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Figure 1: (a) The working environment of the proposed assembly instruction system. (b)(d)(f) The synthesized models and instructions
according to the estimated 3D poses of components. (c)(e)(g) Assembly instructions superposed on live views.

Abstract

Conventional object assembly instructions are usually written or il-
lustrated in a paper manual. Users have to associate these static
instructions with real objects in 3D space. In this paper, a novel
augmented reality system is presented for a user to interact with
objects and instructions. While most related methods pasted obvi-
ous markers onto objects for tracking and constrained their orien-
tations or shapes, we adopt a markerless strategy for more intuitive
interaction. Based on live information from an off-the-shelf RGB-
D camera, the proposed tracking procedure identifies components
in a scene, tracks their 3D positions and orientations, and evaluates
whether there are combinations of components. According to the
detected events and poses, our indication procedure then dynam-
ically displays indication lines, circular arrows and other hints to
guide a user to manipulate the components into correct poses. The
experiment shows that the proposed system can robustly track the
components and respond intuitive instructions at an interactive rate.
Most of users in evaluation are interested and willing to use this
novel technique for object assembly.
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1 Introduction

As the popularity of do-it-yourself (DIY) products and online shop-
ping, of which products are usually decomposed into parts for com-
pact packing size, users have more chances to assemble objects by
themselves. Assembly instructions are usually drawn or written in
manuals. Users have to map the indication on paper onto actions
for real objects, and they cannot get any feedback or help from this
kind of static instructions. Several researches were proposed to in-
teractively guiding the assembly process of users. They usually
attached particular markers on the surfaces of components [Reiners
et al. 1998; Zauner et al. 2003; Henderson and Feiner 2011b]. A
user has to keep these markers visible during the assembly process.
Besides, not all of the objects or components are suitable for marker
sticking.

Our goal is to provide instant and dynamic instructions during the
object assembly process of a user. Instead of using markers, we
adopt recognizing the identifications and poses of components ac-
cording to depth and color images captured by a camera. For this
real-time task, our detection and tracking methods aim at balancing
the computation cost and detection accuracy. A template match-
ing method is used to efficiently compare an unknown foreground
with multiple views of different components stored in the database.
The template matching can provide an initial pose of a recognized
component. An extended iterative closest point (ICP) method is
further applied to refining and tracking the 3D pose. Our detection
and tracking procedure can handle situations of partial occlusion
among components and hands.

Based on the relative poses among components, the proposed sys-
tem infers the current state from an assembly structure tree. It then
generates corresponding graphical indication, such as alignment
lines, circular arrows and so forth, to guide a user to manipulate the
components on hand. Moreover, these instructions are superposed
onto the live captured video for intuitive display and interaction.
Figure 1 shows the setting and several snapshots of the proposed
system. With the instant augmented reality (AR) instructions, users
only have to follow the indication arrows and accomplish the object
assembly at ease.
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2 Related Work

Due to the recent development of mobile displays, augmented re-
ality (AR) become an attractive topic again. Several researches ap-
plied this technique for interactive narratives [Kapadia et al. 2015].
In 2003, Tang et al. [2003] conducted experiments about the effec-
tiveness of AR. They specified that the AR system improved the
performance of the object assembling processing. Henderson and
Feiner [2011a; 2011b] discussed AR in maintenance tasks. Their
experiments showed that AR interfaces can reduce the time to lo-
cate targets and reduce head movements. AR instruction is more
effective than static 3D graphics instruction in the psychomotor
phase. Reiners et al. [1998] guided a user to assemble the door-
lock onto the car door for industry usage. Zauner et al. [2003] de-
signed an marker-based AR system for furniture assembly. They
mentioned and alleviated the occlusion problem by sticking more
than one markers on each component. Khuong et al. [2014] uti-
lized a voxel matching method to recognize statuses of LEGO
block assembly . Their constrained their pose estimation problem
to 2D translations on a table and one in-plane rotation. Alvarez
et al. [2011] presented an impressive markerless AR-based system
providing disassembly instructions. The statuses and poses of an
object were estimated based on edge and junction point features.
Therefore, their objects were with salient edge junctions and less
surface texture. Their system then superposed predefined instruc-
tions according to estimated main object information, and did not
consider the relative poses between components.

