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Abstract—In this paper, a markerless 3D hand tracking
system for monocular RGB video is presented. We propose
a novel two-level approach to efficiently grasp the personal
characteristics and high varieties of hand postures. Our system
first searches the approximate nearest neighbors in a small
personalized real-hand image set, and retrieves more details
from a large synthetic 3D hand posture database. Temporal
consistency property is also utilized for disambiguating and
noise reduction. Our prototype system can approximate hand
poses including rigid and non-rigid out-of-image-plane rota-
tion, slow and fast gesture changing during rotation. It can
also recover from a short-term missing hand situation in an
interactive rate.
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I. INTRODUCTION

In recent years, significant revolutions in graphics input
and human-computer interaction have occurred. Various new
consumer-level devices are produced to capture the motion
of human bodies and hand gestures, such as data glove,
Microsoft Kinect [1], or ASUS Xtion Pro [2]. However,
these devices require additional specific sensors, e.g. in-
frared cameras or projectors. On the other hand, visible-
light cameras are now essential components in most modern
mobile and desktop equipment. Therefore, it can have more
pervasive usages to track the human hand gestures from a
monocular camera.

Based on a single-view camera, markerless 3D recon-
struction of hand poses is a highly difficult problem. First,
a human hand is an articulated object with more than 20
degrees of freedom (DOFs). Without sufficient prior infor-
mation or constraints, it is difficult to estimate the optimal
postures from such high dimensional space in real time.
Second, our hands are composed of multiple articulated
parts, but textures and colors of different articulated parts
are similar. Furthermore, since the captured images results
from perspective projection, the shapes in a camera view
are of large variety, and with considerable self-occlusions.
Invariant tracking features [3], [4] that are commonly used
in computer vision are not fit for this problem. Resembling
the full body motion, motion of the fingers is non-linear and
its high variety makes it difficult to be well approximated by
a simplified model. As addressed by A. Erol et al. [5], the

hand pose changes fast and abrupt with a speed reaching up
to 5m/s for translation and 300◦/s for wrist rotation. It com-
bines with non-linear motion, introduces extra difficulties
for tracking algorithms, especially for temporal-filter-based
methods.

In this paper, we aim at tracking an articulated hand with-
out using markers. Our motion model includes 20 DOFs for
the joint angles and 6 DOFs for global hand orientation and
location. To deal with the serious self-occlusion and high-
dimensionality approximation, we propose a data-driven
technique using multiple features, hierarchical approximate
nearest neighbor(ANN) search and Bayesian-filtering-based
pose reconstruction to efficiently estimate arbitrary hand
motion.

Instead of using the markers or ”color glove” in related
articles, we choose to capture a small real hand image
database for a user as a training process. This small database
records user specific information, and is helpful of rapid
initial approximation. We further use a large 3D posture
database to deal with the high variety of detailed motions.
The initial estimated posture in the small dataset can be
further refined with the detailed data searching. For robust
searching in the high dimensional samples, we choose non-
Euclidean distance measures such as chamfer distance.

Our experiments demonstrate that the proposed prototype
system can estimate hand poses in an interactive rate and can
provide an intuitive and advanced human computer interface.

II. RELATED WORK

This section gives a short overview of general optic track-
ing and estimating the 3-D position and joint configuration
of hands. From a methodological point of view, the work on
optical hand estimation could be divided into two groups:
model-based tracking and indexing-based posture estima-
tion. From the viewpoint of feature selection, it could be
divided into bare-hand tracking and marker-based tracking.
These decades, hand tracking continues to be an active
research area. Many pioneer or classic papers can be found
in the review by A. Erol et al. [5]. Since our system takes
bare-hand inputs and utilizes synthetic models and image
data, the following subsections focus on the state-of-the-
arts about model-based and indexing-based methods for a



Figure 1. The proposed interactive-rate method for 3D hand motion
estimation. Top: the experiment environment; the left and right columns
are the input real images and the estimated hand articulations, respectively.

markerless hand.

