
 
Figure 1. Skeleton-driven animation with primary and secondary deformation. Left: the rendered character surface; right: the lattice structure (cells) 

for efficient deformation computation. 

Lattice-based Skinning and Deformation for Real-time Skeleton-driven Animation 

Cheng-Hao Chen, I-Chen Lin, Ming-Han Tsai, Pin-Hua Lu 

Dept. of Computer Science,  

National Chiao Tung University, 
Hsinchu City, Taiwan 

email: {cch@caig.cs, ichenlin@cs, ParkerTsai@caig.cs, sailors@caig.cs}.nctu.edu.tw 

 

Abstract—In this paper, we present an efficient framework to 

deform polygonal models for skeleton-driven animation. 

Standard solutions of skeleton-driven animation, such as linear 

blend skinning, require intensive artist intervention and focus 

on primary deformations. The proposed approach can 

generate both low- and high-frequency surface motions such as 

muscle deformation and vibrations with little user intervention. 

Given a surface mesh, we construct a lattice of cubic cells 

embracing the mesh and we apply lattice-based smooth 

skinning to drive the surface primary deformation with volume 

preservation. Lattice shape matching with dynamic particles, 

in the meantime, is utilized for secondary deformations. Due to 

the highly parallel lattice structure, the proposed method is 

liable to GPU computation. Our results show that it is 

adequate to vividly real-time animation. 

Keywords-skeleton-driven animation; secondary deformation; 

skinning 

I. INTRODUCTION 

Skinning and skeleton-driven animation are the 
technologies behind character animation and are widely used 
in video games or movie production. Skinning models define 
how geometric surfaces change according to a function of 
the skeletal poses. Skinning can be modeled in a data-driven 
style by example-based data regression to estimate the shape 
for a new pose [20]. It can also be modeled procedurally in 
the case of physically-based or anatomy-based approaches. 

A popularly-used method is called: Linear Blend 
Skinning (LBS), as known as Skeletal Subspace 
Deformation (SSD) [12]. Besides human skin, it can also be 
applied to clothes and other deformable surfaces [3]. The 
principle of LBS is to represent transformations of vertices 
as linearly-blended matrices. This method produces artifacts 
such as "candy-wrapper" effects in the deformed surface. In 

spite of such shortcomings, linear blending is still the most 
popular skinning approach due to its simplicity and 
efficiency. 

On the other hand, physics-based simulated skin 
deformation can produce surface bulging, jiggle of fat tissues 
and other dynamic effects. However, many skinning or 
deformation approaches are often devoid of such secondary 
deformation effects [15] or has to utilize a separate 
simulation component. But it increases the difficulty in 
structure switching and parameter-tuning for both skinning 
and secondary deformations. 

Our system takes a unified framework, where skinning, 
secondary deformation and volume preservation are mainly 
evaluated through regular 3D grids and their vertices, called 
cells and particles, respectively. The effects then distribute to 
vertices of polygonal models.  

After automatically evaluating the deformable parts and 
skinning weights through a heat-propagation-like method, 
our system estimates primary deformation by linear blend 
skinning on all particles. Secondary deformation is then 
generated by extending the lattice shape matching (LSM) 
method [16] to every particle in the cells. In the original 
lattice shape matching method, increasing the shape 
matching region causes the rigidity. In our case, the shape 
matching region size is related to the smoothness of mesh. 
Since the cell volume may not be preserved during 
deformation, especially those near the joints, we propose 
hierarchically preserving volume through all joint-dependent 
deformable parts.  

The shape matching regions and deformable parts are 
automatically computed and can be manually adjusted as 
well. The mesh can be partially soft or rigid according to the 
shape matching regions and mesh parameters. These material 
properties can even be changed dynamically.  Fig. 1 shows 



 

Figure 3. The initial pose for voxelization. 

our skeleton-driven animation, where skinning and enhanced 
secondary deformation on the chest are applied. Fig. 2 shows 
the flowchart of the proposed system. Our main contribution 
includes: 

 

 A unified and efficient framework for combing 

skinning, volume preservation and secondary volume 

deformation. 

 Lattice-based skinning method with automatic 

skinning weight computation. 

 A hierarchical volume preservation technique that can 

reduce “candy-wrapper” effect. 

II. RELATED WORK 

Skinning techniques are widely used to drive realistic 

animated characters. Many significant improvements of 

linear blend skinning are implemented with a variety of 

compromises between user control, skinning effort, storage 

requirements, and performance. Pose Space Deformation 

[11] addressed well-known artifacts like collapsing joints. 

