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Abstract: Existing 3D model retrieval approaches usually implicitly assume that the target models are rigid-body. When
they are applied to retrieving articulated models, the retrieved results are substantially influenced by the model
postures. This paper presents a novel approach to retrieve 3D models from a database based on one or few
input depth images. While related methods compared the inputs with whole shapes of 3D model projections
at certain viewpoints, the proposed method extracts the limbs and torso regions from projections and analyzes
the features of local regions. The use of both global and local features can alleviate the disturbance of model
postures in model retrieval. Therefore, the system can retrieve models of an identical category but in different
postures. Our experiments demonstrate that this approach can efficiently retrieve relevant models within a
second, and it provides higher retrieval accuracy than those of compared methods for rigid 3D models or
models with articulated limbs.

1 INTRODUCTION

With the popularity of 3D modeling tools, more and
more 3D models are designed and uploaded by cre-
ators and vendors. Therefore, various kinds of meth-
ods were proposed to improve the efficiency of 3D
model retrieval from a large dataset. Searching by
keywords is the most common way to search de-
sired information, but it can be difficult for a user to
figure out appropriate keywords describing the vari-
ety of model shapes. Therefore, most successful 3D
model retrieval systems adopted content-based search
and required users to input sketches or images as
queries. Funkhouser et al. (2003) presented a shape-
based query engine, supporting queries based on key-
words, 2D sketches, 3D sketches, and 3D models.
The LightField descriptor proposed by Chen et al.
(2003) projects each 3D model onto silhouette images
from vertices of an enveloping dodecahedron. It then
evaluates the similarities between query images and
silhouettes of database models.

Nevertheless, most existing methods assume that
the 3D models are rigid or the viewpoint of input im-
ages are axis-aligned, e.g. the frontal or side views.
In the case of querying by views, they compared two
projected shapes based on shape features extracted
from the whole projected silhouette or depth images.

If a user takes a 3D model with articulated limbs as
the input, the retrieved results can be substantially
influenced by the limb postures of models or view
points. Accordingly, we propose evaluating not only
the global projected shapes but also local features. As
shown in Figure 1, if we only considered the global
shapes, it led to the result 1(a). However, if we fur-
ther compared the local information extracted from
torso and limb regions, more relevant models can be
retrieved as shown in 1(b).

Based on the aforementioned concept, we mea-
sured different combinations of global and local fea-
tures and developed a prototype system. Given one or
multiple depth images as query inputs, the proposed
system can efficiently retrieve relevant models from
a dataset extended from publicly used databases. Our
experiments also demonstrate that it can retrieve more
accurate results than results by comparative methods,
for not only 3D models with limbs but also rigid mod-
els.

2 RELATED WORK

To intuitively assign input queries, several research
works adopted view-based matching methods to re-
trieve models from sketch or image inputs. View-



Figure 1: (a) Retrieval results from the global shape only. (b) Retrieval results of our proposed method. (c) Top 20 retrieval
results of our method for articulated models and non-rigid quadruped animal models in random view.

based retrieval systems usually assume that 3D shapes
can be represented by several 2D projections from
different views. Chen et al. (2003) thought that
if two 3D models are similar, their projected views
from various angles are similar as well. They com-
pared the Zernike moment (Canterakis, 1999) and the
Fourier descriptor between two projected silhouettes.
Daras and Axenopoulos (2010) extended the view-
based concept and measured multiple shape features
and their combinations. However, the models in the
database and from input queries need to be aligned in
a standard viewpoint set. Wu et al. (2016) used the
view-based matching for object pose tracking. In our
work, we allow users to record depth images of an
input in an arbitrary viewpoint.

Existing view-based systems usually analyze the
global shapes of projections. It implicitly assumes
that the models in the same category have simi-
lar poses, but in reality there are plenty of mod-
els with joints and their limb postures are change-
able. Skeleton-based measures are capable of dealing
with the deformation and articulation of shape data.
Bai and Latecki (2008) computed skeleton similarity
by comparing geodesic paths between skeleton end-
points, and did not consider the topological structure
of the skeleton graphs or trees. Shen et al. (2013)
extended the previous work (Bai and Latecki, 2008)
to do shape clustering according to the similarity of
each shape. They proposed the distance measurement
between shapes and clusters according to the corre-
spondence of skeleton endpoints and junction points.