Several tangible interfaces applied different sensors for user inter-
action instead of markers. Liang et al. [2013] attached a magnetic
sensor grid on the back of a display to track non-ferrous compo-
nents in which the magnets are embedded. An optical multi-touch
tabletop was used to track touch points of users in [Ren et al. 2012].
Other researchers tracked objects based on computer vision tech-
niques. The Portico system proposed by Avrahami et al. [2011]
appended two color cameras to a tablet for surrounding objects de-
tection. Gupta et al. [2012] proposed a model assembly system
that was exclusively for Dulop blocks. Held et al. [2012] acquired
scenes by a RGB-D camera and generated 3D animation accord-
ing to the poses of physical puppets. Since they utilized the SIFT
features [Lowe 2004], this system was applicable to objects with
obvious textures or intensity edges.

Template matching is a practical solution for real-time object de-
tection and tracking, when the targets are known. This subsection
focuses on the features from depth and color images and how to
match templates in 3D space. Lowe [2004] detected rotation and
scale invariant key points from images, and the local gradient his-
tograms around a key point were recorded as its descriptor. This
SIFT feature is robust for matching objects with rich textures, but it
is not suitable for textureless objects. Hinterstoisser et al. [2012a;
2012b] introduced a template matching method, LINEMOD, which
combined the color and depth features. This method expresses an
image in a binary form and operations and can efficiently detect
objects with our without obvious texture.

Tracking the object pose in 3D space can be considered a regis-
tration problem between point clouds. Besl et al. [1992] proposed
the classic Iterative Closest Point (ICP) method for registering two
point clouds. ICP iteratively searches the closest corresponding
points between two point sets and estimated their transformations.
ICP method has a well-known problem that it tends to be trapped in
the local minimum. Yang et al. [2013] obtained the global optimum
through searching the whole space of rotation and translation by a
nested branch and bound algorithm. However, it is not feasible for
real-time tracking. Kyriazis et al. [2013] presented a novel concept
to estimate the pose of a handheld object in occlusion situations.
They represented this problem by a hand model with 27 degrees

Figure 2: The flow chart of the proposed system.

of freedom (DOFs). Such a high DOF problem was solved by the
particle swarm optimization (PSO).

3 System Overview and Dataset Collection

The proposed system is devoted to facilitating object assembly. It
can be divided into online and offline processes as shown in the Fig-
ure 2. The offline process is shown in green (top), and the online
processes are shown in blue (bottom). During the offline stage, we
used 123D Catch [Autodesk Inc. ] to reconstruct the 3D models of
components and objects from multi-view images. These 3D models
are then projected onto designated views to generate the reference
images (view templates) and their color and depth features. We cat-
egorized the models into two types: general and symmetric. The
general models are of asymmetric shapes, and the symmetric mod-
els are rotational symmetric about one of three coordinate axes. As
shown in Figure 3, the viewpoints of a general-type model are sam-
pled at vertices of a sphere mesh derived from an icosahedron. For
the symmetric model, the viewpoints are sampled by using a semi-
circle. The sampled viewpoints represent the out-plane rotation of
a model. The included angles between two adjacent viewpoints are
around 15 degrees. For each viewpoint, we also sampled 24 ref-
erence images regarding in-plane rotation. In addition to template
preparation, the relations among components are also defined in the
offline stage.

During the online processes, a background subtraction method is
used to extract foreground regions in advance. Our system then
checks whether a foreground region can be tracked from known
components. Otherwise, an extended LINEMOD method is uti-
lized to match an unknown foreground with view templates in the
database, and we can acquire the component identification and its
rough 3D orientation. The extended ICP is further proposed to re-
fining the orientation and tracking the following movements of a
component. In the last step, the proposed system analyzes the rela-
tive poses among physical components in the working environment,
and infers the indication arrows, sounds and messages to guide a
user assembling the components on hand.

