EMU BOF

EAP-TLS Experiment Report

RFC 2716
Bernard Aboba
Microsoft
Thursday, November 10, 2005
IETF 64, Vancouver, CA

History of RFC 2716

- Goal: support for certificate-based mutual authentication within EAP over PPP
- -00 draft submitted to PPPEXT WG in October 1997
- http://www.watersprings.org/pub/id/draft-ietf-pppext-eaptls-00.txt
- Experimental RFC published in October 1999
- Why Experimental?
 - No previous EAP method had supported mutual authentication or key derivation
 - Few existing certificate or smartcard deployments

Basics of EAP-TLS

- EAP Type Code 13
- Server certificate REQUIRED (Section 3.1)
 - "If the EAP server is not resuming a previously established session, then it MUST include a TLS server_certificate handshake message, and a server_hello_done handshake message MUST be the last handshake message encapsulated in this EAP-Request packet."
- Client certificate RECOMMENDED (Section 3.1)
 - "The certificate_request message is included when the server desires the client to authenticate itself via public key. While the EAP server SHOULD require client authentication, this is not a requirement, since it may be possible that the server will require that the peer authenticate via some other means... If the EAP server sent a certificate_request message in the preceding EAP-Request packet, then the peer MUST send, in addition, certificate and certificate_verify handshake messages."
 - Client authentication can be postponed until later to enable privacy support

Subsequent Events

- EAP evolution
 - Expanded lower layer support (RFC 3748)
 - IEEE 802: IEEE 802.1X, IEEE 802.11i, IEEE 802.16e
 - VPNs: PPTP, L2TP, IKEv2
- Improvements in certificate/smartcard support
- Regulatory mandates
 - FIPS 140-2
 - HIPAA

Evaluating the EAP-TLS Experiment

- Security analyses
- Implementations
- Certification programs
- Deployments

Security Analyses

- Arbaugh & Mishra (2002)
 - http://www.cs.umd.edu/~waa/1x.pdf
 - Found issues in EAP state machine that could lead to bypass of EAP-TLS server authentication
 - Issues fixed in RFC 3748 & 4137
- He, Sundararajan, Datta, Derek & Mitchell
 - "A Modular Correctness Proof of IEEE 802.11i and TLS"
 - Proof of security of EAP-TLS stand-alone and when used with IEEE 802.11i

EAP-TLS Implementations

- Peer
 - Windows 2000, XP, CE
 - XSupplicant
 - Meetinghouse AEGIS
 - Funk Odyssey
 - Cisco ACU
 - Devicescape
 - Wire1X
- Server
 - Windows 2000, Windows 2003 Server
 - pppd
 - FreeRADIUS
 - OpenRADIUS
 - RADIATOR
 - Cisco ACS
 - Funk Odyssey, Steel-Belted RADIUS
 - Meetinghouse AEGIS
 - Interlink

- Toolkits
 - Matrix SSL
 - Certicom
- Decode/debug
 - Ethereal
 - Netmon
- Test Suites
 - Qacafe

Certification Programs

- WFA EAP Certification program
 - EAP-TLS interoperability testing included within WPA certification program, April 2003
 - Expanded EAP certification program launched in April 2005
 - http://www.wi-fi.org/membersonly/getfile.asp?f=WFA_Security_Ext_EAP_04_12_05_overview_media.pd
- FIPS 140-2 compliance
 - FIPS compliant EAP-TLS implementations now shipping
 - Restriction on allowable ciphersuites, key strength, etc.
- Vendor certification programs
 - Thousands of engineers trained in installing, debugging, maintaining EAP-TLS

Deployments

- Surveys indicate that ~10% of all EAP deployments are using EAP-TLS
 - Among customers who have deployed certificates, EAP-TLS usage is much higher
- Popular in security conscious environments
 - Government/military
 - Financial institutions
 - Medical
 - Engineering
- Regulatory mandates play an important role
 - FIPS 140-2
 - HIPAA
- Customers frequently deploy smartcards along with EAP-TLS

Summary

- EAP-TLS has been widely implemented and deployed.
- EAP-TLS interoperability has been demonstrated in multiple distinct implementations.
- EAP-TLS certification and testing programs are in place.
- Recommendation: The experiment has been a success.

Possible Next Steps

- Document the existing protocol in a Draft Standard
- "Improve" the protocol in a Proposed Standard

Draft Standard Approach

- Leverage WFA certification testing
 - Identify interoperability problems and clarify specification
 - Remove features that have not been shown to interoperate in two distinct implementations
 - No feature additions beyond what is in RFC 2716
- Issue RFC2716bis as Proposed Standard
- Move document to Draft Standard ASAP with minimal changes

Proposed Standard Approach

- Add features that would be "nice to have"
- Required work
 - Redo the "proof of security"
 - Revise test suites
 - Upgrade certification programs
 - Rewrite documentation, deployment guides
 - Revise implementations
 - Collect interoperability data on revised implementations
- Problems
 - Unlikely the above work will actually get done
 - Possible introduction of security vulnerabilities and interoperability issues
 - Potential for IPR disclosures encumbering the revised protocol
 - Existing implementations unlikely to upgrade
 - Possible disruption of pending deployments
 - "Nice to have" features may not supported within certification programs

Recommendation

- Draft Standard approach preferred
 - EAP-TLS is a mature, stable protocol
 - 6 years since publication of RFC 2716
 - Many distinct, interoperable implementations
 - Proof of security available
 - Stability more important than new features at this point
 - Major deployments in progress
 - Costs of protocol revision outweigh the benefits
 - New features, if needed, can be introduced in a new EAP method

Feedback?

