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Capturing Facial Details by Space-time Shape-from-shading

Abstract In this paper, we propose a facial detail es-
timation approach for 3D animation. First, motion cap-
ture is utilized to evaluate primitive 3D surfaces. A novel
shape-from-shading (SFS) is then applied for facial de-
tails. Our SFS method, exploiting Bidirectional Reflectance
Distribution Function (BRDF) properties, can extract
detailed surfaces according to intensity variations. It also
avoids the problem of ambiguous correspondence in stereo
triangulation. In order to tackle the intrinsic ill-condition
and acquire more reliable results, optimization in a space-
time hybrid domain is employed to approximate both
the 3D face geometry and reflectance properties. While
combing facial details with a feature-driven face model,
our system can synthesize more detailed facial anima-
tion.

Keywords Facial detail · Shape-from-shading · Motion
capture · Facial animation

1 Introduction

From TV games, movies to advertisement, 3D characters
have been popularly applied to various kinds of media.
However, how to efficiently generate realistic facial ani-
mation is still a challenging problem. In early years, an-
imators have to manually adjust key poses of 3D models
for vivid characters. To speed up the production, facial
motion capture (mocap) techniques, recording motions
of conspicuous markers on a performer’s face, become
one of the most practical solutions.
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Fig. 1 Feature-point-driven facial expression without and
with facial details.

These motion capture data can be used to drive 3D
faces efficiently, but there are still subtle portions, such
as wrinkles or creases, whose variations are much smaller
than markers’ sizes. As shown in Fig. 1(b), while synthe-
sizing only approximate geometry without details, the
fidelity will be insufficient.

To deal with such critical problems, several researches
work on transferring feature motions to pre-computed
prototypes. For instances, Z. Deng et al. [1] proposed
using learnable weighted combinations of predefined key
expressions. Nevertheless, the blended details may not
be the same as those performed by the subject, and it
will suffer blurring effects during blending.

Stereo triangulation, based on two or more image data,
is the most typical approach to calculate 3D positions,
but pixel correspondences of un-textured regions are usu-
ally ambiguous. Structured-light reconstruction, using a
camera and a projector to acquire depth images, is an-
other popular triangulation method. In 2004, L. Zhang et
al. [2] proposed an impressive system for estimating dy-
namic face surfaces. They exploited space-time coherence
for a more reliable pixel-correspondence. However, they
had to use devices with higher resolution and capturing
speed due to inherent properties of coded structure-light
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systems.

On the other hand, shape-from-shading (SFS) and pho-
tometric stereo methods estimate shapes according to
variations of image intensity. Most of the existing meth-
ods are under the assumption of the Lambertian re-
flectance model. Photometric stereo recovers the shape
from images under different light directions but in a fixed
view point. Using photometric stereo for dynamic objects
will require expensive high-speed cameras and a light
dome [3]. Most shape-from-shading techniques assume
the scene with a single light source and use only inten-
sity gradients within a single image for shape recovery.
Hence, the troublesome problem of pixel correspondence
can be avoided. Also, SFS is sensitive to subtle variations
and is therefore adequate to facial details. Nevertheless,
its sensitivity to noise may result in serious tremble.

In this paper, we combine the benefits of stereo trian-
gulation and shape-from-shading. Stereo-based 3D mo-
tion tracking is employed to evaluate the rough geome-
try of an expressive face. A novel space-time constraint
over shape-from-shading is proposed to estimate the de-
tailed facial motion. Moreover, to efficiently deal with
non-Lambertian reflection on a face, we choose Phong
reflection model. With the proposed method, reliable de-
tailed facial motion and approximate BRDF reflectance
properties can simultaneously be estimated during opti-
mization.

The goal of our work is to enhance the feature-driven ani-
mation with captured facial details. The proposed frame-
work can be divided into two phases: acquisition and
synthesis. The acquisition phase reconstructs the 3D de-
tailed surface and estimates the reflectance parameters.
The synthesis phase is about generation of facial anima-
tion. The flowchart is shown in Fig.2.