4 Object Detection and Tracking

4.1 Detection of components and their rough poses

We adopted the LINEMOD method for detection because the it is
capable of recognizing both the textureless components and assem-
bled objects, on which more edges appear. The original method
compares an input with database templates according to their color
gradients and surface normals from depth images. In our observa-
tion, we found that the correct template can get a high similarity
score from this method but it may not be the one with the highest
score. If we use the template with their highest similarity score, the
detection results occasionally become unstable. Therefore, instead
of choosing the best template reported by LINEMOD, we get the
topK templates with the highest scores and present an second-pass



Figure 3: Two types of models and their reference images. (a) A
general-type model. The viewpoints are 162 vertices on a sphere
mesh. (b) A symmetric-type model. The viewpoints are sampled at
13 vertices of a semi-circle. (c) Examples of the reference images
generated in (a) and there are 24 images in total for the in-plane-
rotations.

evaluation criterion to amend their results.

When inspecting the failure cases, we found that that the silhouette
shape and the hue of color can be complement features for match-
ing. We define our measurement function to retrieve the best match
T as shown in Equation (1) and (2).
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h are the silhouette and hue map of the input region,

of which the sizes are normalized to a fixed scale, and Ris, Rih are
the silhouette and hue map of the reference image i among the top
K template. Equation 2 is composed of silhouette distance Ds and
hue distance Dh.
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, where ε is a small constant to avoid division by zero. Equation 3
evaluates the ratio of the intersection to union of two silhouette ar-
eas. If Ds is close to zero, it implicates that the I

′
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similar to each other. In order to distinguish the components with
the similar silhouettes but different color appearances, the second
term Dh is defined as
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The hue map is extracted from the hue channel of images in the
HSV space. It can reduce the influence of illumination changes.
The fraction in Equation 4 represents the percentage of the overlap-
ping pixels of which the hue value are similar (i.e. less than Th).

Figure 4 shows the effectiveness of our measurement function. We
can see that although the silhouettes of the reference image Figure 4

Figure 4: The detection result and the visualization of Ds and Dh.
(a) The normalized input color image. (b) The normalized hue map
I
′
h of input. (c) The normalized input silhouette I

′
s. (d)(h) Two

reference images (templates) selected by the LINEMOD. (e)(i) The
hue map Rih. (f)(j) The visualized Ds. (g)(k) The visualized Dh.

(e) and (i) are similar, the system can still select the correct one by
the hue distance. With the above process, we can retrieve the ap-
propriate template T with the lowest costEdet., and it substantially
improves the detection accuracy.

4.2 Extended ICP and the measurement in the projec-
tive view

4.2.1 The Extended Iterative Closest Point Method

We also extended the ICP method [Besl and McKay 1992] to refine
the coarse pose of a component and update its pose in the follow-
ing frame. ICP is known for its easiness to be trapped into a local
minimum, and thus, we present three modifications to decrease the
chances to be trapped.

Hidden surface removal
The goal is to find the optimal rotation and translation to align the
input point cloudQ from the depth map Id with the point cloud P ,
generated from the a 3D model. In most of the related methods, the
P is the whole surface points of a model. Since we already have
a correct but coarse initial pose (viewpoint), we can exclude the
points that should not be visible from the initial viewpoint. Using
the partial point cloud decreases the ambiguity during alignment
and reduces the tremble of component poses between frames.

Color constraint
The original ICP utilizes the geometric information only. In our
system, both the input data point set Q and the model data point
set P are with color information. Several related work [Douadi
et al. 2006; Men et al. 2011] mentioned the benefits of color in ICP.
Hence, we add the constraint of color similarity during searching
the corresponding points.

