

Figure 1. Skeleton-driven animation with primary and secondary deformation. Left: the rendered character surface; right: the lattice structure (cells)

for efficient deformation computation.

Lattice-based Skinning and Deformation for Real-time Skeleton-driven Animation

Cheng-Hao Chen, I-Chen Lin, Ming-Han Tsai, Pin-Hua Lu

Dept. of Computer Science,

National Chiao Tung University,
Hsinchu City, Taiwan

email: {cch@caig.cs, ichenlin@cs, ParkerTsai@caig.cs, sailors@caig.cs}.nctu.edu.tw

Abstract—In this paper, we present an efficient framework to

deform polygonal models for skeleton-driven animation.

Standard solutions of skeleton-driven animation, such as linear

blend skinning, require intensive artist intervention and focus

on primary deformations. The proposed approach can

generate both low- and high-frequency surface motions such as

muscle deformation and vibrations with little user intervention.

Given a surface mesh, we construct a lattice of cubic cells

embracing the mesh and we apply lattice-based smooth

skinning to drive the surface primary deformation with volume

preservation. Lattice shape matching with dynamic particles,

in the meantime, is utilized for secondary deformations. Due to

the highly parallel lattice structure, the proposed method is

liable to GPU computation. Our results show that it is

adequate to vividly real-time animation.

Keywords-skeleton-driven animation; secondary deformation;

skinning

I. INTRODUCTION

Skinning and skeleton-driven animation are the
technologies behind character animation and are widely used
in video games or movie production. Skinning models define
how geometric surfaces change according to a function of
the skeletal poses. Skinning can be modeled in a data-driven
style by example-based data regression to estimate the shape
for a new pose [20]. It can also be modeled procedurally in
the case of physically-based or anatomy-based approaches.

A popularly-used method is called: Linear Blend
Skinning (LBS), as known as Skeletal Subspace
Deformation (SSD) [12]. Besides human skin, it can also be
applied to clothes and other deformable surfaces [3]. The
principle of LBS is to represent transformations of vertices
as linearly-blended matrices. This method produces artifacts
such as "candy-wrapper" effects in the deformed surface. In

spite of such shortcomings, linear blending is still the most
popular skinning approach due to its simplicity and
efficiency.

On the other hand, physics-based simulated skin
deformation can produce surface bulging, jiggle of fat tissues
and other dynamic effects. However, many skinning or
deformation approaches are often devoid of such secondary
deformation effects [15] or has to utilize a separate
simulation component. But it increases the difficulty in
structure switching and parameter-tuning for both skinning
and secondary deformations.

Our system takes a unified framework, where skinning,
secondary deformation and volume preservation are mainly
evaluated through regular 3D grids and their vertices, called
cells and particles, respectively. The effects then distribute to
vertices of polygonal models.

After automatically evaluating the deformable parts and
skinning weights through a heat-propagation-like method,
our system estimates primary deformation by linear blend
skinning on all particles. Secondary deformation is then
generated by extending the lattice shape matching (LSM)
method [16] to every particle in the cells. In the original
lattice shape matching method, increasing the shape
matching region causes the rigidity. In our case, the shape
matching region size is related to the smoothness of mesh.
Since the cell volume may not be preserved during
deformation, especially those near the joints, we propose
hierarchically preserving volume through all joint-dependent
deformable parts.

The shape matching regions and deformable parts are
automatically computed and can be manually adjusted as
well. The mesh can be partially soft or rigid according to the
shape matching regions and mesh parameters. These material
properties can even be changed dynamically. Fig. 1 shows

Figure 3. The initial pose for voxelization.

our skeleton-driven animation, where skinning and enhanced
secondary deformation on the chest are applied. Fig. 2 shows
the flowchart of the proposed system. Our main contribution
includes:

 A unified and efficient framework for combing

skinning, volume preservation and secondary volume

deformation.

 Lattice-based skinning method with automatic

skinning weight computation.

 A hierarchical volume preservation technique that can

reduce “candy-wrapper” effect.