Fig. 2 The flowchart of the proposed system.

This paper is organized as follows. Related work is
introduced in Section 2. In Section 3, we propose com-
bining motion capture and shape-from-shading for facial
detail acquisition. In Section 4, various issues such as ini-
tialization, spatial-temporal constraints, and progressive
refinement are also presented. Section 5 explains our ex-
periment and results. At last, we discuss the advantages
and disadvantages of the proposed work and make con-
clusion.

2 Related Work

The proposed method applies shape-from-shading based
on graphics reflection model and space-time constraints
to estimate detailed facial motion. We introduce recent
related literatures in this section.

To estimate 3D positions and motions, stereo triangula-
tion is the main stream in computer vision for decades.
However, reliable pixel correspondence is still a trouble-
some issue. Readers may refer to the review paper by
T.S. Huang and A.N. Netravali [4] for details.

For precise tracking, conspicuous markers can alleviate
the correspondence problem. B. Guenter et al. [5] pro-
posed a dynamic face digitization system. This research
used 182 special markers, and they also took into account
the spatial and temporal consistency for reliable track-
ing. For time-vary facial details, they simply recorded
dynamic texture and avoided surface recovery. I.-C. Lin
et al. [6,7] proposed capturing dense facial markers with
a single video camera and mirrors in near real time. Even
though 300 markers were tracked, wrinkles or dimples
were still difficult to be reconstructed.

Recently, G. Vogiatzis et al. [8] proposed a novel multi-
view stereo reconstruction method. This method used
the visual hull as the initial volumetric shape and opti-
mized the results by the graphic-cut. Their system can
provide a more reliable 3D surface but are also not ade-
quate for details.

Based on bio-mechanical hypotheses, anatomical mod-
els can also generate wrinkles and creases [9]. In 2005,
E. Sifakis, et al. [10] proposed an automatic approach to
determine muscle parameters according to sparse mark-
ers; therefore, facial details can also be synthesized by
anatomical models. However, it cannot generate the ac-
tual details of the performer.

On the other hand, photometric stereo and shape-from-
shading are two approaches to estimate subtle surface
normals from variations of image intensity. They are ca-
pable of dealing with surface details. Images for photo-
metric stereo are usually captured in a fixed view point
but under various lighting directions. According to the
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Lambertian reflection model, given accurately aligned
pixels, photometric stereo methods can estimate surface
normals by a simple least-square method.

Empirically, to acquire reliable normals, we will need
more than eight images of different light directions. To
capture moving objects at 30 frames per second (fps), we
have to employ a 240-fps high speed camera with syn-
chronized directional lights. In the work of T. Weyrich et
al. [11], they produced a face-scanning dome composed of
16 digital cameras, 150 light sources and a commercial
3D face-scanning system. Their system can accurately
acquire the reflectance as well as facial normals.

M. seitz et al. [12] proposed an example-based method.
They introduced orientation-consistency to reconstruct
surfaces by comparing images of reference objects with
a known shape. Constraints, such as distant lighting and
reference objects with an identical material, will limit
the applications of this method.

By contrast, shape-from-shading can avoid errors due to
inaccurate pixel correspondence, and this low-cost ap-
proach may require only one image for shape recovery.
In 2004, H. Fang et al. [13] adapted B.K. Horn’s [14] ap-
proach and utilized Lambertian reflection model to ex-
tract the normal map from a single texture image. This
kind of approach doesn’t need expensive devices. How-
ever, it is error-prone due to the simple Lambertian as-
sumption, sensitivity to input noise, etc. Usually, manual
adjustments are required for post processing.

SFS is also difficult for real data due to its intrinsic ill-
condition. In interactive modeling, G. Zeng at al. [15]
proposed a semi-automatic solution for continuous sur-
face. Users assigned surface normals on specific feature
points and the system then refined the surface variations
to the whole face. This method applied a fast marching
method (FMM) to speed up computation and solved its
ambiguity by human assistance.

