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1. METHOD DETAILS

1.1. ConvGRU

To ensure the temporal coherence across frames, and to pre-
vent the matting results from flickering, we adopted the Con-
vGRU module in the decoder of our network, which is defined
by following formulas:
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where z is the input features, and w and b are the weight and
bias of convolution operations. z is the update gate for decid-
ing how much of the past information needs to be passed to
the next state, and r is the reset gate for deciding how much of
the past information needs to be forgotten. * and ® represents
convolution and Hadamard product respectively.

At timestamp ¢, h; is the output of the ConvGRU module,
and at the next timestamp, it is fed into the module again to act
as hidden state h;_1. At the beginning of a video sequence,
where no past information is available, the hidden state hg is
initialized as an all zero tensor.

1.2. Progressive Refinement Module (PRM)

Both low-level structures and high-level details are important
in matting, so by utilizing the fact that different layers of a
CNN network focus on different size of images, we can let
the network output alpha values at each scale, and combine
them together to produce better results.

After obtaining outputs from different levels, at level [,
the corresponding alpha outputs o is upsampled to match the
original resolution, and a self-guidance mask is defined with
the following formula:

o

aiy [

Fig. 1: Visualization of how PRM module works. At each
level, a mask is generated according to Eq. 2, and the white
parts from different output levels are combined.
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0, otherwise

The intuition is similar to how we define error-prone re-
gions in the aforementioned refiner: pixels with values 0 and
1 are regarded as confident regions, and those with values be-
tween O and 1 are regarded as non-confident regions. Given
the raw alpha output «j and the self-guidance mask g;, refined
alpha output «y is obtained with the following formula:
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Confident regions in the previous alpha output ay_; is
kept, whereas non-confident regions are replaced with con-
tents in the current alpha output ¢ according to g;. The
above process is visualized in Fig. 1. During training, loss
functions are applied only on non-confident regions. There-
fore, the model can focus on non-confident regions each time,
and the alpha output will be gradually refined. Note that our
model outputs foreground images only at the output block,
and they are not refined by the PRM module.

1.3. Loss Functions

Loss functions mentioned below are applied on all frames
t € [1,T). For alpha outputs, given ground truth o and pre-
diction o, we used L1 loss, Laplacian loss [1], and temporal
coherence loss [2], where s is the index of layers in computing
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For foreground outputs, loss were only computed where
oy > 0. Given ground truth F}* and prediction F}, we used

L1 loss and temporal coherence loss.
Liy = l[(af > 0) = (F, — Fy)lh o
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For the semantic mask, we also used the same L1 loss and
Laplacian loss as the alpha loss.

Lmask: — L;‘rlzask + ngsk (9)
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Moreover, following [3], the L1 loss and Laplacian loss
for the low-resolution alpha were applied to each output
head of the PRM module, and were only computed on the
non-confident regions. The total loss function for the low-
resolution output without the refiner module can be formu-
lated as:
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where w; is the weighting factor assigned to outputs at
level [, and we use wo = &, w1 = 2, wy = 2.
For the high-resolution output, we do not apply loss on

the semantic mask, and the total loss function is:
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2. EXPERIMENT DETAILS

2.1. Datasets

To train our model, we applied VideoMatte240K (VM240K)
[4] in the early stage of the training process, and the mixture
of Adobe Image Matting (AIM) [5], Distinctions-646 (D646)
[6], and Human-2K (H2K) [7]) in the later stage of the train-
ing process. VM240K contains a wide variety of action and
movement, which is desirable for our model to learn long-
term dependencies across frames. Although the other three
datasets contain only still images, they have more fine-grained
details like hair, and is also essential to the training procedure.

We followed the common approach to split VM240K into
479/5 clips for training/testing, and the training set contains
237510 frames in total. Moreover, we used only a subset of
AIM and D646, excluding those with non-human foreground
objects, and got 2500 frames along with H2K for training.

As matting datasets only provide foregrounds and alpha
mattes, we still need backgrounds to compose images for
training. For background videos, we used video clips pro-
vided by [2]; we selected clips that do not contain humans,
and extract the first 100 frames from each clip. For back-
ground images, we used BG-20K [8], which does not contain
salient objects and is therefore suitable for composing matting
data.