To extract skeleton from 2D contours, Igarashi et
al. (1999) presented an extraction method in the fa-
mous Teddy system . The method first performs De-
launay triangulation to generate triangles covering the
shape. Then, it approximates the medial axis and ex-
tracts the skeleton of the contour according to the con-
nectivity between triangles. However, skeleton ex-
traction is usually sensitive to the boundary noise. In
order to prune the spurious skeleton branches, Shen
et al. (2011) evaluated the contribution of contour
segment to the whole shape, and presented a novel

method for skeleton refinement. In the case of 3D
skeleton extraction, Hasler et al. (2010) inspected ex-
amples of different subjects at the same time, and then
improved the robustness of shape skeleton estimation.
Wang and Lee (2008) applied iterative least squares
optimization to shrink models and preserves their ge-
ometries and topologies.

Several works decompose a 3D model into parts
or skeletons for similarity measures or other applica-
tions. Mohamed and Hamza (2012) matched two 3D
shapes by comparing their relative shortest paths be-
tween the skeleton endpoints. Kim et al. (2013) par-
titioned a collection of models into clusters and gen-
erated consistent segmentations and correspondences
for all the models with similar parts. Instead of an-
alyzing geometric structures of shapes, Kim et al.
(2014) and Xie et al. (2014) analyzed 3D shapes
based on the interactions between 3D models and hu-
man postures. These methods can be extended for
3D shape retrieval and correspondence estimation.
Kleiman et al. (2015) presented a novel approach to
quantify shape similarity based re-arrangements, ad-
ditions, and removals of parts. López-Sastre et al.
(2013) employs a 3D spatial pyramid representation
for 3D shape categorization and classification. Sipi-
ran et al. (2013) represents a 3D shape by its global
descriptions and partition descriptions. However,
these methods were designed for 3D shape matching,
and they cannot be directly applicable to sparse depth
image inputs, since the 3D parts or limbs can partially
be occluded during projection.

3 OVERVIEW

Our goal is to efficiently search 3D models with one
or few input images, especially for 3D objects with ar-
ticulated limbs. In order to acquire more information
and details of the object surfaces, we selected depth
images as our inputs rather than silhouette binary im-
ages in related methods. We used Xtion PRO (ASUS
Inc., ) as our live depth image capture device, and it



Figure 2: The flow chart of the proposed system.

can be replaced by other low-cost depth cameras off
the shelf, such as Kinect (Microsoft Corp., ).

The flow chart of our proposed method is shown in
Figure 2. For more efficient online retrieval, we sepa-
rated our system into two stages: offline analysis and
online retrieval. In the offline analysis stage, for each
model in the database, we generated a set of 2D pro-
jected depth images. Then, we extracted features with
rotation-invariant and perspective-insensitive proper-
ties for these projected images. These feature coef-
ficients were regarded as the global information. We
then further decomposed each projected depth images
into the main torso (body) and limb regions. These
parts (torso and limb regions) can provide local infor-
mation, respectively. Finally, we can get three global
and two local features to build our feature database.

In the online retrieval part, our system first loads
the descriptor databases, and then a user can input
one or multiple depth images captured from a real
3D object. The proposed system then evaluates the
minimum matching distance between the input and
each model in database according to global and local
features. The retrieval results are sorted according to
their scores. A complete online retrieval process can
be finished within a second for the database contain-
ing about 18,000 images.

4 OFFLINE ANALYSIS

This section describes how we extract different shape
descriptors to represent the complex 3D models and
the properties of these shape features are introduced
as well. Figure 3 shows the flowchart of our offline
analysis.

4.1 Extraction of projected views and
regions

The pioneer view-based matching method by Chen
et al. (2003) extracted features from the whole pro-
jected silhouette images. By contrast, we make use of
projected depth images to acquire more details from
the model surfaces, and segment parts from the whole
shape for local information analysis. Figure 4 shows
an example of a 3D horse model and five of its pro-
jected depth images.

For a model with limbs, there are usually obvious
limb regions in global projected images. Therefore,
we first find the body part from the projected image.
Our initial thought is to apply the mathematical mor-
phology operations (erosion and dilation) to the whole
projected image, and leave the torso region. Then, we
can obtain the preliminary limb regions by subtract-
ing the torso region form the global region. However,
we found that the limbs may be still connected with
the torso or other limbs by such a method.