A. General object tracking
To track a nearly rigid-body object moving in 2D im-

age sequences, several algorithms have been proposed. For
example, Mean-shift tracking [6] is an iterative localiza-
tion algorithms based on the maximization of a similarity
measure. However, a hand consists of multiple articulated
components, and the hand motions include not only global
palm translation and orientation, but also local articulated
rotations.

Filtering-based methods incorporate prior assumptions
about the object dynamics and hypotheses. For linear func-
tions subjected to Gaussian noise, Kalman filter is one of
the popular filtering algorithms. Particle filtering [7] utilizes
sequential Bayesian filters with Monte Carlo simulations
for non-linear and non-Gaussian motion. But, it requires
a number of sampling points. For a high DOF non-linear
motion, the sampling region and transition prior is often
difficult to be determined. To improve the tracking result,
it may have to use considerable numbers of sample points
with a high video capture rate.

B. Model-based Hand Tracking
Model-based approaches use an articulated 3D hand

model for tracking. At each frame of the image sequence,
model-based methods search within the configuration space
to find the best parameters that minimize the differences
between the projected hand model and the image frame.
To quickly search in configuration space, these systems
usually assume that the configuration at the previous frame is

known. Therefore, manual initialization procedure is usually
required in the first frame.

B. Stenger et al. [8] used a model based on generalized
cylinders and presented tracking based on unscented Kalman
filter. Then, they presented another method [9] based on
hierarchical Bayesian filter. In this method, a large number
of templates are evenly generated from their cylinder based
model. Then, they used chamfer distance for matching.
Their hierarchical filtering improved the computational per-
formance and successfully tracked restricted rigid motion
and low degrees-of-freedom articulated motion but still far
from real-time and high DOF motions.

Martin de La Gorce et al. [10] built a delicate model
that incorporated a polygonal mesh to accurately fit shape
and synthesized the hand projection with texture. The il-
lumination was dynamically estimated through shape-from-
shading techniques. The model provides state-of-the-art pose
estimate on complicated background, high DOFs and occlu-
sion sequence. However, their method is also complicated
and takes considerable time on synthesis of novel projection
images. The above-mentioned methods showed that the
synthetic data and uniform sampling templates can handle
complicated situations but they cannot reach real-time or
interactive performance with off-the-shelf hardware.

Oikonomidis et al. [11] present a model-based method
for tracking the full articulation of two interacting hands
observed by an RGB-D sensor. They formulate two-hands
tracking as an optimization problem in a 54-dimensional
parameter space. To solve this problem, they use Particle
Swarm optimization.

C. Indexing-based Pose Estimation
In the indexing-based pose estimation approach, a set

of hand features is labeled with a particular hand pose,
and a classifier is learnt from this training data. Recently,
the boundaries between model-based and indexing-based
methods are blurred. In several papers, training data are
generated from 3D models but did not search over the entire
configuration space.

Michalis and Vassilis [12] generated a large projected
3D hand image database and proposed an embedding-
based and hash table-based indexing methods for hand
shape recognition. Romero et al. [13] proposed a nearest
neighbor search in a database with different grasp types,
different viewpoints and different illuminations. They used
time continuity enforcement in joint space to disambiguate
the ambiguity. These methods can match every incoming
image to the large number of database images at interactive
times. However, the recognized gestures or motions of these
methods are limited, which restrict their applications.

Wang and Popović [14] proposed using a color glove to
improve the robustness of data matching. The color patches
on the glove can further be regarded as alternative markers
for pose refinement. Their database generated from a 3D



model contains 100,000 entries. They successfully track
many commonly used hand gestures, sign language alphabet
and random jiggling of the fingers. Moreover, their system
can provide an interactive-time control for object interaction
in 3D space. The high performance of color-glove tracking
by searching inspires our bare-hand posture estimation. Our
goal is to find an efficient and robust method to estimate
3D postures for a database with about 100,000 bare hand
images.