T. Yu et al. [16] proposed an optimization method to
obtain the shape and reflectance parameters on a static
model with Phong reflection model. This method initi-
ated the reflectance parameters from different scales and
further refined the estimation with multi-view informa-
tion. However, they did not yet apply to real persons. To
stabilize the iterative SFS algorithm, constraints such as
smoothness, intensity gradients will be used to obtain
the reliable result.

B. Bickel et al. [17] further proposed an impressive multi-
scale capturing system for facial motion. They first used
conventional motion capture for large-scale motion. For
middle-scale motions, they painted a specific color on
each wrinkle of a subject and estimated parameters of
the ”valley-shape” wrinkle model from video. Our multi-

level framework is similar to this work. Nevertheless, we
don’t restrict the shape of wrinkles or Lambertian re-
flection. Our proposed approach can directly estimate
facial details, e.g. wrinkles or dimples, without additional
paint.

To stabilize our optimization result, we apply the con-
cept of space-time constraints. Space-time constraints
have proved to be a powerful approach in character an-
imation, especially in motion editing. Such approaches
will gradually adjust motion capture data to fit con-
straints from users’ assignments or kinematic properties
[18,19]. In 2004, L. Zhang et al. [2] proposed a structured
light approach to capture the dynamic variation on faces.
They used space-time coherence to match corresponding
pixels; they also assumed short-term linearity in space-
time domain for computational efficiency. H. Fang et al.
[20] proposed a ”RotoTexture” synthesis technique. They
utilized spatial and temporal smooth constraints to re-
duce the visual noise of texture mapping in video.

Unlike most SFS under Lambertian assumption, we ap-
ply more general reflectance models. In computer graph-
ics, Bidirectional Reflectance Distribution Function model
(BRDF) is widely used to represent the reflectance model
of human faces. Assume that human skin are composed
of the oil layer, epidermis and dermis, facial skin re-
flectance can be approximated by a specular component
at the oil-air interface and a diffuse reflectance compo-
nent due to subsurface scattering.

Jensen et al. [21] introduced a Bidirectional Surface Scat-
tering Reflectance Distribution Function model (BSS-
RDF) that combined dipole diffusion approximation and
single scattering computation. Based on Jensen’s approach,
Donner et al. [22] presented a new efficient technique
with multiple dipoles to account for diffusion in thin
slabs.

In our experiment, we have also tried Jensen’s BSSRDF
model in optimization of shape-from-shading. However,
due to its larger degrees of freedom and complex correla-
tions, the computation was inefficient and it can barely
improve the result compared to Phong model. Therefore,
we employ Phong reflection model as the analytic shad-
ing model.

3 Acquisition of Facial Motion

As above-mentioned, stereo reconstruction can estimate
accurate depths with conspicuous features; shape-from
shading can avoid the pixel-correspondence problem in
textureless regions.

We propose combining the benefits of both approaches.
Two video cameras are utilized for sparse 3D marker
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tracking. With captured feature motion, primitive 3D
face geometry can be evaluated. Then, these captured
image sequences are further utilized for facial details by
shape-from-shading.

Since stereo triangulation, motion tracking and auto-
matic false corrections have been addressed in various
literatures, please refer to the reference articles for de-
tails [4–7].

3.1 Primitive Facial Surfaces from Motion Capture

In order to evaluate the variations of primitive 3D face
surfaces, we adapt a model-based approach. Assume that
the expression at the initial frame is neutral. First, 3D
positions of markers at the first frame are estimated by
stereo triangulation. We then characterize a generic face
model by feature fitting, which is similar to the deforma-
tion method mentioned later.

For each of the following frames, we track the mark-
ers and deform the characterized model according to
markers’ 3D positions. The deformation method we used
is radial-basis-function-based (RBF-based) data scatter-
ing.