Dual Quaternion Skinning [10] introduces effective 

rotation-based interpolations. Wang et al. [20] proposed a 

rotational regression method to capture advanced skin 

deformation such as muscle bulging, and twisting. Zhou et 

al. [22] proposed Volumetric Graph Laplacian (VGL) to 

deform the mesh based on 2D curves. All of above methods 

focus on the primary deformation of the surface mesh. 

Shi et al. [17] proposed an example-based approach with 

surface detail preservation and secondary deformations. 

However, example-based methods usually require expensive 

manual works or data acquisition. Von Funck et al. [19] 

added elastic secondary deformation to a given primary 

deformation by a small number of user-placed mass-spring 

sets. 

Forstmann et al. proposed alleviating skinning artifacts 

based on auxiliary curved skeletons [5], but it increased 

complexity of the GPU implementation and inconsistency 

with the established skinning pipeline. Lattice-based shape 

deformations are widely used to animate embedded 

geometry [4].  Regular voxel [6, 13] or body-centered cubic 

tetrahedral meshes [14] can simplify meshing issues for 

simulation. Other research [7, 8, 9] deformed a character 

using a simpler mesh, and are mainly used for direct 

manipulation. 

III. LATTICE-BASED SMOOTH SKINNING 

We now define the lattice representation of mesh, and 

show how to apply smooth skinning method on the mesh. 

A. Lattice construction 

Given a target surface mesh, we voxelize the mesh to 

construct a lattice of cubic cells containing the mesh [6]. 

The surface mesh should be in an appropriate initial pose as 

show in Fig. 3. The voxelization level can be adjusted by 

users according to the detail of input models and animation. 

The embedded mesh can now be deformed by trilinear 

interpolation of eight particles (cell vertices) positions. Let 

P denote the set of all particles. For each particle p in P, we 

denote its static initial position as xp
0
, its dynamic position 

 

Figure 2. The flowchart of the proposed system. 

 



 
Figure 4. The input character mesh, skeleton and mesh-skeleton 

mapping. 

as xp, and its mass as mp. Each particle has its index 

represented by a 3-tuple related to the reference (or origin) 

particle. p(x, y, z) denotes a particle with index (x, y, z). We set 

neighbor Np as a set of particles that stay within 3x3x3 cells 

surrounding p. We also define the adjacency of p as a set of 

particles that have one cell distance away from p. 

B. Smooth skinning 

In this subsection, we describe our smooth skinning 

method on the voxelized mesh (cells). Deforming a model 

with skinning techniques requires a skeleton structure, the 

skin and skinning vertex weights. The skin is a 3D 

triangular mesh without assumption on connectivity. The 

skeleton is a rooted tree, where the nodes represent joints 

and the edges can be interpreted as bones. Fig. 4 shows the 

surface mesh, skeleton of a target character. In our 

implementation, we provide user interfaces for assigning 

rough skeleton nodes and our system then approaches these 

nodes to local volume centers. On the other hands, 

automatic skeleton extraction is mentioned in related articles 

[21]. 

Without loss of generality, transformations of joints and 

skeletons in each hierarchical level are assumed to be rigid. 

In the classic skinning framework [12], the vertex weights 

describe the skin-to-skeleton binding (i.e., the amount of 

influence of individual joints on each vertex). In our case, 

we first consider particle weights instead of weights for 

surface vertices. Assume that there are k joints in the input 

skeleton. Each joint has an associated local coordinate 

system in its initial position. The transformation from the 

initial position of joint j ϵ {j1, . . . , jk} to its current position 

can be expressed by a rigid transformation matrix – Tj ϵ 

SE(3). We assume that particle p is attached to joints jp = 

{j1, . . . , jn} with weights wp = {wp
1
, . . . , wp

n
}. The indices 

j1, . . . , jn are integers referring to the joints that influence a 

given particle; wp
i 

represents the influence of joint ji on 

particle p. Most skinning applications let n to be four due to 

graphics hardware considerations (we store jp in a vec4-

typed variable in GLSL). The weights are normally assumed 

to be convex and 11   i

n

i w  and 0
i

w  . The particle 

positions xp deformed by linear blend skinning is then 

computed as: 
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where Tji is the transformations of joint i. The blended 

matrix 
ji

i

p

n

i Tw 1
 is not guaranteed to be a rigid 

transformation, even if all Tji are rigid. To overcome this 

problem, these transformations Tji are factorized into 

rotation Rji and scale/shear Sji components by using the 

polar decomposition  
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We use the fast polar decomposition technique described 

in [16] and build a new transformation 
ij

T  to replace Tji by 

Rji. 