II. RELATED WORK

Skinning techniques are widely used to drive realistic

animated characters. Many significant improvements of

linear blend skinning are implemented with a variety of

compromises between user control, skinning effort, storage

requirements, and performance. Pose Space Deformation

[11] addressed well-known artifacts like collapsing joints.

Dual Quaternion Skinning [10] introduces effective

rotation-based interpolations. Wang et al. [20] proposed a

rotational regression method to capture advanced skin

deformation such as muscle bulging, and twisting. Zhou et

al. [22] proposed Volumetric Graph Laplacian (VGL) to

deform the mesh based on 2D curves. All of above methods

focus on the primary deformation of the surface mesh.

Shi et al. [17] proposed an example-based approach with

surface detail preservation and secondary deformations.

However, example-based methods usually require expensive

manual works or data acquisition. Von Funck et al. [19]

added elastic secondary deformation to a given primary

deformation by a small number of user-placed mass-spring

sets.

Forstmann et al. proposed alleviating skinning artifacts

based on auxiliary curved skeletons [5], but it increased

complexity of the GPU implementation and inconsistency

with the established skinning pipeline. Lattice-based shape

deformations are widely used to animate embedded

geometry [4]. Regular voxel [6, 13] or body-centered cubic

tetrahedral meshes [14] can simplify meshing issues for

simulation. Other research [7, 8, 9] deformed a character

using a simpler mesh, and are mainly used for direct

manipulation.

III. LATTICE-BASED SMOOTH SKINNING

We now define the lattice representation of mesh, and

show how to apply smooth skinning method on the mesh.

A. Lattice construction

Given a target surface mesh, we voxelize the mesh to

construct a lattice of cubic cells containing the mesh [6].

The surface mesh should be in an appropriate initial pose as

show in Fig. 3. The voxelization level can be adjusted by

users according to the detail of input models and animation.

The embedded mesh can now be deformed by trilinear

interpolation of eight particles (cell vertices) positions. Let

P denote the set of all particles. For each particle p in P, we

denote its static initial position as xp
0
, its dynamic position

Figure 2. The flowchart of the proposed system.

Figure 4. The input character mesh, skeleton and mesh-skeleton

mapping.

as xp, and its mass as mp. Each particle has its index

represented by a 3-tuple related to the reference (or origin)

particle. p(x, y, z) denotes a particle with index (x, y, z). We set

neighbor Np as a set of particles that stay within 3x3x3 cells

surrounding p. We also define the adjacency of p as a set of

particles that have one cell distance away from p.

B. Smooth skinning

In this subsection, we describe our smooth skinning

method on the voxelized mesh (cells). Deforming a model

with skinning techniques requires a skeleton structure, the

skin and skinning vertex weights. The skin is a 3D

triangular mesh without assumption on connectivity. The

skeleton is a rooted tree, where the nodes represent joints

and the edges can be interpreted as bones. Fig. 4 shows the

surface mesh, skeleton of a target character. In our

implementation, we provide user interfaces for assigning

rough skeleton nodes and our system then approaches these

nodes to local volume centers. On the other hands,

automatic skeleton extraction is mentioned in related articles

[21].

Without loss of generality, transformations of joints and

skeletons in each hierarchical level are assumed to be rigid.

In the classic skinning framework [12], the vertex weights

describe the skin-to-skeleton binding (i.e., the amount of

influence of individual joints on each vertex). In our case,

we first consider particle weights instead of weights for

surface vertices. Assume that there are k joints in the input

skeleton. Each joint has an associated local coordinate

system in its initial position. The transformation from the

initial position of joint j ϵ {j1, . . . , jk} to its current position

can be expressed by a rigid transformation matrix – Tj ϵ

SE(3). We assume that particle p is attached to joints jp =

{j1, . . . , jn} with weights wp = {wp
1
, . . . , wp

n
}. The indices

j1, . . . , jn are integers referring to the joints that influence a

given particle; wp
i

represents the influence of joint ji on

particle p. Most skinning applications let n to be four due to

graphics hardware considerations (we store jp in a vec4-

typed variable in GLSL). The weights are normally assumed

to be convex and 11 i

n

i w and 0
i

w . The particle

positions xp deformed by linear blend skinning is then

computed as:

 1 1i i

n ni i

p p j p p j pi i
x w T x w T x

where Tji is the transformations of joint i. The blended

matrix
ji

i

p

n

i Tw 1
 is not guaranteed to be a rigid

transformation, even if all Tji are rigid. To overcome this

problem, these transformations Tji are factorized into

rotation Rji and scale/shear Sji components by using the

polar decomposition

i i ij j jT R S

We use the fast polar decomposition technique described

in [16] and build a new transformation
ij

T to replace Tji by

Rji.

C. Particle skinning weight assignment

Skinning weights are usually specified by artists

according to bone size and joint influence regions. A recent

technique proposed as an automatic algorithm for unguided

skeleton mesh called bone heat [1]. This method aims at

extracting the skeleton and weight through a heat diffusion

system on the surface of the mesh. The heat diffusion

mechanism is more efficient and reasonable on our regular

volumetric mesh than the original volume approximation on

thin shields.

First, we treat each bone j as a heat source with energy ej

influenced by user-specified parameters such as bone width

or bone length. For each heat source j, we compute the

directly-influenced particles ˆ
jP which are the closest

particles to the bone j by no more than one cell size. The

energy of particles in ˆ
jP is assumed to be ej. Then we

construct an undirected simple graph G:

 , ,G V E V P

11, 2 1 2 2

| , ,
p

E p p p P p P p N

Each particle is considered as a node in G, and having

edges with its neighbors. Let cost(pi, pj) denote the cost of

edge (pi, pj), pi has an index (xi, yi, zi), and pj has an index (xj,

yj, zj). The edge cost is proportional to the Euclidean

distance. When we apply heat diffusion from the directly-

(a)

(b)

Figure 5. The deformable parts (red part). (a) bone-dependent

deformable part. (b) joint-dependent deformable part that

combine two adjacent bone-dependent parts in halves.

Figure 6. Lattice-based smooth skinning.

influenced particles ˆ
jP to all other particles, a particle's

energy is a weighted combination of the edge cost to its

neighbors. The neighbors' energy to particle pi is denoted by

 ,i jp p
ew , and computed as:

,

,

,i j

k pi

i j

p p

i kp N

wt p p
ew

wt p p

,
, 1

i

i j

i j

b
wt p p

cost p p

where bi is bone strength that influences the energy

attenuation. Hence, a particle's energy is then computed as:

 ,i ki k

k pi

p pp p

p N

e ew e

The diffusion runs repeatedly until the completion of

diffusion process. After the heat diffusion, we partition all

particles into several deformable parts based on the most

effective bone to each vertex as in Fig. 5(a). For each bone-

dependent deformable part, we divide the particles into two

subparts and combine two subparts adhering to the same

joint to form joint-dependent deformable parts as shown in

Fig. 5(b). The joint deformable parts are basic units for our

hierarchical volume preservation. Besides automatic

segmentation and weights, we also allow users to adjust the

attributes.

Skeletal motions can now be used to drive cell particles

with skinning. Accordingly, the vertices on polygonal

models are moved through interpolation. Fig. 6 presents a

skinned human model using our lattice-based smooth

skinning method. Since the concept of our lattice-based

skinning approach is similar to the basic linear blend

skinning, its performance is almost as efficient as linear

blend skinning.