Given a set of corresponding pairs pi, qi between the
neutral face and an expressional face, where pi is the
3D position of marker i on the neutral face, and qi is the
position on an expressional face. Given the displacement
of each marker ui = qi − pi, we use scattering function
S(p) to estimate the displacement of a non-feature point.
The scattering function is

S(p) =
∑
i

ciφ(||p− pi||) +Ap+B (1)

where φ(r) = e−r/32 is a radial basis function, and ci are
weighted coefficients, and A, B are affine terms. Coeffi-
cient ci, A and B can easily be solved by linear equa-
tions with constraints: ui = S(pi),

∑
i ci = 0,

∑
i cixi =

0,
∑
i ciyi = 0 and

∑
i cizi = 0.

Fig. 3 Deformation of a generic model for personalization
and facial expression.

3.2 Detailed Facial Motion by Shape-from-shading

For subtle motions, e.g. wrinkles or creases, we propose
recovering time-varying detailed surface V from shading
information, spatial and temporal coherence. To solve
the intrinsic ill-condition problem of shape-from-shading,
we adopt an optimization method that minimizes the dif-
ference between captured image It and synthesized image
Synt . The objective function O becomes

O =
NumT∑
t=1

(Synt − It)2 (2)

, where NumT is the frame amount. For simplification
of introduction, our explanation in the following sub-
sections is for a single image sequence. It can then be
extended to two-view sequences. Besides, for computa-
tional consistency, all of the expressional images are au-
tomatically warped to the neutral face before any pro-
cess.

In order to decrease the degrees of freedom (DOF) of the
objective function, without loss of generality, we repre-
sent the 3D data in terms of height maps. These heights
can easily be transformed to normals from gradients of
neighbor z values.

Hence, only the z (height) values of aligned pixels (ver-
tices) are evaluated. The shape parameters V are there-
fore defined as:

V = (V1, V2, ...Vt, ...VNumT
) , where

Vt = (zt1, zt2, ...ztp, ...ztNumP
) and NumP is the amount

of vertices.

We choose Phong model as the analytic reflection model,
and other BRDF model can also be applied. Phong model
is widely used in the computer graphics and differentia-
tion of parameters is relatively straightforward. Given a
light source L with direction NL and the surface normal
Ntp, the reflection intensity on vertex p related to nor-
mal can be written as:

Syntp = Id · kd(NL ·Ntp) + Is · ks(e · r)α (3)

where kd and ks are the diffuse and specular coefficients
and α is the Phong exponent term. The vector e denotes
the eye direction and r is the reflection vector with re-
spect to NL and Ntp.

Assume that the reflectance parameter of a subject’s face
R = (kd, ks, α) is uniform in a region. The Eq(2) becomes

O(V,R) =
NumT∑
t=1

NumP∑
p=1

(Syntp − Itp)2 (4)
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In other words, our goal is to find the best surface se-
quence V ∗ and reflectance parameter R∗ that will mini-
mize the objective function.

< V ∗, R∗ >= arg minO(V,R) (5)

Fig. 4 A conceptual diagram of progressive surface estima-
tion with a height map.

4 Space-time Shape-from-shading

In our experiments, we found that the estimated normals
or surfaces are highly sensitive to noise, while applying
direct shape-from-shading methods [13,14].

While using optimization methods on Eq(5), we used
the primitive surfaces from motion capture as initial val-
ues, and we apply modified conjugate-gradient methods
to approach the variables to real surfaces. Nevertheless,
they were easily trapped into local-minimums in early
stages and undesired trembling effects occurred.

For more reliable detailed motions, we propose using
a multi-stage optimization scheme and space-time con-
straints.

4.1 Multi-stage Optimization

Our objective function has two sets of parameters, the
shape parameter V and reflectance parameter E. R is
a time-invariant parameter set, but V represents only
local geometry. If we simultaneously estimate these two
parameters into a single stage, we need a proper scale
between these two kinds of parameters for balanced in-
fluences. In order to avoid bias, we optimize these two
sets of parameters separately.