Bidirectional correspondence check
In the orignial ICP, for every point pi ∈ P , the ICP algorithm finds
its corresponding point q∗j ∈ Q in a single direction. Our extended
ICP searches and checks the corresponding points in two directions.
It not only finds the closest point q∗j ∈ Q for pi but also the closest
point p∗j ∈ P for qi. When pi and qj are the closest points to each
other, they can be regarded a bidirectional correspondence and are
used to estimate the transformation.

4.2.2 Validation of the extended ICP results

In order to make sure whether the pose estimation result is ade-
quate, we design a validation function. If the cost value Etra. is



smaller than the threshold Ttra., it means that the pose is accept-
able; otherwise, we mark the component or object is missing in this
frame. The validation function is listed as follows.

Etra.(Is, Id, Ss, Sd) = λtra.Df + (1− λtra.)Dd (6)

Is and Id are the silhouette and the depth map of the input region of
the current scene. Ss and Sd are the synthesis silhouette and depth
map by projecting the component model onto the refined viewpoint
reported by extended ICP. Df and Dd compute the differences of
the silhouettes and depth maps between the input and the synthesis
data. The former term Df measures the difference of the shapes in
the projective view:

Df = 1−Bin(1−
∑

(Is ∩ Ss)∑
(Is ∪ Ss) + ε

)

∑
(Is ∩ Ss)∑
(Is) + ε

(7)

Bin(D) =

{
0 ifD > 0.5

1 otherwise
(8)

The term
∑

(Is∩Ss)∑
(Is)+ε

evaluates the ratio of the number of overlapped
pixels to that of the input silhouette. We adopt

∑
Is as the de-

nominator instead of
∑

(Is ∪ Ss). That is because when there is
occlusion by the users’ hands, the area of Is is small and the Ss
becomes too dominant. We also designed the Bin() function to
decide whether the term

∑
(Is∩Ss)∑
(Is)+ε

is valid or not. If the Bin() re-
turns the value 0, implies that the two silhouettes differ from each
other substantially, and therefore, the term Df should be assigned
to 1 directly.

We also use the term Dd to evaluate the distance of depth maps
between the input and the synthesis.

Dd = 1−Bin(Df )
∑

[(Is ∩ Ss)dist(Id, Sd)]∑
(Is ∩ Ss) + ε

(9)

dist(Id, Sd) =

{
1 if |Id − Sd| < Td
0 otherwise

(10)

Similarly, the rightmost fraction in Equation (9) evaluates the ratio
of the number pixels with similar depth values to that of the in-
tersection region. The depth values are similar if their difference
is less than the threshold Td. The term Df and Dd are comple-
mentary because the Df measures the contours between the input
and synthesis result and the Dd measures the internal undulation.
Hence, it can avoid the ambiguity in the cases with the smaller Df
but different poses. An example is shown in Figure 5.

4.3 Runtime States of foreground regions

As mentioned above, when an input color image and depth map
are acquired from the RGB-D camera, we extract the foreground
pixels by background subtraction. These pixels are then grouped
into regions by a flood fill method (connected component labeling).
During runtime process, these regions are marked one of the four
states: detecting, tracking, closing and combining states, and each
state is associated with corresponding operations.

We defined a foreground region set R, where R = {Ri} and
i = 1, 2, . . . , NR, and this set is updated in each frame. For each
Ri ∈ R, it has properties {Ici, Idi, Isi,Oi}. Ici is the foreground
RGB image of the region such as Figure 6 (a)(e)(i), and Idi is the

Figure 5: The visualization of the validation. (a),(e) The color
image of an input component. (b),(f) The synthesis result according
to estimated poses. (c),(g) The difference of silhouettes Df . (d),(h)
The difference of depth maps by Dd. We can see that (b) and (f) are
of similar silhouettes. However, the pose in (b) is incorrect, and it
also has a higher cost Dd.