III. OVERVIEW

Our goal is to track bare hand’s 3D positions and motions
from a single-view image sequence. It is difficult to directly
match the user’s hand shape with an approximate 3D hand
model. On the other hand, capturing 100,000 real examples
is intractable as well. In our work, we propose a hybrid
method. First, we require a user to do a short and simple
training data collection. We utilize the user-dependent and
computer-labeled real hand image data set to find a few
approximate nearest-neighbors (ANN) groups that are near
the query image. Then, we use these groups as searching
seeds, and perform our Bayesian-filtering-based pose recon-
struction in a large database, generated from a 3D model, to
further estimate the actual pose. Fig. 2 shows the flow chart
of the proposed system.

In section IV, we describe the construction of the
databases and a method of robust matching. At first, for
both the construction of the database and processing the
query image, we need to apply hand image segmentation to
all images. We classify each pixel either as background or
hand using Gaussian Mixture Models(GMM) trained from
a set of hand-labeled images. For the matching function,
the chamfer distance [15] is used to compute the similarity
between the input hand image and database images. This
method is a well-designed method to measure the distance
between two edge images.

In section V, we propose our Approximate Nearest Neigh-
bor(ANN) search for both two databases. For the small
database, a standard Approximate Nearest Neighbor quick
search method, Kd-tree is employed. Then, we apply the
k-means method to derive the cluster of nearest-neighbors
images according to their hand configurations(26 DOFs).
After evaluating the configurations of approximate nearest
neighbors, we can apply our Bayesian-filtering-based pose
reconstruction on the large 3D posture database. Therefore,
the proposed method can take advantage of personalized real
images and the large pre-generated database. Our experiment
results and further discussion are presented in the last two
sections.

IV. HAND IMAGE RECOGNITION

The core of our approach is to efficiently search the
most similar image sample from databases for a given bare-
hand image. To accomplish this, an input image is first

Figure 2. Flow chart of the proposed system. It can be divided into two
groups: hand image recognition and fast bare-hand pose estimation.

transformed into a normalized query, and then compared to
entries in the database according to a robust distance metric.

A. Image Segmentation and Normalization for Image Data
From both the query sequences and training database, we

classify each pixel either as the background or foreground
by using a Gaussian mixture model(GMM) trained from a
set of hand-labeled images. At first of GMM training, we
capture a few hand images of a training subject’s hand with
the specified background. We manually label the region of
the hand and pre-cluster each pixel either as hand pixel
or background as the initial mixture distribution. We use
Expectation-Maximization(EM) algorithm to estimate the
parameters of the multivariate probability density function in
the form of a Gaussian mixture distribution with K mixtures.
To focus on the hand tracking, we use a black background
to ease the segmentation. The segmentation process can
be extended to a complex background with more training
images or other segmentation methods.

For each pixel of query sequence and training data, we
can now rapidly retrieve the hand pixels by GMM. Since
there are still a few noises or outliers, we assume a user’s
hand is the biggest hand-like color object in the image, and
find the biggest connected components of the hand pixels
as the hand segmentation result. At last, we normalize the
segmented hand image into a 64×64 tiny image as shown
in Fig. 3.

B. Gathering Database Samples
Ideally, the database for pose estimation should be a

large database, where samples are real hands with all possi-
ble hand configurations, palm translations and orientations.
However, since hand configuration has 20 DOFs, it requires
considerable computations to search a database including
all the configurations. In our system, we aim at a natural
way of human-computer interaction. Therefore, our 3D
model database includes 50 typical hand gestures. These
configurations span the sign language alphabet, common



Figure 3. Examples of our image segmentation input and output. Top:
3 samples from our training images, the hand region is labeled manually.
In the bottom, left: the raw query image; middle: segmented hand; right:
normalized 64× 64-pixel tiny image.

hand gestures, and random jiggling of these gestures. We
used the graphics software Poser Pro 2010 [16] to generate
synthetic images from various 3D palm rotations. Since
we take a fixed camera view points, 3D rotations of the
synthetic hand are limited within a hemisphere. In our
experiment, the resolution (interval) of y (forearm axis) and
z-axis (orthogonal to palm) rotation is 15 degrees, and the
x-axis (wrist-axis) rotation is limited from -40 degrees to
40 degrees and with interval 20 degrees. These sampling
intervals result in a total of 13 × 13 × 5 × 50 = 42500
images. It only has to be computed once (during the data
gathering stage), and took a few hours to generate these
synthetic images.