Moreover, from our experiment, we found that directly
apply all BRDF parameters in optimization, the spec-
ular components will dominate the objective function,
and therefore, the process will be trapped into local min-
imum. On the contrary, the reflection of human skin is
mainly contributed by diffuse components.

Hence, we introduce an intermediate stage, diffuse-shape
optimization, where the shape V and diffuse parameter
Rdiffuse(kd) are iteratively optimized. After this stage,
the BRDF-shape optimization is performed for all diffuse
and specular parameters. The flow chart of the multi-
stage optimization is shown in Fig.5.

Fig. 5 The flow chart of multi-stage optimization.

4.2 Space-time Constraints

Since our faces are mostly continuous surfaces, the mo-
tion of a vertex p has high spatial coherence with its
neighbors. Therefore, we use spatial coherence constraints
to alleviate the inherent noise sensitivity in shape-from-
shading.

CStp = kCS(ztp −
∑
j

1
wj
ztj)2, for j ∈ Neighbor(p) (6)

where Neighbor(p) denotes the 8-neighbor pixel set, wj
is an adaptive weight and kCS is the weight for spatial
constraints.

When adopting only spatial constraints in optimization,
we found that there’re still flickers caused by input noise.
According to biomechanics properties of facial muscles
and tissues, a human facial surface should ”gradually”
transit between expressions. Hence, the temporal coher-
ence can further improve the optimization.

Fig. 6 The optimized shapes (a) without spatial coherence
constraints (b) with spatial coherence constraints.
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To include temporal coherence, most research tracked
the pixel flow and added smooth constraints on succes-
sive pixels. However, it will produce new errors resulted
from inaccurate pixel correspondence occlusion. To avoid
these conditions, we directly apply our temporal con-
straints to each pixel in the height map sequence. The
global head motion will later be compensated by head
tracking data.

The temporal constraint is as follows:

CTtp = kCT (ztp −
∑
i

1
w
z(t+i)p)2,where i = [−3, 3] (7)

Therefore, our objective function becomes

O =
NumT∑
t=1

NumP∑
p=1

[(Syntp − Itp)2 + CStp + CTtp] (8)

Applying optimization to the whole image sequences is
extremely time-consuming. For computational efficiency,
we only apply our optimization on a small window of
frames at a time. When sweeping the windows from the
start to the end and combining the individual results, a
pseudo-optimal surface sequence can be acquired. This
approach, significantly decreasing degrees of freedom,
and dramatically reduces the processing time.

4.3 Post Processing

Due to the error caused by pixel alignment, input noise,
and digitization, etc, there’re still unavoidable estima-
tion errors. Users may apply an adaptive bilateral filter
to reduce these noises and retain the details.

The last stage of acquisition is two-view data fusing. In
traditional computer vision, data of one view should be
fused with the best correlated ones. Nevertheless, it will
again encounter the troublesome corresponding problem
at textureless regions. Or two-view optimization should
be applied.

Instead, we apply the view-dependent concept from image-
based rendering. Given two synchronized height maps
and feature points, we apply the view morphing tech-
nique [23] to warp the two side views into the front view.
Then, we weighted-blend the two view data according to
the view angles. Data that are more close to their original
view axis will get a higher ratio.

5 Experiments and Results

This section describes and discusses our experiment. Then,
we show the synthesized results where primitive and de-
tailed motions are included.

5.1 Experiments

In our system, we used two video streams to track mark-
ers’ motions and estimate time-varying height maps as
well. To acquire more accurate facial details, our exper-
iments are performed under an illumination-controlled
environment. A calibrated spotlight was set as the single
light source. Video streams were captured by two syn-
chronized high-definition video cameras (HDV with res-
olution 1280*720 pixel and 30 frames-per-second). We
pasted 25 to 30 markers on subjects’ faces and avoided
placing markers on regions with wrinkles or creases. Two
subjects, one male and one female, were required to per-
form various facial expressions.