As shown in Figure 5(c), because the projected
limb regions may be overlapped. We have to further
analyze the preliminary limb region for more accurate
region separation. The depths within each limb region
are similar, abrupt depth differences (gaps) usually
occur in the boundary between different limb regions.
Therefore, we use Canny edge detection to the pre-
liminary limb images, and get the edge map as shown
in Figure 6(a). Then, we remove the edge points from
the preliminarily separated image and the result limb
regions are not connected to each other as shown in
Figure 6(b). Since the limbs and torso are most sep-
arated, we adjust a flood fill algorithm to gather each
limb region as shown in Figure 6(c). The flood-fill
method selects a few points as seeds and propagates
labels from a point to its neighbors when their prop-
erties are similar. We would like to emphasize that
since there is noise and the projected depth maps vary
from models, the segmented regions may not always
be perfect. This issue can be mended by using an
error-tolerable distance during online matching.



Figure 3: Overview of offline analysis.

Figure 4: An example of a horse model and its projected
depth images at vertices of a dodecahedron.

4.2 Extraction of features

After getting the whole projected views of 3D models
and segmenting them into the torso and limb regions,
we then extract features from these depth regions. In
our trial, we found that three different features are dis-
tinct for matching the global depth images. The three
features are Zernike moments, Histogram of Depth
Gradient (HODG), and 2D-polar Fourier Transform.
The Zernike moments and 2D-polar Fourier Trans-
form descriptor approximate image shape structure by
polynomials and transformed bases. They are also
recommended in Chen et al. (2003) and Daras and
Axenopoulos (2010). We further apply the HODG to
distinguish the contours and surface of models which

Figure 5: Extracting the preliminary limb regions. (a) Input
depth images. (b) The torso region by mathematical opera-
tions. (c) The preliminary limb regions by subtraction.

Figure 6: (a) The edge map of the preliminary limb regions.
(b) The results of subtracting the edge points from the pre-
liminarily separated image. (c) The final results of limb re-
gions.

have distinct gradient vectors.
For the part regions (torso and limb region), we

found that Zernike moments and 2D-polar Fourier
features are still capable of approximating the shapes



of local regions. However, the areas of limbs are rel-
atively small and it makes the HODG occasionally
sensitive to noise or segmented region boundaries.
Therefore, two features are applied to local regions.
In short, three global features and two local features
are applied to analyze depth images in the database.
We briefly introduce and discuss about their proper-
ties in the following paragraphs and the experiment
section.

Zernike moments are a class of orthogonal mo-
ments. They have the properties of rotation invariance
and efficient construction. Moreover, they can effec-
tively resist image noise. Due to the above properties,
Zernike moments are ideal features for shape repre-
sentation in shape classification problems. Please re-
fer to (Canterakis, 1999) and (Chen et al., 2003) for
details.

2D-polar Fourier Transform is a variant of the
Discrete Fourier Transform (DFT). This approach
first transforms an input image into a 2D-polar im-
age by mapping the (θ,r) onto the (x,y) coordinate.
We can then apply popularly used Fast Fourier Trans-
form (FFT) to the 2D-polar image. It is also applied
in (Daras and Axenopoulos, 2010).

Histogram of depth gradients (HODG) is vari-
ant of histogram of image gradients (HOG) com-
monly used for object detection. It counts the occur-
rences of gradient orientation in a depth image. The
principal thought for HODG is that the shape and sur-
face of an object in a certain view can be approxi-
mately described by the distribution of the depth gra-
dients. To evaluate the HODG, we first use Sobel op-
erator in a depth image to get the depth gradient of
each pixel, and evaluate the gradient orientation and
magnitude.

We divide the orientation space into 36 bins, and
accumulate the gradients for each bin. The descriptor
is the concatenation of these bins. To keep this de-
scriptor rotation-invariant, we align the bin with the
maximum value as the primary one, and rotate the fol-
lowing bins according to the order. When we want to
match two histograms, we can compare the primary
bin first, and then compute the following bins sequen-
tially. The HODG is suitable to describe the various
changes of surface appearance and contours.

4.3 Descriptor database

In order to keep the images scale and translation in-
variant, when we generate the depth images which
are projected from the dodecahedron vertices, we
translate the depth images to the center of an im-
age and normalize their sizes. Moreover, the afore-
mentioned descriptors are all rotation-invariant. We

Figure 7: The left is the input image. The middle and the
right are the searching results of Zernike moments.