In our two-level method, we need to capture another
small real hand image database for a user. To grasp the
hand posture variety, the postures for this small dataset are
selected by an iterative and greedy algorithm from the large
synthetic database. We define a distance metric between two
configurations as the root mean square (RMS) error of their
joint angles. The selection procedure is to sequentially find a
sample configuration that is furthest from any of the previous
selected samples. The selected configurations can cover the
most dispersed configurations of the 3D model database as
shown in Fig. 4. Since the z-rotation is parallel to image
plane and can simply be generated by image rotation, in our
implementation, we only take samples with the 0-degree z-
rotation into the posture selection pool.

With the selected few samples configurations, a user only
needs to pose these selected gestures with a few palm
rotation samples at the user training stage. In front of the
video camera, the user poses designated gestures and turns
the hand along the y-axis and x-axis respectively. Then,
we apply a simple video segmentation based on image
RMS differences to estimate the real rotation angles. The
z-axis rotation data are then generated by simple image
rotation. Therefore, the overall training process is simple
and short. Our small image database now spans the space
of the 3D model database and can be used for quick first-
level searching.

Figure 4. An example of the small database posture selection from the
large synthetic database. We sequentially find the sample furthest to existing
ones.

C. The Chamfer Distance

Given a normalized query image, we intend to extract the
closest database images that to the query. In our system,
we measure distance between edge images, because edge
images tend to be more stable than color or gray intensity
images with respect to different lighting conditions. We
use the chamfer distance to compute the similarity between
two edge images. Edge images are represented as sets of
points, corresponding to edge pixel locations. Given two
edge images, X and Y, the chamfer distance D(X,Y) is:

D(X,Y ) =

1

|X|
∑
x∈X

min
y∈Y
‖x− y‖+ 1

Y

∑
y∈Y

min
x∈X
‖y − x‖ (1)

, where ‖x− y‖ denotes the location distance between
two pixel x and y, D(X,Y) penalizes points in either
edge image that are far from any point in the other edge
image. It can be computed efficiently by using a distance
transform (DT) of the edge image. This transformation takes
the set of edge pixels as input and assigns each location
the distance to its nearest edge pixels. For example, the
distance transform value at location u contains the value
miny∈Y ‖u− y‖ . The chamfer distance for a pair edge
images can be computed by correlating their edge points
with their corresponding DT images.

Chamfer matching is a robust method for edge image
matching. However, if we use brute-force search on a
database comprising 100,000 entries, it takes a few seconds
to match the input image for the database.

The computation is too intensive for an interactive ap-
plication. Besides, in our cases, the common data-driven
method, K-Nearest-Neighbors (KNN), is inherently ambigu-
ous (one-to-many), since substantially different poses can
give rise to the similar edge images. In the next chapter,
we proposed our hierarchical and Bayesian-filtering-based
hybrid method to efficiently disambiguate the KNN result.



(a)

(b)

Figure 5. Example of KNN ambiguity: (a) Top: query image, middle: from
left to right, top 10 NN image after chamfer matching, bottom: top 10∼20,
(b) using different query image. Fortunately, most of incorrect poses are
far away from the approximate correct poses in configuration space.

V. FAST BARE-HAND POSE ESTIMATION

A. Approximate Nearest Neighbor Search
Estimating the exact nearest neighbors of high dimensions

within limited time is a difficult task. Alternatively, we
can use an approximation which is highly close but does
not guarantee the nearest neighbor in every case, such
as Kd-trees, locality sensitive hashing(LSH) and best bin
first. However, most of these methods cannot be applied to
an arbitrary non-Euclidean distance measure like chamfer
distance. From our knowledge, no existing method can
directly apply Kd-tree or LSH for the chamfer distance.

