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ABSTRACT 
 
Estimating upper body poses from a sequence of depth im-
ages is a challenging problem. Lately, the state-of-art work 
adopted a randomized forest method to label human parts in 
real time. However, it requires enormous training data to 
obtain favorable results. In this paper, we propose using a 
novel two-stage method to estimate the probability maps of 
upper body parts of users. These maps are then used to eval-
uate the region fitness of body parts for pose recovery. Ex-
periments show that the proposed method can obtain satis-
factory outcome in real time and it requires a moderate size 
of training data. 
 

Index Terms—Pose estimation, depth image, arm pose, 
randomized forest  
 

1. INTRODUCTION 
 
Tracking human poses is one of the most important issues 
regarding depth image analysis. Former research treated 
depth images of a subject as a combination of 3D compo-
nents, and employed silhouette regression [1], model fitting 
[4] or other methods to fit parts for a depth image. Other 
research introduced statistical or learning methods, such as 
associate Markov network [3] or randomized forest [6,7], to 
label the foreground pixels with respect to each body part. 
For each pixel, they usually took the part of maximum like-
lihood as its label and then identified the location of each 
body part by pixel clustering.  

In this paper, we focus on the upper body pose estima-
tion. That is because most of the commands and interactions 
through depth cameras are regarding the upper body pos-
tures. The positions of human hands, elbows, and shoulders 
are crucial to all of above applications. In our early trial, we 
found that existing classification algorithms usually calcu-
lated the per-pixel probability of each part and labeled the 
pixels in one step. However, to concurrently identify nu-
merous body parts, the classifiers are prone to be sensitive 
to different or noise-disturbed data. For instance, when a 
user sit, the probabilities for arms or legs are usually close to 
each other and it results in ambiguity. To tackle this prob-
lem, the related methods required more than hundred thou-
sands of training poses to obtain favorable results. 

By contrast, we propose a two-stage classification mod-
els. After we obtain (segment) the full human body depth 

data, our system divides the target regions in a depth map 
into upper and lower body parts in advance, and then the 
extracted upper body region is further processed by the sec-
ond randomized decision forest model. In the second classi-
fier, the upper body part is divided into eight detailed parts. 
These parts are the head, torso, left shoulder, right shoulder, 
left upper arm, right upper arm, left forearm, and right fore-
arm. In order to achieve real-time performance, the cascad-
ing two-stage classifiers are performed on graphics pro-
cessing units (GPU). 

With the two-stage approach, we turn a depth map into 
probability maps with respect to multiple upper body parts. 
However, when using only a moderate size of training data, 
the probability maps are still noisy. If we would like to re-
trieve the skeletons and joints of these parts by intuitive line 
fitting or region segmentation, the skeletons and joints will 
frequently jitter. Therefore, we further formulate objective 
functions with respect to multiple probability maps to more 
reliably estimate the joints and skeletons. A random sample 
consensus (RANSAC) method is used to efficiently approx-
imate the optimal skeletons according to the objective func-
tions. At last, the estimated skeleton poses are checked and 
rectified. The experiment demonstrates that the proposed 
approach outperforms the related method under a moderate 
size of training data. The flowchart of our system is shown 
in Fig. 1. 
 

2. PROBABILITY MAP ESTIMATION BY TWO 
STAGES 

 
The randomized forest [8] is an ensemble classifier contain-
ing multiple decision tree models. Component trees within a 
forest are usually randomly different from one another. This 
leads to no correlation between the trees. In recent years, 
this classifier has been proved to be effective for labeling 
various subjects from images. Shotton et al. [6,7] proposed 
an efficient framework for recognizing human parts from 
depth images. In their decision forest, they generated a large 
amount offset vectors for each pixel to find a set of vectors 
with distinct separation. However, when the classifier at-
tempts to separate multiple small body parts, the offset vec-
tors usually has to be small. In other words, they focus more 
on local variations, and it results in ambiguous situations 
between upper and lower limbs. 

As mentioned above, we propose using two stages of 
randomized decision forests: one for rough upper/lower 
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Fig.2 An example of probability maps of eight body 
parts. 
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body segmentation, and the other one for detailed upper 
body part segmentation. The first forest can employ offset 
vectors of a larger range to roughly separate upper and low-
er bodies, and the second forest then employs vectors of 
relatively smaller ranges for detail classification. Therefore, 
we can use fewer levels of decision trees to achieve higher 
recognition accuracy under identical training data. By intro-
ducing GPU acceleration, the total computation time of the 
two-stage approach is less than 1 millisecond for a single 
user, and it is extendable to multiple users. 

