correlation coefficient r. Specifically, the
correlation coefficient rg (a value between -1 and 1) can represent the level how those points
are explained by the regression line. The regression line will fit points better when rg → −1
since without loss of generality, bfi and bsi are negatively correlated. Statistically, it is believed
that rg ≤ −0.8 is sufficient to claim the regression line can explain these points [19]. Thus
δ is set as −0.8 in default. Note that criterion 3 in Definition 2 states that we desire the
regression line with the minimum testing error. It is worth mentioning that, algorithm PPL
will degenerate to the naive approach if there is no testing point in Te and simply choose
the regression line with the best correlation coefficient. For comparison purposes, we will
also show the result of the naive approach in our experimental results. Note that the best fit
regression line will be discovered in the quantized support distribution generated from top-k
itemsets in the sample. In light of Proposition 1, the slope and the Y-intercept in the original
itemset support distribution will be equal to bθg and bΩg − log(w), respectively.

We finally summarize the overall flow of algorithm PPL, as shown in Figure 8(b): (1)
sampling; (2) discover top-k frequent itemsets in the sample; (3) aggregate the support of
top-k itemsets by means of the equi-width histogram so as to obtain the partial quantized
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Fig. 9. The results of algorithm PPL.

support distribution; (4) perform Procedure Best_fit to obtain the characteristics of the quan-
tized support distribution in the sample; (5) identify the characteristics of the power-law
relationship in the itemset support distribution in the entire database according to Proposi-
tion 1.

4 Experimental Studies
4.1 Performance Studies of Algorithm PPL
The four real skewed datasets described in Table 1 are utilized in our experimental studies.
Since the goal to show the support distribution follows the Zipf distribution has been demon-
strated in Section 2, we in this section investigate whether algorithm PPL can efficiently and
correctly estimate the parameters of the power-law relationship in the itemset support dis-
tribution. The simulation is coded by C++ and performed on Windows XP in a 1.7GHz
IBM compatible PC with 512MB of memory. The default parameters in the experiments are:
(1) k = 5, 000 (top-k itemsets); (2) the number of aggregated support counts w = 10; (3)
the number of points in the training set |Te| = 5; (4) the correlation coefficient threshold
δ = −0.8; (5) the sample size |S| = 20, 000.

We investigate whether algorithm PPL with the default parameters is able to correctly
characterize the power-law relationship in four real datasets. The results are presented in
Figure 9(a)~Figure 9(d), where the original support distributions and the best fit regression
lines obtained by algorithm PPL (with their slopes θ and Y-intercepts Ω) are shown. Note
that the best fit regression line is discovered in the quantized support distribution in the sam-
ple. As can be seen, the best fit regression line can perfectly characterize the Zipf distribution
in the four real datasets, showing the effectiveness of PPL.

Furthermore, the execution time is shown in Figure 11, where the execution time of
"Brute force approach" indicates the time to retrieve the original support distribution in Fig-
ure 2 by algorithm FP-growth. Indeed, the brute force approach can correctly determine
the parameters of the Zipf distribution by finding most of itemsets, but it will pay for the
extremely large time consumption. On the other hand, PPL can efficiently estimate the para-
meters of the power-law relationship by avoiding the expensive process to obtain all itemsets.
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Fig. 10. The qqplot results in BMS-POS with various δ.
Dataset Brute force approach Algorithm PPL Efficiency Gain
BMS-POS 632 sec 8 sec 79

Retail 1248 sec 5 sec 249.6
3C_chain 2547 sec 10 sec 254.7

Book 492 sec 3 sec 164

Fig. 11. The execution time of different approaches.

It is worth mentioning that the efficiency gain in Figure 11, which is calculated as the execu-
tion time of the brute force approach divided by the execution time of algorithm PPL, shows
that algorithm PPL is in orders of magnitude faster than the brute force approach.

Same as the experiments in [2], the quantitative analysis of algorithm PPL will be evalu-
ated by the traditional method of quantile-quantile plot (qqplot), as the one shown in Figure
10. The qqplot is used to compare the quantiles of two datasets. If the distributions of these
two datasets are similar, the qqplot will be linear and the slope will be close to one. As
such, we generate a synthetic support distribution according to the parameters estimated by
algorithm PPL, and then make a qqplot between the original support distribution and the
synthetic support distribution. Afterward, two important factors can be calculated: (1) the
slope of the qqplot; (2) the correlation coefficient of points in the qqplot. If both are close to
one, we can claim that the real distribution and the synthetic distribution are from the same
distribution [2], meaning that the regression line can perfectly represent the data distribution.