Since the simple Euclidean distance is less reliable as the
distance metric between a real-hand image and a model-
synthesized image. In contrast, using chamfer distance on
a whole database is time-consuming for interactive appli-
cations. We use a hierarchical method to address these
difficulties.

First, we use a small real-image database that evenly
spans the space of the 3D model database as in subsection
IV-B. We apply a simple Kd-tree on this small database
with Euclidean distance. In this step, a large number of
nearest neighbors are quickly retrieved. To improve the
matching, we re-evaluate the weight of the top K nearest
neighbors (KNN) using the chamfer distance to approximate
the exhaustive chamfer distance search. Our small real-
image database includes around 5,000 images, we found that
we can use the above pre-filtering to reduce the candidates
for chamfer matching to fewer than 1,000 and still get
satisfactory results.

One direct thought after finding the nearest postures is
to blend these poses, and then use this blended pose as a
distribution center to approximate the best pose likelihood
distribution using a Monte Carlo sampling or uniform
searching. However, since we match only the projected 2D
images, the 3D rotations and configurations of these real

hand images are only approximate, and the nearest postures
are inherently ambiguous as shown in Fig. 5. The blended
pose can be pulled away from all nearest neighbors. As
described by B. Stenger [9], hierarchical searching, at higher
levels partition may not yield accurate approximations to
the true likelihood distribution, but are used to discard
inadequate hypotheses. Therefore, we have to do more
analysis and processing to these KNN results.

B. Pose Clustering and Weight Blending
To match the 3D model dataset, ideally, we would like

to apply a full chamfer matching to all 3D model images
that around all the real-image KNN results. However, it is
inefficient when each search of one NN result consists of
redundant samples with other searches. We observed that
the 3D rotation and configurations of the true neighborhood
poses are always close, and the misleading poses are far
away from them. So we can apply the k-means method
to further cluster the retrieved NN into groups. Since hand
configuration has 20 DOFs and the rotation only has 3 DOFs.
We also apply a Principal Component Analysis (PCA) to
reduce the dimensions of joint configurations and keep the
features balance between rotations and configurations.

After clustering, we can blend the poses within the same
cluster to acquire a few independent and non-overlapping
regions of hypothesis. Again, an ambiguous or misleading
pose in the middle of two cluster centers can still affect the
blending accuracy. We propose using the temporal smooth-
ness for disambiguation. Let Qt =

{
qt1,1, ..., q

t
N,1, ..., q

t
N,M

}
be the set of joint angle configurations in time t ; M indicate
the cluster index and each cluster has N poses. qt−1represent
the previous estimated pose. For each member of Qt , we
set their weights as a simple exponential distance function:

ωn,m = e−
(qtn,m−qt−1)2

2σ2 (2)

, where σ2 is the variance of the distance from each entry
pose qtn,m to the previous estimated pose qt−1.

For a cluster m which has N poses, let qt1,m, ..., q
t
N,m be

the members in this cluster, we normalize these weights as
such that:

N∑
n=1

ωn,m = 1 (3)

And the blending pose of the cluster is computed as:

qtm =

N∑
n=1

ωn,mq
t
n,m (4)

Based on the temporal information, we can reduce and
disambiguate the problem addressed in subsection V-A.

While applying the estimation with only the real small
database, we found it is still difficult to track quick and
high-variety hand motion. Hence, our next step is to use the
retrieved cluster to estimate more detailed postures in the
higher-variety dataset.



Figure 6. A 2D example of our data samples in the searching problem.
Yellow points represent our real image data in the small database and green
points represent the synthetic data. The red star represents the previous best
pose; the triangle represents the current best pose; the red circle represents
the neighbors of the previous frame; the blue small circles represent the
high posterior regions by ANN search on the real image database, in most
situations, the regions of the red circle is difficult to be determined.