Besides, different to method by Shotton et al. [6,7] 
where a pixel is directly assigned a label, in our framework, 
the outputs of random decision forest become several prob-
ability maps associated with body parts. The eight probabil-
ity maps (shown in Fig. 2) are then used in the following 
skeleton extraction. For simplicity, we abbreviate the index 
of body parts left shoulder, right shoulder, left upper arm, 
right upper arm, left forearm, and right forearm to ls, rs, lu, 
ru, lf and rf in the following discussion. 
 
3. SKELETON EXTRACTION FROM PROBABILITY 

MAPS  
 
This section introduces the objective functions based on the 
aforementioned probability maps, and describes a random 

sample consensus (RANSAC) process for posture approxi-
mation in real time. 
 
3.1. Objective functions of body parts 
 
Our idea is inspired by the pictorial structure [5,9,10,11]. 
Pictorial structure estimates the linkage of body parts as a 
concatenation of conditional probabilities. Our goal is to 
efficiently estimate the upper body postures, especially the 
critical forearm poses. Unlike the limb-based representation 
in conventional pictorial structure, we calculate the skele-
tons through joint representation. Given the probability map 
set M = {Mhead, Mtorso, Mls, Mrs, Mlu, Mlf, Mru, Mrf } as in 
Fig. 2, an initial thought is that the correct skeleton position 
should be located at the center of the region with highest 
probabilities. For example, consider the right shoulder cen-
ter position Prs and its neighbor region Rrs, we define the 
objective function (response) Srs of joint rs as the sum of the 
pixel probability values within region Rrs . 
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When a pixel is located at the correct position, it should 
have a high response value. The functions about the head, 
torso and right shoulders can be represented in a similar way; 
we retrieve the best Phead, Ptorso Pls and Prs from the posi-
tions with maximum of Shead, Storso, Sls and Srs.  

By contrast, because an arm consists of two linked and 
movable parts, i.e. upper arm and forearm, we have to con-
currently consider the two probability maps Mru and Mrf or 
Mlu and Mlf. In the following explanation, we take Fig. 3 as 
an example for right arm evaluation, and evaluation for the 
left arm is similar. 

Given fixed shoulder position Prs calculated in (1), the 
next target is to find the best locations of right elbow and 
hand, Pre and Prh. These two variable points are drawn in 
red in Fig. 3. Based on a pair of Pre and Prs, we can define 
an approximate upper arm region Rru (the purple ellipse in 
Fig.3). Similarly, a pair of Prh and Pre can define an approx-
imate forearm region Rrf  (the blue ellipse in Fig.3).  

To find the upper arm region Rru and forearm region Rrf , 
we define an objective function Srarm.  
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where Wru and Wrf are anisotropic Gaussian fields deter-
mined by region Rru and Rrf. They can be regarded as varia-
ble templates of the upper arm and forearm. The two terms 
in (2) evaluate the correlations between the variable tem-
plates and the underlying probabilities of corresponding 
parts. In the first row of Fig. 3, the elbow Pre is not at a cor-
rect position and Srarm is lower. In the second row, both the 



 

 
Fig.5 Classified result images of two methods at sitting 
poses. We illustrate the most probable part of each pixel. 
A color represents a certain body part. The upper row is 
estimated by a single-stage random forest. The lower row 
is estimated by the two-stage method. 

elbow and hand positions are correct and they generate ade-
quate Rru and Rrf. The Srarm value is higher. 

In practice, the per-pixel estimation of forearm proba-
bilities by a random forest method is usually disturbed by 
other regions, especially the other hand’s forearm. To ad-
dress this problem, we included a complementary penalty 
term and rewrote the estimated function (2):  
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where )( pM rf
 is the sum of all other parts’ probabilities at 

position p except the left forearm and right forearm. λ con-
trols the weight. 

For example, in a hand-crossing case, the left and right 
forearm regions are mixed together, Eq. (2) generates short-
ened arms because the pixels of high forearm probabilities 
are separated. The complemental term helps the algorithm to 
find a dominating skeleton which covers the whole mixture 
region. Fig.4 shows an example with the complementary 
term. 
 
3.2. Pose Approximation by RANSAC 
 

Among the aforementioned objective functions, it is rela-
tively straightforward to estimate individual joints, includ-
ing head, torso and left/right shoulder joints. Their proce-
dures are similar to the mean-shift algorithm [12], and the 
estimated points iteratively shift their positions toward cen-
ters of high probability regions.  

By contrast, for the arm posture estimation, there are 
two variables Pre and Prh which can concurrently move. For 
efficiency and avoidance of trapping into the local minimum, 
we chose RANSAC algorithm to solve the corresponding 
objective functions. We randomly select two points from the 
upper-body region extracted in the first stage and calculate 

rarmS ' iteratively until an adequate result is retrieved. In 
practice, the possible position candidates are restricted only 
at positions with high probabilities with respect to the fore-
arm. That is because when an upper arm and forearm over-
lap in a depth image, the forearm is mostly in front of the 
upper arm such that the upper arm region is partially oc-
cluded. Thus, elbow and hand joints should locate at the 
forearm region. The default iteration number of RANSAC is 
1000. 
 