Figure 6: The illustration of the regions and their states. (a)(e)(i)
The foreground of input color image Ici. (b)(f)(j) The foreground of
depth image Idi. (c)(g)(k) The silhouette Isi of the Region Ri and
the Region Ri presented in the different color. Each color presents
one region. (d)(h)(l) The objects which have occurred and been
recognized in previous frames. We can see that there is no object
belonging to the R2, and hence the R2 is in the detecting state.
The R1 is marked as the tracking state because of the one corre-
sponding object o1. The R3 and R4 are labeled as the closing state
and combining state according to the poses of their corresponding
objects.

foreground depth map as shown in Figure 6 (b)(f)(j), and Isi is the
silhouette of the region as in Figure 6 (c)(g)(k). For each region,
we find whether there are close components or objects in previous
frames can partially fit this region. The set Oi, where Oi = {ok}
and k = 1, 2, . . . , NOi , records the corresponding objects associ-
ated with the region Ri. For example, in Figure 6 (c), the corre-
sponding object of R1 is o1, so the O1 = {o1}. In the the Figure 6
(g), the object set ofR3 is O3 = {o1, o2}.

Figure 6 exhibits the situations of the four states: the detecting,
tracking, closing and combining state. Their definitions are briefly
described as follows. Please refer to the supplementary image for
the flow of state transitions.
Detecting state: if the set Oi ∈ Ri is empty, which means that no
existing component belongs to a regionRi, the regionRi is labeled
as a detecting state.
Tracking state: if the size of the set Oi ∈ Ri is one, meaning that
there is only one object belonging to the regionRi, then the region
Ri is in the tracking state.
Closing state: if the size of the set Oi ∈ Ri is two or more than
two, and the pose of each object ok ∈ Oi has not reached the com-



Figure 7: An example of a tree structure for the assembly process.

bination requirement yet, we say the region Ri is in the closing
state. We have to perform multiple times of extended ICP to sepa-
rate the objects from a region.
Combining state: if the size of the set Oi ∈ Ri is two or more
than two, and the pose of each object ok ∈ Oi achieves the com-
bination requirement. Then the region Ri is set to the combining
state. The multiple components within the region have chances to
become a combined component.

5 Assembly Guidance

Our system provides live instruction for component assembly,
which can guide a user to combine the physical components intu-
itively and correctly. After the object recognition and pose tracking,
the system analyzes the pose relations between the components and
displays a hint to the user. How to turn the analyzed poses into a
visual instruction is also a challenging work because it depends on
the technique of 3D object tracking and needs to consider the spa-
tial relationship on the current scene. In this section, we discuss the
requirement of combination first, and then present how we show the
instruction on the interface.

5.1 Requirement of combination events

We organize the whole assembly process as a bottom-up tree struc-
ture shown in the Figure 7. Here, the components are classified into
three types: unit component (Cuni), internal component (Cint) and
complete component (Ccom). If a component is labeled as a unit,
it means that the component is at the leaf node in the tree. The as-
sembly process starts from two unit components in the level 0 of
the tree. If a component is an internal component, it means that
the component is composed of two unit components, one unit and
one internal component, or two internal components. The complete
component is the root of the tree and it is the final step of whole
assembly process. Figure 7 illustrates one example of the assembly
structure tree.

We defineA, whereA = {Ai}, i = 1, 2, . . . , NA, is the set which
records the combination information for each internal node, and
NA equals to the total number of the internal nodes. For Ai ∈ A,
where Ai = {Ri, Pi}, it records the requirement of the relative
pose between two components for invoking a combination event. If
the relative pose of the children nodes achieves the requirementAi,
the combination event occurs. Then, the components are combined

Figure 8: Illustration of two components which conform with the
combination requirement.

Figure 9: The illustration of the indication lines. (a) The blue cir-
cle is the indication circle (b)The red lines are the alignment lines.
(c)(d)(e) shows each set of the components and their representative
matched points.

to form the internal component. Hence, before the system starts,
the combination requirement Ai should be predefined for all of the
internal nodes. The rotation requirement Ri is a threshold value
which controls the tolerance of rotation error during alignment. The
right part of Figure 8 shows two components in the expected pose
and we can see their local coordinates are in a similar orientation.
The position requirement Pi records the relative position between
the component origins and an example vector −→v is shown in Fig-
ure 8.