C. 3D Model Database sampling and Hand Pose Recon-
struction

Now, we have a few clusters with corresponding high-
probability regions in the model database. In this subsection,
we introduce our pose reconstruction method based on these
candidate regions. In general, our tracking can formulate as
a Bayesian inference problem. Given the configuration at
time t is represented as qt and the observation is z1:t , the
state estimation probability p(qt|z1:t) with the following
Bayesian formulation:

p(qt|z1:t) ∝

p(zt|qt)

∫
p(qt|qt−1)p(qt−1|z1:t−1)dqt−1 (5)

, where p(zt|qt) denotes the likelihood function that relates
observations zt in the image to the unknown state qt , and
p(qt|qt−1) represents the transition prior that estimate by
hand motion dynamics model based on the previous state.
Therefore, the best hand configuration can be approximated
by the Maximum a Posteriori (MAP) estimate over the N
number of samples at each time t.

Full searching or casually sampling can result in an unex-
pected result. In many temporal-filtering-based methods such
as particle filters, hand motion dynamics is approximated by
linear models like Gaussian model, and transition prior is
often used as an importance function. Since hand motion is
non-linear, linear transition prior can speed up the searching
but also restrict the sampling regions. Therefore, we still
use a Gaussian motion model, but the importance function
is based on the high posterior regions by ANN search on
the real image database, as shown in Fig.6.

The same as in real database, the likelihood function here
is based on the chamfer distance, and we use silhouette as the
applied features in this stage. To reconstruct the final hand
pose, similar to the particle filter method, we approximate
the distribution p(qt|z1:t) by a weighted set of samples Q,

with index L = 1, ...,P. We draw and weight samples based
on the importance function:

WL =
p(zt|qt)p(qt|qt−1)

p(qt|rt)
(6)

, where r denotes the observation in real database, p(qt|rt)
represents the proposal distribution based on ANN search,
and W denotes the importance weights. We normalize these
weights such that

∑
ωL = 1 , and then we can use the

weight blending in subsection V-B to estimate a final pose
efficiently.

Due to the noise effects, many samples of small weights
disturb the estimated configurations. The directly blended
pose (weighted-blend samples) is still with obvious jitter.
Therefore, we adopt two strategies to refine the motion.
We omit samples with insufficient weights, and include the
temporal smoothness term for configuration estimation. We
formulate the motion reconstruction as an energy minimiza-
tion problem, where the joint angles and global orientations
are the variables. A data prior term enforces plausible
reconstruction results and a smoothness term measures the
smoothness of the synthesized motion:

q∗ = argqmin(ωpriEpri(q) + ωsmoothEsmooth(q)) (7)

,where the two weights ωpri and ωsmooth are user-defined
constants.

For a set of poses Qt
L = qt1, ..., q

t
p with corresponding

weights W t
L, we assume the poses in the local region are of

less variety and can be approximated by a kernel function.
We use a kernel based approach proposed by [17], the data
prior term Epri .

Epri(q) =

P∑
L=1

W t
LK(

∣∣qtL − q∣∣) (8)

where K() is kernel function. As Tautges described [17],
a kernel based representation is well suited to approximate
arbitrarily shaped probability density functions. For smooth-
ness term, we assume that the pose at time t depends on the
poses at time t− 1 and t− 2, and the smoothness term is:

Esmooth(q) = K(
∣∣q − qt−1∗∣∣) (9)

, where qt−1∗ are the best poses in the previous two frames.
We initialize the optimization with the weight blending pose
and optimize the arguments using the Levenberg-Marquardt
algorithm [18].

VI. EXPERIMENTS AND RESULTS

Our experiments perform on a desktop with Intel R©

Core
TM

i5-760 Processor and 4GB main memory. In our
experiments, the test sequences were captured from a single
camera at 10 frames per second and the testing user is the
same as the training subject of the small image database.