D. Volume preservation

Traditional linear blend skinning has deformation

artifacts such as "candy-wrapper" effect since it does not

address the unnatural volume changes. We present a

hierarchical approach extended from the method by

Takamatsu and Kanai [18]. First, we define:

0 01
|

2

, , , , ,

p q p p

x x y y z z

p p p p p p

diff x x q Adj

d d d d d d

where
p

diff denotes the set of half distance from p to its six

adjacencies. Then, the volume of each particle p can be

defined as:

x y z x y z

p p p p p p

x y z x y z

p p p p p p

z y x z y x

p p p p p p

z y x z y x

p p p p p p

Vol p

d d d d d d

d d d d d d

d d d d d d

d d d d d d

The operator means dot product and the means cross

product. The volume of mesh is then computed as:

Pp
pVolPVol)()(

After mesh deformation, all particles P transform to their

new positions. Let P’ be the deformed particles. We define

the particle displacement field:

1

1 1 1

ˆ ˆ ˆ,

, ,

,
P

P P P

V v v

s u R s u R

where 1
.., .,

P
R R are a set of particle's rotations. 1

.., .,
P

u u

are particles’ outward vectors which point to the nearest

boundary. 1
.., .,

P
s s are particle's volume correction scales.

They are inverse related to the nearest Manhattan distance to

the boundary. This means a particle closer to the boundary

has a larger percentage to keep the local volume consistent.

With the displacement field, we can evaluate how each

particle should be adjusted to keep the part volume the same

through the following equation:

)ˆ()(VPVolPVol

 where λ is the unknown value.

We correct the positions of particles from the root joint-

dependent deformable part to its all sub-parts. For skeletal-

driven animation, our approach preserving local volumes is

more adequate than that for global volume [18]. For

instance, deforming the left arm should not significantly

influence the volume on the legs. Compared with

deformation methods preserving cell rigidity and volume by

optimization [2], the proposed method is relatively light-

weight in computing, since the evaluation of particle

outward vectors and scales are deterministic and applicable

to parallel computation.

IV. SKINNING WITH SECONDARY DEFORMATION

In this section, we introduce how we combine our lattice-

based skinning method with the lattice shape matching to

generate secondary deformation. It can make the body part

“soft” if there is less skeleton binding.

A. Lattice shape matching

In the previous section, we construct a lattice of cubic

cells containing the surface mesh. Now we further define

shape matching region for each particle. Each particle p is

associated with a shape matching region comprised of a set

of shape matching particles, Regionp. A Regionp of half-

width ŵ contains p and all particles reachable within a

Manhattan distance ŵ from particle p. For instance, if

1ˆ w , Regionp=Np.

The main lattice shape matching algorithm is proposed

by Rivers and James [16]. At each time step, each Regionr

finds the best rigid transformation rT
~

by least-squares to

match the initial particle positions xp
0
 to their deformed

positions xp for pRegionr. Therefore, each particle p’s goal

position gp can be calculated by average regional rigid

transformation of the particle’s position:

 0

Re

1

p
p pr gion

r
p

g T x
Region

To generate the secondary deformation, we establish a

dynamic system according to differences between the

particle position px and the goal position
p

g and the

external force
p

f , as shown in (12) and (13)

2

()
p p p

p p

p

g t x t f t
v t h v t h

h m

p p p

x t h x t hv t h

where h is the simulation time step, xp(t) and vp(t) are the

position and velocity at t, respectively.

Applying dynamics calculation to all particles results in

“gummy bear” like deformation. To embed skeleton in to

the cells, we further assign the particles within bone

cylinders to be rigidly adhered on the bone. The effect of

“bone rigidness” for other particles depends on the region

windows. In general, those closer to the bone axis can have

more rigidness.

B. Combination of Skinning and Lattice Shape Matching

Both the skinning and the shape matching update particle

positions. In order to generate secondary deformation by

lattice shape matching with guidance of skinning, we use

the result of (1)(2) and particle p’s dynamic position
p

x to

obtain

Figure 8. The deformation result. Upper: without hierarchical volume

preservation. Lower: with hierarchical volume preservation. The
volumes near the joints are closer to the original ones.

Figure 7. Skinning artifacts. Upper: with lower voxelization

resolution (1072 particles); lower: with higher voxelization

resolution (1906 particles).