Figure 8: Different retrieval results by using Zernike mo-
ments with and without HODG.

then use these features to produce the compact fea-
ture databases.

Zernike moments are useful in discriminating the
whole appearance of images in these three descrip-
tors. However, as shown in Figure 7, while only
using Zernike moments, sometimes we may retrieve
some unexpected results when the poses of articulated
models, such as human beings or animals, are simi-
lar to that of a plane. In order to reduce the failure
results, we apply the 2D-polar Fourier Transform. It
can retain more detailed contour shapes. By constrast,
HODG is suitable for analyzing the surface orienta-
tion and sharp contour changes as shown in Figure 8.
In summary, our global feature set is composed of
Zernike moments, Histogram of Depth Gradient, and
2D-polar Fourier Transform; our local feature set con-
sists of Zernike moments and 2D-polar Fourier Trans-
form for torso and limb regions. The recommended
combination of these features is analyzed in the ex-
periment section.

5 ONLINE MODEL RETRIEVAL

This section introduces our interactive 3D model re-
trieval system. Figure 9 shows the flow chart about
our online retrieval system.

5.1 Acquiring input depth images

After the system initialization, a user can input one or
multiple depth image files or live capture inputs from
a depth camera. Figure 10 shows different ways to
get the query inputs. Before capturing the live depth
images, we need to take an initial frame as the back-



Figure 9: Overview of online model retrieval.

Figure 10: Different ways to acquire input depth images.

ground region. Pixels with large depth differences be-
tween the initial and current frames are regarded as
the foreground. This step can be improved by ad-
vanced segmentation methods, e.g. (Rother et al.,
2004), (Lin et al., 2015). For the live captured depth
images, a user can hold an object in front of the cam-
era in hand. According to the recorded color his-
togram, our system can detect and remove users hand

region and leave the grabbed object for model query.
Since there is always noise disturbing a live captured
image, we apply connected component labelling to
gather pixels and omit the scattered groups without
sufficient pixel numbers.

5.2 Matching distances

After acquiring the refined depth images, similar to
4.1, our system automatically segments the torso and
limb regions from the whole shape, and extracts the
global and local feature descriptors. Then, it com-
putes the distances of global and local features among
the input and model projections in the database.

Figure 11 shows the overview of our matching
method. We can see that there are twenty views for
each 3D model and five (three for global information
and two for local information) feature sets for each
view. Then, we describe the distance terms for each
descriptor.

The distances for Zernike moments, 2D-polar



Figure 11: Overview of the matching method. Ψ is the set
of all 3D models in our database. ψi is one of the 3D mod-
els.

Fourier are denoted by dZernike and dPolarFourier respec-
tively. These two distances can be formulated by
equation 1.

dsetin,setob j =
N

∑
i=1

∣∣ fini − fob ji

∣∣ , (1)

where fini is the ith feature coefficient of a query im-
age, fob ji is the ith coefficient of one of the objects
in our 3D model database, and N is 35 for Zernike
moments and 78 for 2D-polar Fourier descriptors.

The distance for Histogram of Depth Gradient is
denoted by dHODG, and it is formulated as follows:

dHODG:setin,setob j =
1

∑
N
i=1
(

fini ∩ fob ji
)
+ ε

, (2)

where fini is the ith feature coefficient of a query im-
age, fob ji is the ith coefficient of one of the objects
in our 3D model database, and we set ε to 0.001, N
to 36. The denominator of equation 2 is the sum of
intersection operations for histogram bin values.

On the other hand, the local feature sets
(ZernikePart and PolarFourierPart) comprise features
for torso and limb regions. For example, if a whole
projected depth image can be divided into one torso
and three limb regions, there are four parts in this
shape. Since a torso and limbs have different prop-
erties, these two kinds of regions are handled and
matched separately. The distances for torso and limb
regions are denoted by dTorso and dLimb, and the dis-
tance between two feature sets are formulated as fol-
lows:

dTorso:setin,setob j =
N

∑
i=1

∣∣ fini − fob ji

∣∣ ,
dLimb:setin,setob j = EMD

(
fin, fob j

)
,

dPart =
dTorso +n×dLimb

n+1
,

(3)

where fini is the ith feature coefficient of query image,
fob ji is the ith coefficient of one of the objects in our
3D model database, and N is 35 for ZernikePart and
78 for PolarFourierPart. The computing way between
Zernike moments and ZernikePart for torso region is
the same because there is only a torso region in each
shape, and so do 2D-polar Fourier Transform and Po-
larFourierPart for the torso region. fin is a sequence
of limb features of query image, and fob j is a se-
quence of limb features of an object in our 3D model
database. The EMD function is the earth movers dis-
tance proposed by Rubner et al. (2000). n is the num-
ber of limb regions in a projected image, and dPart is
weighted average of dTorso and dLimb.