5.2 Display of indication lines and circles

The indications are determined in two steps. At the first step, the
system checks the relative rotation between two components on the
scene. If the relative rotation does not reach the requirement Ri,
the system shows the rotation-circle to instruct the user to rotate the
component into the correct orientation. Afterwards, the second step
is to correct the component position by showing alignment lines.
The indications of a rotation circle and an alignment line are illus-
trated in Figure 9 (a)(b).

The alignment line links the representative matched points between
two components. As shown in Figure 9 (c), three matched points
are set on the left and right components respectively. For the indi-
cation circle, we estimate the relative rotation matrix Rij between
two local coordinates of components i and j. In our early design,
we decomposed the matrix Rij by the arbitrary axis rotation, and
found the axis axisij with the smallest angle θij . The axis axisij
and circular arrows with angle θij were shown on the screen for
instruction. However, the axis axisij may not be aligned with the
view axes or the ground axes. In a few cases, some of the pilot
users did not well recognized the axis orientation, and users prefer
rotating a component on the table to lifting and rotating the compo-
nent. Therefore, we further separated the rotation process into two
sub-steps: rotation along the table normal z direction, and rotation



Figure 10: Illustration of the method drawing the rotation-circle
based on the global coordinate. Left: The orientations of two
components are not correctly aligned. Right: The circle C of the
rotation-circle.

along the axis orthgonal to z. Figure 10 show that table normal as
the z axis and the x and y are the projection of camera view axes of
the camera.

5.3 Design of User Interface

In order to design the user interface, we conducted a pilot exper-
iments and design our interface after discussing with the subjects.
We invited two users who had not used our instruction system be-
fore to be our subjects. In the first experiment, we only displayed
the indication lines include rotation circles and alignment lines on
the interface and did not show any other hint. After the experiment,
the subjects said that the biggest problem they faced during the
assembly process was that they felt confused about what the next
component should be taken. Therefore, we design a Next Compo-
nent window to list all the components that can be taken in the next
step. In the second experiment, we wonder whether indication lines
can effectively guide a user, and thus we closed the indication line
and only display the Next Component window. By our observation,
during the assembly process, the subjects can easily take the correct
component for the next component by following our Next Compo-
nent window. However, the subjects were not sure about the way
to combine two components without indications, which implicated
that the indication lines help the user during the assembly process.
After these two experiments, the subjects also recommended that
adding the sound effects when the special events occur may im-
prove the users concentration. Through our pilot experiment, we
design our user interface which includes four parts as shown in Fig-
ure 11. Figure 11 (a) is the VR window which displays the synthesis
result of detection and tracking. Figure 11 (b) is the AR window,
where all of the assembly information are shown . Figure 11 (c) is
the window of exhibiting all the components that users should take
next. Figure 11 (d) is the Stage window showing the current model
that a user have assembled. Besides the four parts on the inter-
face, we also added sound effects when the detecting and combin-
ing events occur. The system plays a ding sound when the detecting
event occurs, and it plays a triplet chord sound when the combining
event is invoked. In few cases, a user have combined two compo-
nents but the system has not detected the combining event due to
missing tracking. We place a red region (button) in the top left of
the view. When users touch the red region, the system goes to the
next step.

6 Experiment

The proposed system was built on a PC with a quad-core, 3.4 GHz
CPU and 12 GB RAM. Currently, only two threads are invoked. We
adopted the ASUS Xtion Pro Live [ASUSTek Computer Inc. ] as
our RGB-D camera device. Due the the limitation of the device, the
camera have to be placed 80 cm higher than the table, and the field
of view must cover the working area such that any two components

Figure 11: The design of our user interface.