C. Particle skinning weight assignment 

Skinning weights are usually specified by artists 

according to bone size and joint influence regions. A recent 

technique proposed as an automatic algorithm for unguided 

skeleton mesh called bone heat [1]. This method aims at 

extracting the skeleton and weight through a heat diffusion 

system on the surface of the mesh. The heat diffusion 

mechanism is more efficient and reasonable on our regular 

volumetric mesh than the original volume approximation on 

thin shields. 

First, we treat each bone j as a heat source with energy ej 

influenced by user-specified parameters such as bone width 

or bone length. For each heat source j, we compute the 

directly-influenced particles ˆ
jP  which are the closest 

particles to the bone j by no more than one cell size. The 

energy of particles in ˆ
jP  is assumed to be ej. Then we 

construct an undirected simple graph G: 
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Each particle is considered as a node in G, and having 

edges with its neighbors. Let cost(pi, pj)  denote the cost of 

edge (pi, pj), pi has an index (xi, yi, zi), and pj has an index (xj, 

yj, zj). The edge cost is proportional to the Euclidean 

distance. When we apply heat diffusion from the directly-



 
(a) 

 
(b) 

Figure 5. The deformable parts (red part). (a) bone-dependent 

deformable part. (b) joint-dependent deformable part that 

combine two adjacent bone-dependent parts in halves. 

 

 
Figure 6. Lattice-based smooth skinning. 

influenced particles ˆ
jP  to all other particles, a particle's 

energy is a weighted combination of the edge cost to its 

neighbors. The neighbors' energy to particle pi  is denoted by 

 ,i jp p
ew , and computed as: 
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where bi is bone strength that influences the energy 

attenuation. Hence, a particle's energy is then computed as:  
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The diffusion runs repeatedly until the completion of 

diffusion process. After the heat diffusion, we partition all 

particles into several deformable parts based on the most 

effective bone to each vertex as in Fig. 5(a). For each bone-

dependent deformable part, we divide the particles into two 

subparts and combine two subparts adhering to the same 

joint to form joint-dependent deformable parts as shown in 

Fig. 5(b). The joint deformable parts are basic units for our 

hierarchical volume preservation. Besides automatic 

segmentation and weights, we also allow users to adjust the 

attributes.  

Skeletal motions can now be used to drive cell particles 

with skinning. Accordingly, the vertices on polygonal 

models are moved through interpolation.  Fig. 6 presents a 

skinned human model using our lattice-based smooth 

skinning method. Since the concept of our lattice-based 

skinning approach is similar to the basic linear blend 

skinning, its performance is almost as efficient as linear 

blend skinning. 

D. Volume preservation 

Traditional linear blend skinning has deformation 

artifacts such as "candy-wrapper" effect since it does not 

address the unnatural volume changes. We present a 

hierarchical approach extended from the method by 

Takamatsu and Kanai [18]. First, we define: 
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where 
p

diff  denotes the set of half distance from p to its six 

adjacencies. Then, the volume of each particle p can be 

defined as: 
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The operator   means dot product and the   means cross 

product. The volume of mesh is then computed as: 
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After mesh deformation, all particles P transform to their 

new positions. Let P’ be the deformed particles. We define 

the particle displacement field: 
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where  1
.., .,

P
R R  are a set of particle's rotations.  1

.., .,
P

u u  

are particles’ outward vectors which point to the nearest 

boundary.  1
.., .,

P
s s  are particle's volume correction scales. 

They are inverse related to the nearest Manhattan distance to 

the boundary. This means a particle closer to the boundary 

has a larger percentage to keep the local volume consistent. 

With the displacement field, we can evaluate how each 

particle should be adjusted to keep the part volume the same 

through the following equation: 

 )ˆ()( VPVolPVol 

 

 where λ is the unknown value. 

We correct the positions of particles from the root joint-

dependent deformable part to its all sub-parts. For skeletal-

driven animation, our approach preserving local volumes is 

more adequate than that for global volume [18]. For 

instance, deforming the left arm should not significantly 

influence the volume on the legs. Compared with 

deformation methods preserving cell rigidity and volume by 

optimization [2], the proposed method is relatively light-

weight in computing, since the evaluation of particle 

outward vectors and scales are deterministic and applicable 

to parallel computation. 

IV. SKINNING WITH SECONDARY DEFORMATION 

In this section, we introduce how we combine our lattice-

based skinning method with the lattice shape matching to 

generate secondary deformation. It can make the body part 

“soft” if there is less skeleton binding. 

 

A. Lattice shape matching 

In the previous section, we construct a lattice of cubic 

cells containing the surface mesh. Now we further define 

shape matching region for each particle. Each particle p is 

associated with a shape matching region comprised of a set 

of shape matching particles, Regionp. A Regionp of half-

width ŵ  contains p and all particles reachable within a 

Manhattan distance ŵ  from particle p. For instance, if 

1ˆ w , Regionp=Np. 