The earth movers distance (EMD) is a method
to evaluate dissimilarity (distance) between two
multi-dimensional distributions, and here we use
ZernikePart and PolarFourierPart. The EMD esti-
mates the minimum moving distance between two
feature sets, and the EMD is formulated as follow:

m

∑
i=1

n

∑
j=1

ai j = min

(
m

∑
i=1

wPi,
n

∑
j=1

wQ j

)
,

EMD(P,Q) =
∑

m
i=1 ∑

n
j=1 di jai j

∑
m
i=1 ∑

n
j=1 ai j

,

(4)

where P is the first feature set with m limb regions, Q
is the second feature set with n limb regions, ai j is the
optimal work amount between P and Q, and di j is the
ground distance between P and Q.

Finally, the distance between two views (input and
a projected view of a database model) becomes:

dview:set1,set2 = wZernikedZernike +wHODGdHODG +wPFdPF

+wZPartdZPart +wPFPartdPFPart,
(5)

where wZernike, wHODG, wPF, wZPart, and wPFPart are
the normalized weights for corresponding distances.
These distances have the same weights by default. If
a user turns off one of the distances, the corresponding
weight term is set to zero.

5.3 Model query

Since our system does not constrain the viewing angle
of the query input, we do not have information about
the viewpoints or other spatial relationship among the
input images. Therefore, the distance between an in-
put depth image and a database model is set as the dis-
tances between the inputs and the most similar view
of that model. The equation is as follows:

ob j = argmin
o

Nin

∑
i=1

min
j

(
dview:in, j

)
, (6)



Table 1: The spending time in the offline and online stages.

Process Time (seconds)
Extract projected views 309.685
Extract local info. and features 1746.443
Load feature databases 4.366
Retrieve per image 0.539

where o represents the index of an object model in
database; i is the index of an input image; j is the
index of a view belonging to o; Nin is the number of
input images.

Our system allows users inputting one or more
query images. Figure 12 shows different results with
one, two, and four query inputs, and we can find that
the results are more accurate with more input views.

6 EXPERIMENT

6.1 Retrieval system

Our prototype system is developed in C/C++ lan-
guage, with OpenCV, OpenGL, and OpenNI libraries.
The experimental database derived from two famous
3D model datasets. The NTU dataset is published
by Chen et al. (2003), and SHREC15 (Lian and
Zhang, 2015) dataset contains a variety of non-rigid
3D models. Since one of our comparison methods,
shape clustering proposed by Shen et al. (2013),
is only suitable for retrieving the silhouette images
with extractable skeletons, we chose 573 models from
NTU database which have complete and noiseless
meshes. Since there are few postured models in NTU
dataset, we therefore chose 42 human models and re-
quired users to edit their postures with Maya (Au-
todesk Inc., ). Each human model has 5 different pos-
tures. Several examples are shown in Figure 13. Also,
we take 97 non-rigid quadruped animal models from
SHREC15 (Lian and Zhang, 2015). There are 880
models in total. In Table 1, we list the time spend-
ing in the offline and online stages. It shows that our
method is efficient in online retrieval. Please refer to
the supplementary video to see the demo for online
retrieval.

6.2 Performance Evaluation

We compared three different methods. The method
proposed by Shen et al. (2013) is denoted by “SC”.
SC computes the similarity between two skeleton
paths of silhouette images. It finds the correspon-
dence of endpoints and junction points, and calcu-
lates path distances as the similarity measurement of

Table 2: The precision-recall area and F-measure of top-4
feature sets with HODG.