The qqplots on various correlation coefficient thresholds δ are shown in Figure 10, where
Figure 10(a) is the qqplot corresponding to the result of Figure 9(a). We can find that the qq-
plot in Figure 10(a) is close to linear, except points with respect to very low supports and
very high supports. Note that points with respect to high supports have been observed not
exactly following the power-law relationship and points with respect to low supports in the
BMS-POS dataset upwardly vary from the Zipf distribution, thus causing the deviation of a
few points. However, the slope and the correlation coefficient are very close to unity, indicat-
ing that the synthetic distribution can mostly correctly fit the real distribution. Furthermore,
when we increase the threshold δ, as shown in Figure 10(b), the estimated quality degrades,
showing the importance of the criterion 2 of the best fit regression line. Indeed, a regres-
sion line with the low correlation coefficient loses its effectiveness to estimate the power-law
relationship, even though it satisfies criterion 3, i.e., having the minimum testing error.

Due to space limitations, other qqplot results of four real datasets are summarized in
Figure 12. At first, we observe results with various |Te|. Note that the case |Te| = 0 can be
deemed as the naive approach discussed in Section 3.3. As can be seen, the naive approach
cannot correctly model the distribution since the correlation coefficient and the slope deviate
a lot from unity. On the other hand, |Te| = 5 (default cases) and |Te| = 10 both lead to
the desirable result. Moreover, the studies of various δ are also shown, and we can find that
δ = −0.8 (default cases) or−0.9 will result in the correlation coefficient and the slope close
to one. Note that without loss of generality, the results of |Te| = 0 and δ = −0.5 can be



Variant Parameters Corr. Coef. Slope Corr. Coef. Slope Corr. Coef. Slope Corr. Coef. Slope
Default 0.99 1.02 0.99 0.99 0.99 1.01 0.98 1.02
    =0 (naive) 0.89 0.73 0.83 0.82 0.91 0.83 0.87 0.93
    =10 0.99 0.98 0.98 0.96 0.98 1.01 0.99 1.02
  =-0.5 0.84 0.86 0.91 1.08 0.92 0.94 0.87 1.11
  =-0.9 0.99 1.01 0.99 1.02 0.97 1.06 0.98 1.03
    =0;   =-0.5 0.81 1.21 0.77 1.11 0.73 1.18 0.84 1.13
k=10,000 0.98 1.02 0.99 0.97 0.97 1.08 0.98 1.07
k=50,000 0.99 0.99 0.99 1.02 0.98 0.97 0.98 0.94
|S|=10,000 0.93 1.09 0.98 0.97 0.95 1.09 0.98 0.97
|S|=50,000 0.99 0.99 0.99 1.03 0.98 0.99 0.99 1.03
|S|=0.1|D| 0.99 1.03 0.93 1.13 0.99 0.98 0.91 0.94
|S|=0.2|D| 0.99 1.01 0.94 1.04 0.98 0.96 0.94 1.03
w=50 0.98 1.03 0.91 0.94 0.94 1.02 0.96 1.08
w=100 0.93 1.14 0.88 1.13 0.98 1.01 0.92 0.94

BMS-POS Retail 3C_chain Book




|Te |

|Te |
|Te |

Fig. 12. The qqplot results of four real datasets.

deemed as the case to obtain the regression line over all points from top-k itemsets. It can
be seen that the regression line over all points loses of its power to explain the real data
distribution. The above observations all demonstrate the effectiveness of algorithm PPL.

In addition, with the result of various k, we can conclude that the default k = 5, 000
is sufficient to obtain high quality results. Note that top-5000 itemsets can be efficiently
retrieved in the sample, indicating the efficiency and effectiveness of algorithm PPL. We
also investigate the influence of the sample size. Clearly, the result obtained in the sample
with the default size 20,000 is close to the result obtained in the large sample with size
equal to 0.2 × |D|, showing that the resulting quality is insensitive to the sample size if the
sample size is not arbitrarily small. Finally, we observe the result of various w. Note that
Proposition 1 will not hold when w is large. Thus it can be seen that w = 100 slightly
degrades the estimated quality of algorithm PPL. Since the goal of histogram in this paper
is to diminish the side-effect of sampling, we conclude that w = 10 is sufficient to achieve
this, and will give the excellent fit of the itemset support distribution.

4.2 Case Study: False Positive or False Negative of Frequent Itemsets
To better understand the advantage of knowing characteristics of the itemset support distri-
bution, we implement the Lossy-Counting based algorithm, denoted as BTS (Buffer-Trie-
SetGen), for mining approximate frequent itemsets over data streams [14], and apply algo-
rithm PPL as its pre-processing step.
Background Review: The one-pass algorithm, BTS, utilizes the concept of the �-deficient
synopsis to approximately maintain possible frequent itemsets, which contains a parameter
� to control the incorrect frequent itemsets incurred, as illustrated in Figure 1. Originally,
algorithm BTS preserves the recall of the output but sacrifices the precision by allowing
false positives, which yields that non-frequent itemsets whose supports fall in s − � and
s will be identified as frequent by BTS, where s denotes the minimum support. Given a
set of true frequent itemsets A and a set of obtained frequent itemsets B, the precision is
defined as |A∩B||B| , and another measurement of the quality, i.e., the recall, is defined as |A∩B||A| .
For comparison purposes, the work in [23] extends BTS to be a negative-positive oriented
algorithm by deliberately setting the minimum support as s + �. As such, the output will
contain only those frequent itemsets with support exceeding s but frequent itemsets between
s and s+ � may be not included in the output. Indeed, the precision in the negative positive
scheme will be equal to one while compromising the recall of the output.