Since we aim at enhancing subtle variations for motion
capture, for efficiency and reliability, users can assign
regions for detail estimation. Fig.7 shows the captured
neutral image and the user-assigned regions by a brush-
ing interface. In our experiments, we preferred areas with
more wrinkles and creases, such as the forehead, glabella,
left and right cheeks.

Fig. 7 Two views of the neutral face and the user-assigned
regions for detail estimation.

5.2 Results of Motion Acquisition

In our research, we utilize a novel approach to solve the
ill-condition of detailed motion tracking. This method
can optimize the geometry and reflectance parameters
by minimizing the objective function. The cost values
gradually decreased and the optimization was stopped
when the improvement was less than the threshold.

Fig.8 shows the progress of optimization stages. In the
first stage, we just optimized the diffuse term to get a
more accurate initial shape. After the second stage, spec-
ular terms are included. The estimated surfaces gradu-
ally approached the input image sequence. Another re-
sult of shape recovery is shown in Fig.9. We also com-
pare our space-time SFS with a direct lambertian-based
method [13]. Our estimated surface is more accurate and
noises are suppressed.

We used a conjugate gradient method for minimization.
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The performance of our optimization is around 120 to
170 seconds per frame on a Pentium IV 3.2GHz with
1GB memory.

Fig. 8 A captured wrinkle image and the progressive refined
surfaces in optimization stages.

Fig. 9 Results of the proposed space-time SFS method and
the Lambertian-based SFS method.

5.3 Synthesis of Facial Details

As mentioned in subsection 3.1, we drive a character-
ized neutral face according to motion capture data. Our
3D head model has 6078 vertices and 6315 polygons. We
separate the face into segments including the forehead,
nose, upper mouth, lower mouth, cheeks, jaw, etc. For de-
formation, we apply RBF-based data scattering to each
segment and gradually blend at the boundaries.

To enhancing details with estimated height maps, the
target polygons are first subdivided and per-pixel normal
mapping is then applied. Fig.10 shows the subdivision
results according to the masked regions and wrinkles.
Fig.11 shows the facial animation with facial details. The
synthesized results can be improved with displacement
mapping and realistic face rendering.

Fig. 10 Subdivision on marked regions and wrinkle synthe-
sis.

Fig. 11 Retargetting the detailed motions to a personalized
model.

6 Discussion and Conclusion

This paper is aimed at reliably estimating 3D facial de-
tails with inexpensive devices. We combine the advan-
tages of stereo triangulation and shape-from-shading for
detailed motion tracking. While including both spatial
and temporal coherence as constraints, we can improve
the reliability.

To optimize a large set of parameters, we propose an it-
erative scheme with multiple stages, where diffuse com-
ponents, diffuse-specular components and time-varying
surfaces are progressively improved. Our results demon-
strate the effectiveness of the proposed methods.
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Compared with related work, we don’t assume the shape
of wrinkles, and therefore, our method is more general for
various details. Our method doesn’t require additional
projectors or painting on subjects’ wrinkles. It can even
apply to existing motion capture video if the illumina-
tion is controlled.

Several issues can be improved in the future. At present,
we assume the skin reflection properties are uniform and
alleviate this problem by compensating color differences
and filtering. Individual reflection parameters for each
pixel will be included.

As mentioned above, when we directly integrate BSS-
RDF model in our shape optimization, the computa-
tion is inefficient and it can barely improve those with
BRDF model. A more dedicated experiment or a simpli-
fied model should be conducted. Besides, other BRDF
models, such as Cook-Torrance model, example-based
models, can be utilized for better approximation.

Currently, our shape-from-shading is applied to regions
with rich undulation, and therefore, the surface reso-
lution is inconsistent. We plan to extend the proposed
method to the whole face for more faithful capture and
animation.
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