Figure 12: Examples of components used in the object assembly
experiments.

can be manipulated by a user. The resolution of the input color
and depth images are 640 × 480 pixels. Figure 12 shows several
components and their names used in our object assembly.

In our current system, we set the threshold Ttra. = 0.4 in the pose
measurement Etra. and the threshold Tdet. = 0.57 for the detec-
tion measurement Edet.. Both the weights λdet and λtra are 0.5.
The threshold Th about the hue tolerance in equation (5) is 15 and
the threshold Td in equation (10) is 10. The unit of the depth value
is millimeter (mm).

6.1 Efficiency and detected accuracy

For evaluating our system, we recorded a video sequence of 3113
frames with multiple components as shown in Figure 12. The aver-
age detecting FPS is 9.55 with 10128 templates for matching and
the tracking FPS is 17.20. To evaluate the effectiveness of our de-
tecting measurement function in Equation 2, we conduct two ex-
periments about the true positive rate of our selected template T
from the the top K results compared to the ground-truth compo-
nent identification and its orientation.

In the first experiment, we detected the components by all the cat-
egories of templates. The total categories is 11 and the total tem-
plate number is 10128. The LINEMOD detector returns the top
K matched templates and we select the most appropriate result T
through our measurement function. We define the detected result is
true if both of the category and the orientation of a component are
correct. Figure 13 shows the detecting rate fromK = 1 toK = 10.
Since matching the whole view templates increases the ambiguity
during the LINEMOD detection, the accuracy is only acceptable.
However, because a large part of errors come from the orientation
error which can be fixed in the following extended ICP, our detec-
tion performs well in the run-time process. Figure 13 shows the
detection rate changes according to the number K. Accordingly,
we set K = 7 in our system when we need to detect all possible
components.

Furthermore, in our assembly application, the detector usually
matches a region with templates from only a few components, such
as the existing components near the region and the next compo-
nents. It is more like a conditional detection problem. In the sec-
ond experiment, we detected the components only using the tem-



Figure 13: The true positive rate for the best template selection
from top K candidates from all view templates. A test is considered
true-positive only when the component identification and orienta-
tion are both correct.

Figure 14: The true positive rate for the best template selection
from top K candidates from view templates of a given category.

plates of a given component and measured the detection accuracy
for K = 1 to K = 5. Figure 14 shows that the true positive rate
under a conditional detection is significantly improved.

6.2 User experience

For the user evaluation, we built two datasets: ”Toy Bicycle” and
”Toy Cart” are shown in Figure 16. They are from a ”trasformable”
toy, and most of the components of these two toys are common.
The detailed information about the number of the unit component,
internal component, complete component and the total number of
the templates of each dataset are shown in Table 1. We invited six
users as our subjects including four females and two males. They
did not used our system before. We separated the users into two
groups. In the first stage of our experiment, the subjects in the
Group 1 were given the paper manual (with illustrations in clear
viewpoints) and assembled the dataset Toy Bicycle. In the second
stage, the subjects assembled the other dataset, Toy Cart, through
our instruction system. The subjects in Group 2 assembled the Toy
Cart first by paper manual(with illustrations in clear viewpoints)
and assembled the Toy Bicycle next.

After the experiments, the subjects were asked to fill a question-
naire. In our questionnaire, we designed three major questions to
compare our system with paper manual. In the question 1, users
have to score the difficulty for assembling the objects by paper man-
ual and our system in overall. In the question 2, users have to score
the comprehension for understanding the guidance and applying it
on the assembly. In the question 3, users have to score the helpful-
ness between the paper manual and our system. The result of the
comparison is shown in Figure 15. For the question 1 and question
2, the scores 1 to 5 represent the difficulty to simplicity. For the
question 3, the scores 1 to 5 represent the helplessness to helpful-

Figure 15: The reuslt of our questionnaire.

ness. The reported scores support our system.