Feature sets F-measure Area
Z+HODG+PF 0.337945 0.362754
ZPart+HODG+PF 0.353717 0.380994
Z+HODG+PFPart 0.339882 0.365623
ZPart+HODG+PFPart 0.351692 0.376325

shapes. SC can advantageously retrieve shapes with
the presence of joint movement, stretching, and con-
tour deformation, so we took this method as one of
our comparisons for retrieving models with articu-
lated limbs. The feature set proposed by Chen et
al.(2003) is denoted by “LFD”. LFD feature set is
combination of Zernike moments and Fourier Trans-
form, and it is known for its capability for searching
3D models with sparse inputs. Our proposed method
is denoted by “Our Method”. However, since the two
related methods do not consider the depth informa-
tion, during our experiments we also turned off the
HODG term to demonstrate the capability without us-
ing depth information. Our method without HODG is
denoted by “Our Method (without HODG)”.

Before the precision-recall analysis, we demon-
strate the results of articulated and rigid model re-
trieval. Since the articulated models may have diverse
motions of torso parts or limbs, we want to retrieve
models which have diverse motions compared to the
input. Figure 14 shows the retrieved results. Since
our method includes not only global but also local
information, the proposed method can get human or
quadruped animal models in different postures.

In order to evaluate these methods, we use three
popularly used measures: precision-recall diagram,
the area under precision-recall curve, and F-measure.
To calculate the Precision-Recall, we separated the
dataset into 32 categories, and used the leave-one-out
method to evaluate the retrieval accuracy.

As shown in Table 2 and Table 3, we tried various
combinations of features, and find the most effective
one to be our feature sets. In the following, we ab-
breviate Zernike moments as “Z”, 2D-polar fourier as
“PF”, ZernikePart as “ZPart”, and PolarFourierPart as
“PFPart”. With HODG, the best combination is ZPart
+ HODG + PF. Without HODG, the best one is ZPart
+ PFPart.

Table 3: The precision-recall area and F-measure of top-4
feature sets without HODG.

Feature sets F-measure Area
Z+PF 0.320841 0.312618
ZPart+PF 0.352201 0.354703
Z+PFPart 0.325695 0.321335
ZPart+PFPart 0.354193 0.357654



Figure 12: Left: Examples of query by different numbers of input images. Right: The corresponding retrieval results.

Figure 15 shows the precision-recall curves of
all models. Our method with parts gets the highest
scores at any view situation. Even without HODG,
our method still outperforms SC and LFD. Table 4
shows the corresponding precision-recall area and F-
measure. We also show the precision-recall curves of
four views and twenty views.

In Figure 16 and 17, we give different numbers
of inputs, and find that the performance improvement
converges with 8 or more inputs.

7 CONCLUSION AND FUTURE
WORK

This paper proposes a novel method to retrieve rigid
and articulated 3D models. When most existing meth-
ods retrieved features from the whole projected views
or based on skeleton topologies, we propose using

global shapes and additional local information from
segmented torso and limb regions for 3D model re-
trieval. This method does not require a well-aligned
model posture or viewpoint. Each query can be fin-
ished within a second by our current system with-
out carefully code optimization. In our experiment,
we evaluated different combinations of feature sets
and different numbers of input views. These reports
can be helpful for further view-based retrieval system.
The comparison also demonstrated that the proposed
method can get more accurate results than two known
methods.

Currently, our retrieval method is designed for
articulated objects in which the limbs are rigid.
One possible extension is to incorporate deformation
methods, e.g. (Chen et al., 2013), for retrieving ob-
jects with surface deformation. Recently, the deep
learning techniques succeed in various vision prob-
lems. Our current method is relatively low-cost in
computation, and another possible future work is to



Figure 13: Left: The original human models from NTU
database (Chen et al., 2003). Right: The corresponding
models in random postures.

Figure 14: The results of retrieving articulated models and
rigid objects.

incorporate the features extracted from learning meth-
ods, e.g.(Su et al., 2015).

Table 4: The precision-recall area and F-measure of both
rigid and articulated categories (32 categories).

Random 1 view F-measure Area
Our (without HODG) 0.351801 0.352638
Our (with HODG) 0.352834 0.37696
SC (Shen et al., 2013) 0.317446 0.301876
LFD (Chen et al., 2003) 0.304962 0.286351

Random 4 views F-measure Area
Our (without HODG) 0.370055 0.40825
Our (with HODG) 0.372430 0.441786
SC (Shen et al., 2013) 0.343624 0.363110
LFD (Chen et al., 2003) 0.328067 0.34843

All 20 views F-measure Area
Our (without HODG) 0.375983 0.429935
Our (with HODG) 0.379451 0.467065
SC (Shen et al., 2013) 0.355618 0.395940
LFD (Chen et al., 2003) 0.335435 0.372276
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