TABEL I. PERFORMANCE TEST ON A MODERATE

LAPTOP AND A DESKTOP.

of

cells

of

particles

Average Frame Per

Second(laptop)

Average Frame Per

Second(desktop)

524 1072 148.572 215.294

976 1906 92.717 134.181

1241 2451 61.684 99.436

1905 3058 42.376 81.633

Triangle Mesh:

 28059 vertices,
55888 triangles.

Time step: 16ms.

of joints: 38
Region size: 2

CPU: Intel Core 2

Duo P8600
RAM:DDR3-1066

4GB

Display: Nvidia
GeForce G105M

CPU: Intel Core 2

Quad Q6600
RAM:DDR2-800

8GB

Display: Nvidia
GeForce 8800GT

 ˆ 1
p p p

x x x

where δ is the ratio of secondary deformation and 0≦δ≦1.

If δ = 0, the result is same as lattice-based smooth skinning.

The larger δ is applied, the more obvious the secondary

deformation appears. Users can freely adjust δ or even

switch different δ profiles during simulation to obtain more

realistic effects. ˆ
p

x is then applied to the lattice shape

matching process for the best transformation as described in

section 4.1.

At each time step, each particle p vibrates between
p

x

and
p

x . The goal position gp will be more and more close to

p
x . xp will gradually converge toward

p
x . Besides, we also

include the damping force described in [16] to speed up the

convergence.

V. EXPERIMENT AND RESULT

Our approach is flexible since we provide an interactive

environment and various adjustable mesh parameters with

defaults for users. Fig. 3 shows our subject mesh, skeleton,

and mesh-skeleton mapping. The skeleton motion data we

used are from CMU's motion capture database [23] and a

30Hz dataset for interactive applications mentioned in [24].

Fig. 7 shows the results of voxelization resolution test. An

improper resolution (1092 particles) results in skinning

artifacts. For our test surface mesh (28059 vertices), we

choose the resolution about 1900 particles to get balance

between skinning quality and performance.

Fig. 8 show the results of volume correction. The volume

preservation method is capable of alleviating the "candy-

wrapper" effect resulting from linear blend skinning. Table

1 show performance tests for various voxelization

resolutions on a laptop and desktop.

VI. CONCLUSION

We present a lattice-based framework for surface

deformation in skeleton-driven animation and editing. After

voxelizing and mapping an input surface mesh with cells,

our system automatically generates lattice-based skinning

weights through diffusion-based influence propagation. The

skinning deformation is then combined with dynamic

particles of lattice shape matching to approximate the

physically-realistic secondary deformation. To reduce the

deformation artifacts, a hierarchical method for local

volume preservation is employed.

The proposed system requires only skeleton-driven

motion data and triangle mesh as inputs, and it can generate

appealing animation with little user intervention. The

experiment shows that our efficient designs make our

system adequate to real-time computation even on a

moderate laptop computer.

REFERENCE

[1] I. Baran and J. Popović, “Automatic rigging and animation of
3d characters”, ACM Trans. Graph., vol. 26, no. 3, article: 72,
2007.

[2] M. Botsch, M. Pauly, M. Wicke, and M. Gross, “Adaptive
Space Deformations Based on Rigid Cells”, Computer
Graphics Forum, vol. 26, no.3, pp.339-347, 2007.

[3] F. Cordier and N. Magnenat-Thalmann, “A data-driven
approach for real-time clothes simulation”, Proc. Pacific
Graphics, pp. 257–266, 2004.

[4] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Dynamic
free-form deformations for animation synthesis”, IEEE Trans.
Visualization and Computer Graphics, vol. 3, no. 3, pp. 201–
214, 1997.

[5] S. Forstmann, J. Ohya, A. Krohn-Grimberghe, and R.
McDougall, “Deformation styles for spline-based skeletal
animation”, Proc. 2007 ACM SIGGRAPH / Eurographics
symposium on Computer animation, pp. 141–150, 2007.