The main lattice shape matching algorithm is proposed 

by Rivers and James [16]. At each time step, each Regionr 

finds the best rigid transformation rT
~

by least-squares to 

match the initial particle positions xp
0
 to their deformed 

positions xp for pRegionr. Therefore, each particle p’s goal 

position gp can be calculated by average regional rigid 

transformation of the particle’s position: 
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To generate the secondary deformation, we establish a 

dynamic system according to differences between the 

particle position px  and the goal position 
p

g  and the 

external force 
p

f , as shown in (12) and (13) 
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where h  is the simulation time step, xp(t) and vp(t) are the 

position and velocity at t, respectively. 

Applying dynamics calculation to all particles results in 

“gummy bear” like deformation. To embed skeleton in to 

the cells, we further assign the particles within bone 

cylinders to be rigidly adhered on the bone. The effect of 

“bone rigidness” for other particles depends on the region 

windows. In general, those closer to the bone axis can have 

more rigidness. 

B. Combination of Skinning and Lattice Shape Matching 

Both the skinning and the shape matching update particle 

positions. In order to generate secondary deformation by 

lattice shape matching with guidance of skinning, we use 

the result of (1)(2) and particle p’s dynamic position 
p

x  to 

obtain 



 

 
Figure 8. The deformation result. Upper: without hierarchical volume 

preservation. Lower: with hierarchical volume preservation. The 
volumes near the joints are closer to the original ones. 

 
Figure 7. Skinning artifacts. Upper: with lower voxelization 

resolution (1072 particles); lower: with higher voxelization 

resolution (1906 particles). 

TABEL I. PERFORMANCE TEST ON A MODERATE 

LAPTOP AND A DESKTOP. 

# of 

cells 

# of 

particles 

Average Frame Per 

Second(laptop) 

Average Frame Per 

Second(desktop) 

524 1072 148.572 215.294 

976 1906 92.717 134.181 

1241 2451 61.684 99.436 

1905 3058 42.376 81.633 

Triangle Mesh: 

 28059 vertices, 
55888 triangles. 

Time step: 16ms. 

# of joints: 38 
Region size: 2 

CPU: Intel Core 2 

Duo P8600 
RAM:DDR3-1066 

4GB 

Display: Nvidia 
GeForce G105M 

CPU: Intel Core 2 

Quad Q6600 
RAM:DDR2-800 

8GB 

Display: Nvidia 
GeForce 8800GT 
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where δ is the ratio of secondary deformation and 0≦δ≦1. 

If δ = 0, the result is same as lattice-based smooth skinning. 

The larger δ is applied, the more obvious the secondary 

deformation appears. Users can freely adjust δ or even 

switch different δ profiles during simulation to obtain more 

realistic effects. ˆ
p

x  is then applied to the lattice shape 

matching process for the best transformation as described in 

section 4.1. 

At each time step, each particle p vibrates between 
p

x  

and 
p

x . The goal position gp will be more and more close to 

p
x . xp will gradually converge toward 

p
x . Besides, we also 

include the damping force described in [16] to speed up the 

convergence.  

V. EXPERIMENT AND RESULT 

Our approach is flexible since we provide an interactive 

environment and various adjustable mesh parameters with 

defaults for users. Fig. 3 shows our subject mesh, skeleton, 

and mesh-skeleton mapping. The skeleton motion data we 

used are from CMU's motion capture database [23] and a 

30Hz dataset for interactive applications mentioned in [24]. 

Fig. 7 shows the results of voxelization resolution test. An 

improper resolution (1092 particles) results in skinning 

artifacts. For our test surface mesh (28059 vertices), we 

choose the resolution about 1900 particles to get balance 

between skinning quality and performance.  

Fig. 8 show the results of volume correction. The volume 

preservation method is capable of alleviating the "candy-

wrapper" effect resulting from linear blend skinning. Table 

1 show performance tests for various voxelization 

resolutions on a laptop and desktop. 

VI. CONCLUSION 

We present a lattice-based framework for surface 

deformation in skeleton-driven animation and editing. After 

voxelizing and mapping an input surface mesh with cells, 

our system automatically generates lattice-based skinning 

weights through diffusion-based influence propagation. The 



skinning deformation is then combined with dynamic 

particles of lattice shape matching to approximate the 

physically-realistic secondary deformation. To reduce the 

deformation artifacts, a hierarchical method for local 

volume preservation is employed. 

The proposed system requires only skeleton-driven 

motion data and triangle mesh as inputs, and it can generate 

appealing animation with little user intervention. The 

experiment shows that our efficient designs make our 

system adequate to real-time computation even on a 

moderate laptop computer. 
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