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1 Additional Module Details

The overview of the proposed framework and archi-
tecture of several important modules are described in
the main manuscript. Here, we introduce the archi-
tecture of the remaining modules in our framework.

1.1 Feature mapping module

The architecture of our feature mapping module is
the multilayer perceptron (MLP) as shown in Figure
1a. We used multiple feature mapping modules to
separately extract the part feature from the whole
feature.

1.2 Point generator

Compared to other parts-to-whole generators,
attention-based methods generate fewer outliers and
network parameters and converges faster. There-
fore, our point generator takes an attention-based
architecture described in Figure 1b. We employed
multiple part-specific generators to convert different
part features into point clusters. These point clusters
are then aggregated by our part aggregation module
to generate the target point cloud.

1.3 Discriminator

As shown in Figure 2, our point discriminator takes
point clouds as input and employs PointNet to extract
a feature vector. Our discriminator has two branch
outputs. They are used to estimate the likelihood
of real point clouds P(S|P ) and the likelihood of the
domain class P(C|P ), respectively.

2 Additional Ablation Study

2.1 Effectiveness of the part loss

We considered both global and local features in the
cycle-consistency loss and feature preservation loss.
To verify the effectiveness of the loss regarding parts,
we show qualitative comparisons in Figure 3. Com-
paring the first column in Figure 3b and Figure 3c,
the horizontal bars between the legs of the input chair
can be preserved on the result with part loss. Besides,
the part loss makes the thickness of the chair legs gen-
erated by the model more similar to the input (e.g.
second and third columns in Figure 3c).

2.2 Effectiveness of the part aggrega-
tion module

Our proposed point aggregation module deforms each
part according to the part and global information.
The final target point cloud is the ensemble of re-
fined parts. We demonstrate the qualitative compar-
isons in Figure 4. The results of the first and last
rows in Figure 4b have discontinuities in shape, which
can be mitigated with the PA module. Besides, com-
paring the last two rows of Figure 4e-f in the right
half, it is evident that the PA module can locally ad-
just each part to make the distinctive structure of the
transferred shape be more similar to that of the input
(such as the legs of chairs and counterpart tables).

2.3 Different architecture settings

In our experiments of the main manuscript, we tried
another architectural design as shown in Figure 5. In
this network, we used a single feature mapping mod-
ule and a generator to generate a point cloud of the
entire object. To further refine the transferred result,
we utilized multiple part aggregation modules to dis-
place different point groups. To compare the perfor-
mance between this alternative architecture and our
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Figure 1: (a) The architecture of our feature mapping module. The feature mapping module is an MLP structure
that can map the whole feature to different local features. (b) The architecture of the point generator, which is
an attention-based network that transforms latent codes to point clouds. The variable N represents how many
parts the point cloud is divided into.

Figure 2: The architecture of our discriminator. The point discriminator takes a point cloud as input, and
predicts the likelihood to be a real input P(S|P ) and the likelihood of the domain class P(C|P ).

proposed architecture, we visualize the translation re-
sults on the chair and table dataset in Figure 6.

Although using the methods in Table 6(e) can gen-
erate smoother point clouds, our proposed model bet-
ter preserves the local details from the input shape.
This may be because our method divides a point
cloud into multiple parts first for later part-specific
processing, besides the loss functions Lcycle and Lfp

are also applied on each part. Our approach enables
the model to learn local features and better know
how to deform each part to form the target shape.
We think the awareness of local structures of the pro-

posed frame work copes with the core problem of un-
paired shape translation, and a few rugged surface
can be processed by post-process filtering or includ-
ing additional loss functions for smoothness.

Page 2



Figure 3: Qualitative comparison of results with and without part feature Zp
S terms in the cycle-consistency loss

and feature preservation loss. The first two columns are the results of armchair → armless chair transfer. The
last two columns are the results of armless chair → armchair transfer.

Figure 4: Qualitative comparison of results with and without part aggregation (PA) module. The left half is the
translation between armchairs and armless chairs, and the right half is the translation between chairs and tables.
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Figure 5: The architecture of the model described in Table 6(e) of the main manuscript.

Figure 6: Qualitative comparison of results by an alternative architecture and ours. Model B is the method
described in Table 6(e) of the main manuscript. The left half is the translation from chairs to tables, while the
right half is the translation from tables to chairs.
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