4. POSE CORRECTION 
 
Few failure cases may still occur with the above method and 
the estimated skeletons need to be rectified. Two additional 
steps are applied to keep the pose within reasonable scope. 
First, the estimated postures are projected into subspace 
generated by principal component analysis (PCA). Besides, 
our system amends unreasonable lengths of skeletons and 
invalid angles of human limbs. 

It also checks whether the templates of the estimated 
body parts are able to fully cover the input depth regions, 
especially the arm parts. When low coverage situations oc-
cur, the proposed system automatically adjusts the elbow 
joints, and it increases the coverage between the synthetic 
and input regions. 
 

 
Fig. 3. Right arm fitting by an objective function. Blue 
point: the given shoulder point; red point: variable posi-
tions of the elbow and hand; purple ellipse: upper arm 
region according the current shoulder and elbow posi-
tions; blue ellipse: forearm region according to the elbow 
and hand positions. 

 
          (a)                        (b)                            (c) 
Fig. 4. Effect of complementary term. (a) Mtorso. (b) Esti-
mated forearm (red) without the complementary term. (c) 
Estimated forearm (yellow) with the complementary 
term.  



5. EXPERIMENT RESULTS 
 
The proposed method is designed for one- or multi-user 
skeleton estimation. Running on a desktop with Intel i7 CPU 
and Nvidia GTX770 GPU, our system can calculate more 
than two users’ skeletons in real time.  

We compared the performance of the single-stage ran-
dom forests classifier and our two-stage method for upper 
body estimation. For the single-stage random forest method, 
we adopted approximately 30,000 synthesized depth images, 
of which the postures were acquired from the CMU mocap 
database [2] to train this classifier. For the two-stage estima-
tion model, we firstly employed about 10,000 synthesized 
images to train the first upper and lower body classifier. For 
the second phase, we adopted about 20,000 images to train 
the detailed upper-body-part classifier.  

We tested two pose datasets from CMU mocap database 
[2]: one contains standing actions, and the other contains 
sitting actions. Each dataset has around 1000 frames. We 
compared the classified results with the ground truth body 
part regions and calculated the accuracy. Fig. 5 shows sev-
eral examples. Table I lists the per-pixel accuracy of label-
ing according to the maximum probability. In standing pos-
es, both methods perform acceptably in accuracy, but in 
sitting poses, the two-stage model outperforms the single-
stage one in arm regions, especially in forearm region which 
is important in gesture/motion tracking. We would like to 
stress that our skeleton extraction uses all the probability 
maps instead of the labels of maximum probability. Fig. 6 
shows examples of the proposed upper body skeleton esti-
mation from a live depth camera. 
 

6. CONCLUSION 
 
This paper aims at estimating upper body postures from a 
sequence of depth images. In order to improve the per-pixel 
classification accuracy with only a moderate size of training 
data, we propose a two-stage classification model. The 
probability maps estimated by the classifiers are applied to 
objective functions for skeleton extraction, where a 
RANSAC method is used to estimate approximate results. 
The proposed framework is adapted to parallel computing 
with GPU acceleration, and therefore, it can estimate multi-
user poses in real-time as Fig.6. 

There are two main contributions in this paper. First, 
the two-stage method generates more stable results under 
the condition of compact training data. Second, the objective 
functions based on probability maps are presented to make 
the estimated pose more reliable, while per-pixel labeling 
methods usually fail due to self-occlusion and noise. One 
possible future work is to utilize temporal coherence or mo-
tion patterns [13] to further improve the estimation results. 
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8. REFERENCE 
 

Standing  
Poses 

head torso Left 
shoulder 

Left upper 
arm 

Left fore-
arm 

Right  
shoulder 

Right upper 
arm 

Right fore-
arm 

Single stage 0.862249 0.901332 0.819069 0.583980 0.892386 0.795690 0.681857 0.856755 
Two stage 0.871207 0.928993 0.737761 0.612904 0.869445 0.762663 0.564690 0.762886 

Sitting  
Poses 

head torso Left 
shoulder 

Left upper 
arm 

Left fore-
arm 

Right  
shoulder 

Right upper 
arm 

Right fore-
arm 

Single stage 0.662479 0.684488 0.639641 0.403708 0.302592 0.526079 0.493677 0.211280 
Two Stage 0.86800 0.906886 0.684056 0.670106 0.592193 0.535756 0.598233 0.506838 

Table I. The per-pixel labeling accuracy of each body part. A pixel is assigned to the body part of the maximum proba-
bility. The two-stage model generates more accurate results on the forearm regions in sitting poses. 

 

 
Fig.6 Upper body posture estimation from a live depth 
camera. In the first case, the lower body is even partial-
ly occluded. 
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