Additionally, as proposed by RVM [9], we also used
datasets from the semantic segmentation task, including
YouTubeVIS [10], COCO [11], and Supervisely Person
Dataset (SPD), to assist the training process. Because train-
ing data for the matting task are synthetically generated, im-
ages may look fake or unnatural and cause the model to
overfit on these artificial data. On the other hand, semantic
segmentation is closely related to matting, especially human
matting, and its datasets feature a great amount of natural
images, which can help our model learn the distribution of
real-world human poses. These data went through both the
mask-prediction network and the matting network, and the
last layer of the matting network was switched to have only
one-channel output to fit the segmentation task.

We used a wide variety of data augmentation techniques
to increase the diversity of training data, including affine
translation, noise, color jittering, and blur. They were also ap-
plied on datasets containing only still images to generate syn-
thetic image sequences. Clip reversal, speed changes, random
pausing, and frame skipping were used to make the model
learn more complex temporal changes.

2.2. Training Procedures

Because we focus on video clips instead of individual frames,
besides an extra dimension 7" is added to control the number
of frames used for training, and the dimension of input data
becomes [B, T, C, H, W], where B is the batch size, C is the
number of channels, and H and W represent the height and
width of an image frame. The whole training procedure can
be divided into three stages, and it took about 5 days on an
NVIDIA RTX 3090 GPU.

Additionally, training for segmentation data took place af-
ter every iteration of training for matting data. Image segmen-
tation (with COCO and SPD data) was trained after every odd
iteration, whereas video segmentation data is trained after ev-
ery even iteration.

Stage 1: We first trained the model on VM240K dataset
for 15 epochs, so it can learn the basic structure of human
poses and the temporal relationship across frames. The res-
olution is 512512, and the PointRend-based refiner is not
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Fig. 2: Qualitative comparison on VM240K HD dataset. Our method does not produce unexpected artifacts at boundary regions

like RVM does. Please zoom in to see the difference.

used in this stage. We set the learning rate of the mask-
prediction network as 5e—4, the encoder of the matting net-
work as 1e—4, and the rest of the network as 2e—4. Batch size
B and sequence length T is set to be 4 and 15 respectively.

Stage 2: The refiner module is used in this stage to learn
on high-resolution data for 5 epochs. Due to memory limi-
tation, we set batch size B = 2 and sequence length T' = 6
for high-resolution data. The resolution is 2048 x2048, and
the downsampling factor s is 0.25. To prevent the model
from overfitting on short sequences, we also jointly trained
the model on low-resolution data, with the same B and T
setting from Stage 1. We set the learning rate of the mask-
prediction network as be—5, the encoder of the matting net-
work as le—>5, the decoder of the network as 2e—5, and the
refiner as 2e—4.

Stage 3: For the model to learn more fine-grained details,
we trained it on the combination of AIM, D646 and H2K for
8 epochs. The refiner module uses 1e—4 learning rate for the
first 5 epochs, and 2e—5 for the last 3 epochs, while the rest
of the network uses 2e—6.

2.3. Additional Evaluation

Fig. 2 shows the visual comparison between our method and
RVM, which uses [12] for upsampling and filtering on high-
resolution input.

We also compared our method against two auxiliary-free
methods (MODNet and RVM) on real-world data. Cellphone
videos in Fig. 3 were from [13], while webcam videos in Fig.

4 were from [14]. These real-world data is more challenging
than the synthetic data used for training, thus making the mat-
ting process harder. It is clear that our method produces less
classification errors, and is more visually pleasing.

2.4. Figures of Ablation Studies

We conducted ablation studies to discuss the effectiveness
of each part of our network. We first removed the mask-
prediction network, and passed zero tensors into the Con-
vGRU modules to take away temporal information. As shown
in Fig. 5, the results produced without the mask-prediction
network cannot handle fine-grained details in certain regions,
whereas the results produced without temporal information
fail with fast-moving objects.

We also compared different criterion strategies for select-
ing error-prone regions for refinement, as discussed earlier in
the main paper. Fig. 6 shows that our method can produce
the sharpest boundary regions. Fig. 7 visualizes the regions
selected by different strategies.
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Fig. 5: Visual comparison on removing different parts of the network. Results produced by the full model contain less semantic-
level errors.
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Fig. 6: Visual comparison on different strategies for selecting error-prone regions. Our method can produce sharper boundary
regions.
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Fig. 7: Error-prone regions for refinement selected by different strategies.
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