Figure 7. The sequence ok shoot

Figure 8. The RMS error (mm) of sequence ok shoot

However, the variations of gestures, orientations, and trans-
lations are significantly different from the training sequence.
Please refer to our demo video for details.

There are five test sequences that include rigid and non-
rigid out-of-image-plane rotation, slow and fast gesture
charging when rotation, and recover after the hand left the
camera. For all of these testing sequences, we use the same
database and same parameters without specific tuning.

To measure the accuracy of our approach, we perform
the evaluation by applying Root Mean Square (RMS) to
finger end point 2D positions, since it is difficult to acquire
the ground truth 3D data from a single-view sequence. We
manually label ground truth locations of the tip of the middle
finger, and calculate the root mean square error for two
sequences.

In experiments, we show that our system succeeds track-
ing most of these motions. And the system can perform in
an interactive rate, which are around 10 frames per second
(FPS). Fig. 7 shows the results from a sequence that includes
two gestures and rotation. Fig. 10 shows the results from a
sequence that includes a grasp motion and rotation. Fig. 8
and Fig. 10 show their errors and the mean RMS error is
5.4 and 15.7 mm, respectively. It can be observed that when
the rotation and gesture change happen, the error increase
but do not cause tracking to fail. Please refer to our demo
video to observe the detailed hand motion estimation.

In Fig.11, we show the limitation of our bare-hand fea-
tures. In the 2nd image of the right column, the hand shake
and a small configuration error occurs. And at the following
two images, we observed that that the ”2” gesture cannot
change to ”1” gesture. It is because we have 2 similar
gestures labelled ”H” and ”R” in our database, the noise-
disturbed edge and silhouette features are not sufficient to
measure the differences in this case.

Finally, we compare the accuracy between our hybrid

Figure 9. The sequence grasp and rotation

Figure 10. The RMS error (mm) of sequence grasp and rotation.

method and full KNN search on real image database
and synthetic database. We apply full KNN search on
”grasp and rotation” sequence. Fig. 12 shows the result.
If we use only the real image database, the distribution
of the database is too dispersed, and many inappropriate
poses result in an unsatisfactory blending. If we use only
the synthetic database, the direct comparing the appearance
between the real and the synthetic model hand results in
biased postures.

Here, we discuss the limitations of our system. Since we
utilize only a single camera, one weakness of our system is
the accuracy of z-translation. As shown in the video, jitter
occurs during hand moving up and down. That is because
we can only estimate the hand depth from relative scales,
but the scale evaluation is easily contaminated by noises or
imperfect hand region segmentation. Besides the movement
jitter, we utilize the smooth term and temporal coherency
to alleviate outlier gestures. It makes the estimated motion
more stable, but may delay the response to user’s rapid flip
actions around a half second.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an approach to tracking an
articulated hand without markers in nearly real time. We use
hierarchical-searching to efficiently find the KNN results in
a small real image and a large synthetic hand database. We
further use the bayesian-filtering and temporal smoothness
to disambiguate the results and estimate more reliable hand
gestures.

Since our target is a highly ambiguous problem in a
limited view, our system may not evaluate highly accurate
configurations, such as those in marker-based systems. How-
ever, our experiments show that we successfully estimate the
3-D position and joint configuration of the hand under self-
occlusion or rapid gesture chances. It can even recover from



Figure 11. The sequence pose occlusion

Figure 12. Comparison with full KNN search. Left: on real image database
only. Right: on synthetic database only.

a short-term missing data situation. We think this prototype
system can be extended for a user-friendly human computer
interface.

A few possible extensions can be developed for our
system. The most critical issue is to use more robust
similarity measures besides the edge and silhouette features.
As Martin de La Gorce et al.’s described [10], texture and
shading is a crucial visual cue for hand. Including textures
or shading information can increase the distinction but the
computation cost as well. Second, our prototype system
needs to capture real-image database for a novel user. User-
independent methods can be helpful to skip the training
process.
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