[6] D. L. James, J. Barbič, and C. D. Twigg, “Squashing cubes:
Automating deformable model construction for graphics”,
Proc. ACM SIGGRAPH 2004 Conference, Sketches &
Applications, 2004.

[7] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki,
“Harmonic coordinates for character articulation”, ACM
Trans. Graph., vol. 26, no. 3, article: 71, 2007.

[8] T. Ju, S. Schaefer, and J. Warren, “Mean value coordinates for
closed triangular meshes”, ACM Trans. Graph., vol. 24, no. 3,
pp. 561–566, 2005.

[9] T. Ju, Q. Zhou, M. van de Panne, D. Cohen-Or, and U.
Neumann, “Reusable skinning templates using cage-based
deformations”, ACM Trans. Graph., vol. 27, no. 5, article:
122, 2008.

[10] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan,
“Geometric skinning with approximate dual quaternion

blending”, ACM Trans. Graph., vol. 27, no. 4, article: 105,
2008.

[11] J. P. Lewis, M. Cordner, and N. Fong, “Pose space
deformation: a unified approach to shape interpolation and
skeletondriven deformation”, Proc. ACM SIGGRAPH’00, pp.
165–172, 2000.

[12] N. Magnenat-Thalmann, R. Laperri`ere, and D. Thalmann,
“Joint-dependent local deformations for hand animation and
object grasping”, Proc. Graphics Interface’88, pp. 26–33,
1988.

[13] M. Müller and M. Gross, “Interactive virtual materials”, Proc.
Graphics Interface’04, pp. 239–246, 2004.

[14] N. Molino, Z. Bao, and R. Fedkiw, “A virtual node algorithm
for changing mesh topology during simulation”, ACM Trans.
Graph., vol. 23, no. 3, pp. 385–392, 2004.

[15] J. F. O’Brien, V. B. Zordan, and J. K. Hodgins, “Combining
active and passive simulations for secondary motion”, IEEE
Computer Graphics and Applications, vol. 20, no.4, pp. 86–96,
2000.

[16] A. R. Rivers and D. L. James, “Fastlsm: fast lattice shape
matching for robust realtime deformation”, ACM Trans.
Graph., vol. 26, no. 3, article: 82, 2007.

[17] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo,
“Example-based dynamic skinning in real time”, ACM Trans.
Graph., vol. 27, no.3 article: 29, 2008.

[18] K. Takamatsu and T. Kanai, “Volume-preserving lsm
deformations”, Proc. ACM SIGGRAPH ASIA 2009, Sketches,
article: 15, 2009.

[19] W. von Funck, H. Theisel, and H.-P. Seidel, “Elastic
secondary deformations by vector field integration”, Proc.
Eurographics Symposium on Geometry Processing’07, pp.
99–108, 2007.

[20] R. Y. Wang, K. Pulli, and J. Popović, “Real-time enveloping
with rotational regression”, ACM Trans. Graph., vol. 26, no.3
artist: 55, July 2007.

[21] Y.-S. Wang, and T.-Y. Lee, “Curve-Skeleton Extraction
Using Iterative Least Squares Optimization”, IEEE Trans.
Visualization and Computer Graphics, vol.14, no.4, pp. 926-
936, 2008.

[22] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.
Shum, “Large mesh deformation using the volumetric graph
laplacian”, ACM Trans. Graph., vol.24, no.3, pp. 496–503,
2005.

[23] CMU GraphicsLab, Motion Capture Database.
http://mocap.cs.cmu.edu.

[24] I.-C. Lin, J.-Y. Peng, C.-C. Lin, M.-H. Tsai, "Adaptive
Motion Data Representation with Repeated Motion Analysis",
IEEE Trans. Visualization and Computer Graphics, vol.17, no.
4, pp.527-538, April, 2011.

http://www.sciweavers.org/publications/curve-skeleton-extraction-using-iterative-least-squares-optimization
http://www.sciweavers.org/publications/curve-skeleton-extraction-using-iterative-least-squares-optimization
http://mocap.cs.cmu.edu/