As pointed out in [23], the memory consumption (to store the potential frequent itemsets)
and the resulting quality of algorithm BTS relies on the value of �. However, the decision of
� remains unsolved (the default in [14] is � = 0.1s, which is not proper in all situations).



s (%) Type
Apply
PPL

Desired
Recall

Desired
Precision

     (%)
Obtained

Recall
Obtained
Precision

False-Positive NO - - 0.01 1 0.73
False-Positive YES 1 0.8 0.008 1 0.82
False-Positive YES 1 0.9 0.002 1 0.91
False-Negative NO - - 0.01 0.96 1
False-Negative YES 0.9 1 0.014 0.92 1
False-Negative YES 0.8 1 0.019 0.83 1
False-Positive NO - - 0.005 1 0.68
False-Positive YES 1 0.8 0.0042 1 0.78
False-Positive YES 1 0.9 0.0038 1 0.93
False-Negative NO - - 0.005 0.82 1
False-Negative YES 0.9 1 0.004 0.89 1
False-Negative YES 0.8 1 0.005 0.82 1

0.1

0.05



Fig. 13. The result of applying algorithm PPL prior to algorithm BTS (in the BMS-POS dataset).

Formally, a large � may lead to a small memory consumption but have the acute accuracy
loss (either the recall or the precision). In contrast, a small � will result in a better model
accuracy at the cost of the memory consumption. It is indeed difficult to determine the proper
decision of � by users.
Suggested Enhancement: In practice, while users give the desired recall (in the case of false
negatives), denoted by r, or the desired precision (in the case of false positives), denoted by
p, of the result, algorithm PPL can enable the system to automatically determine the proper
�. The basic idea is to identify � as the minimum one which satisfies the user desired recall
and precision in such a way that we can have the desired model accuracy and the smallest
memory consumption with respect to the resulting accuracy. Specifically, after executing al-
gorithm PPL to obtain the slope θ and the Y -intercept Ω, the itemset support distribution, as
illustrated in Figure 1, can be plotted. Accordingly, we can perform the following procedure
prior to the execution of algorithm BTS:

(1) Calculate the approximate number of frequent itemsets, fs, with the given minimum
support s, i.e., fs =

R 1
s

¡
eΩ × xθ

¢
dx;

(2) If the false negative is permitted, identify � as argminα
n
fα
fs
≥ r

o
, where fα =R 1

s+α

¡
eΩ × xθ

¢
dx. If the false positive is permitted, identify � as argminβ

n
fβ
fs
≥ p

o
,

where fβ =
R 1
s−β

¡
eΩ × xθ

¢
dx.

Simulation Results: We then investigate whether algorithm PPL can help algorithm BTS to
obtain the desired quality. The results are shown in Figure 13, where the BMS-POS dataset
is applied. We specify the desired recall equal to one and the desired precision equal to 0.8
or 0.9 in the case of false positives. For the case of false negatives, the desired recall is
specified as 0.8 or 0.9 and the desired precision equal to one. For comparison purposes, we
also show the result of � = 0.1s, which is the default in [14][23]. In addition, two minimum
supports, 0.1 and 0.05, are given, where s = 0.1 and s = 0.05 leads to 122,449 and 582,752
frequent itemsets, respectively. As shown in Figure 13, it can be seen that the obtained recall
and precision is quite close to the desired one while we utilize algorithm PPL to estimate
the characteristics of the itemset support distribution, indicating the prominent advantage of
algorithm PPL. On the other hand, the default � = 0.1s indeed results in an undesired loss of
the quality in some cases. Interestingly, we can find that � = 0.1smay obtain the recall larger
than the desired one in the case of false negatives, which will inevitably lead to the large
memory consumption. In such cases, algorithm PPL can help to suggest a relatively large �,
which can obtain the desired recall while also leading to the smaller memory consumption.
In this experiment, we demonstrate the applicability of algorithm PPL to be a prominent
pre-processing means for data mining applications.



5 Conclusions
In this paper, we demonstrated that the power-law relationship appears in the distribution of
itemset supports in the real datasets. Discovering such a relationship is useful for many appli-
cations. To avoid the costly process of retrieving all itemsets, we proposed algorithm PPL to
efficiently extract characteristics of the power-law relationship. As shown in the experimen-
tal results, algorithm PPL is able to efficiently extract the characteristics of the power-law
relationship with high accuracy. In addition, while applying algorithm PPL prior to discover
approximate frequent itemsets, a subtle parameter can be appropriately determined, showing
its prominent advantage of being an important pre-processing means for mining applications.
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