We also asked the subjects that whether they are willing to use our
system to help them during the assembly. Five subjects said that
they would select our system because our system makes the whole
assembly process easier. It is helpful for them because our sys-
tem can immediately notice users the current stage and whether
the assembly is correct. The subjects also said it is clearer for the
whole assembly process through our system, because they know
what component they should take is in the next step, and there are
matching points between the two components. Only one subject ex-
pressed that he/she is not willing to use our system because he/she
feel stressful in our limited working space and in front of a camera.
She/he preferred assembling the components on his/her way. On
the other hand, users reported that they actually enjoyed using this
new assembly technology. They did not have to think and just fol-
lowed the instant instructions. However, due to the response time
of our current system (about 10 to 18 fps), they preferred slowing
their motions and keeping the indications following their actions.
Please refer to the supplementary video to see the user interaction
with the proposed system.

Figure 16: The two datasets for our experiments. (Left) The
complete object ”Toy Bicycle”. (Right) The complete object ”Toy
Cart”.

Table 1: The information of the two datasets.

Dataset #Cuni #Cint #Ccom #templates
Toy Bicycle 11 16 1 30264
Toy Cart 11 9 1 21432

7 Conclusion and Future Work

In this paper, we propose a novel tangible interface to guide a
user assembling the components in an intuitively way. Interact-
ing with real objects is a challenging work. While several related



work adopted using markers, we extended state-of-the-art detec-
tion methods and presented an framework to estimate the 3D poses
and their interaction among markerless components manipulated by
users. An assembly tree structure is also described to handle the in-
tricate assembly process, where multiple components and steps are
involved. We also presented two types of indications, rotation cir-
cles and alignment lines to guide a user to combine components.
In the user evaluation, most of the users give positive responses to
our prototype system, where the interaction is interesting and also
intuitive.

There are several future works. The proposed system can be devel-
oped with parallel computation, and the response time will be sub-
stantially improved. It is worthwhile to further analyze the pros and
cons of such an interface from various aspects through user eval-
uation. It is also possible to import graph construction methods,
e.g. [Li et al. 2008], to automatically construct our assembly tree.
We think this technique is suitable for applications with a head-
mounted display (HMD), such as Oculus [Oculus VR ]. However,
our current camera requires long range for sensing. We plan to port
our system to new sensors and HMDs in the future.
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KAPADIA, M., FALK, J., ZÜND, F., MARTI, M., AND GROSS,
M. 2015. Computer-assisted authoring of interactive narratives.
In Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics and
Games, 85–92.

KHUONG, B. M., KIYOKAWA, K., MILLER, A., LAVIOLA JR.,
J. J., MASHITA, T., AND TAKEMURA, H. 2014. The effec-
tiveness of an ar-based context-aware assembly support system
in object assembly. In Proc. IEEE Virtual Reality, 57–62.

KYRIAZIS, N., AND ARGYROS, A. 2013. Physically plausible 3d
scene tracking: The single actor hypothesis. In Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 9–16.

LI, W., AGRAWALA, M., CURLESS, B., AND SALESIN, D. 2008.
Automated generation of interactive 3d exploded view diagrams.
ACM Trans. Graphics 27, 3, 101:1–101:7.

LIANG, R. H., CHENG, K. Y., CHAN, L., PENG, C. X., CHEN,
M. Y., LIANG, R. H., YANG, D. N., AND CHEN, B. Y. 2013.
Gaussbits: magnetic tangible bits for portable and occlusion-free
near-surface interactions. In Proc. SIGCHI Conf. Human Factors
in Computing Systems, 1391–1400.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Intl J. Computer Vision 60, 91–110.

MEN, H., GEBRE, B., AND POCHIRAJU, K. 2011. Color point
cloud registration with 4d icp algorithm. In Proc. IEEE Intl.
Conf. Robotics and Automation, 1511–1516.

OCULUS VR. Oculus rift. https://www.oculus.com/.

REINERS, D., STRICKER, D., KLINKER, G., AND MÜLLER, S.
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