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Fig. 1. Cross-domain shape translation by the proposed framework. Given two sets of point-cloud data, our
framework learns the translation between these two domains with multi-part representation, in which more
local details, such as the table or chair leg structure, can be preserved during translation.

Unpaired shape translation is an emerging task for intelligent shape modelling and editing. Recent methods
for 3D shape transfer use single- or multi-scale latent codes but a single generator to generate the whole
shape. The transferred shapes are prone to lose control of local details. To tackle the issue, we propose a
parts-to-whole framework that employs multi-part shape representation to preserve structural details during
translation. We decompose the whole shape feature into multiple part features in the latent space. These
part features are then processed by individual generators respectively and transformed to point clouds. We
constrain the local features of parts within the loss functions, which enable the model to generate more similar
shape characteristics to the source input. Furthermore, we propose a part aggregation module that improves
the performance when combining multiple point clusters to generate the final output. The experiments
demonstrate that our multi-part shape representation can retain more shape characteristics compared to
previous approaches.
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1 INTRODUCTION
In recent years, unpaired image-to-image translation has gained a great deal of interest in computer
graphics, vision, and machine learning fields. Due to the inconvenience of collecting pairwise infor-
mation, most methods aim to learn translation between two domains without pairwise supervision.
Besides, they typically focus on transferring the style in an image, such as color or texture. For
shape translation, the goal is to generate an output shape for a different domain while preserving
certain features from the input, and it has various applications such as 3D model generation, 3D
asset extension, furniture design assistance, and so forth. To date, there are relatively fewer re-
search works on shape-to-shape translation. P2P-NET [Yin et al. 2018] develops a general-purpose
neural network to learn geometric transformations between point sets from two domains, e.g.,
meso-skeletons and surfaces, partial and complete scans. Despite successfully changing shape,
P2P-NET requires paired training data. VC-GAN [Gao et al. 2018] proposes an automatic unpaired
deformation transfer. Although pairwise correspondences are not required, it can only achieve
minor shape deformations without significant structural variation, e.g., a fit person to a fat person,
or changes in posture.
Our work aims at translating shapes across domains with essential structural variations and

keeping the distinct shape characteristics. For example, when a chair is converted to a table, the
shape of table legs looks similar to the shape of original chair legs. LOGAN [Yin et al. 2019]
and UNIST [Chen et al. 2022] are the most relevant methods to our work. LOGAN can perform
both content and style transfers between shapes. However, the translation network uses a single
autoencoder architecture to first encode a whole input shape into the multi-scale latent codes that
represent global features. Although the latent codes concatenate multi-scale shape features, this
operation can still omit distinctively regional information, making it difficult to keep local details
during shape translation. To address this issue, UNIST combines the merits of both latent-space
processing and position awareness and proposes a latent grid representation. It enables large shape
transforms and well preserves fine local details for shape translation. UNIST uses neural implicit
functions to represent 3D shapes. By contrast, point clouds are more friendly for shape editing,
since they explicitly express the shapes and are efficient in computation and memory usage. This
urged us to investigate an effective representation to achieve unpaired shape translation based on
point clouds and preserve the local features from the source shape.
Recently, several deep learning methods propose using local-to-global frameworks to better

construct local details [Chen et al. 2021, 2020; Gao et al. 2019]. They decompose an input image or
object into multiple small parts and demonstrate that modeling the shape space as low-dimensional
components can improve the quality of local detail synthesis. Furthermore, in 3D reconstruction or
generation, several approaches reconstruct point clouds with multiple simple primitives or point
clusters to improves the quality of 3D objects [Deprelle et al. 2019; Groueix et al. 2018; Sun et al.
2021; Zhang et al. 2022; Zhao et al. 2019]. However, unlike human face images where semantic
features (i.e., eyes, nose and mouth) can be applied for matching or alignment [Lee et al. 2018],
it is not easy to extract meaningful regions from an arbitrary point cloud. Without additional
segmentation information, we adopt decomposing the point cloud into part features in the latent
space instead of the original 3D space.
Inspired by the above, we propose a neural network based on the parts-to-whole strategy for

the task of unpaired shape-to-shape translation. The parts-to-whole strategy means that we first
generate multiple point clusters separately, and then combine these point clusters to form a whole

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/3585508


Unpaired Translation of 3D Point Clouds with Multi-part Shape Representation 3

Fig. 2. The concept of the training and testing process. In the training process, our input is unpaired point
cloud datasets from two domains. The transferred results generated by our network are expected to have
common shape features with the input. In the testing process, given an input point cloud from one domain,
our framework generates an output with similar shape characteristics in the other domain.

point cloud. As shown in Figure 1, we can translate a chair to a table which has similar shape
characteristics (e.g. the legs of the chair and table). We also converted an armchair to its armless
counterpart and a table from tall to short domains, while retaining its originally main structure.
Figure 2 shows the concept of our training and testing processes. We train our model using

unpaired data from two domains. Taking Chair↔ Table translation as an example, our training
dataset has both unpaired chairs and tables. The proposed network has to implicitly learn the
common features existing in two domains. Dotted circles with the same color between the input
chairs (tables) and output tables (chairs) indicate parts with similar shape characteristics that we
intend to retain. In the testing process, we can send any chair or table to our model to generate
the corresponding transferred result. Different from prior work, we do not use a single generator
to generate the entire shape. As shown in the overview Figure 3, we employ independent feature
mapping modules to extract multiple local part features. These part features are then sent to the
point generators through individual branches, respectively. The point generator can transform
latent features to point clusters.
However, since each point cluster is independent of the other, directly aggregating multiple

point clusters cannot achieve satisfactory results. Therefore, we propose a part aggregation module,
which introduces global information into each part and deforms each point cluster. Moving 3D
points of each part according to the estimated displacement can further fit the generated result
to the point cloud reconstructed by autoencoder. Besides, our model can automatically segment
the point cloud without supervised data. We observed that translating shapes by parts reduces
the difficulty for the network to model new shapes and enables the preservation of fine geometric
details (e.g. crossbars of chairs and tables) during shape translation.

Through extensive qualitative and quantitative experiments, we demonstrate the advance of our
approach for unpaired shape-to-shape translation. Compared with related methods, our translation
results more accurately preserves distinctive local details, making it more similar to the shape
characteristics of the input source. We also conducted ablation studies to verify the effect of part
decomposition and local part deformation. In summary, the main contributions of our work are as
follows:

• We present a novel parts-to-whole framework for unpaired shape-to-shape translation which
preserves more distinctive structural details from the source.

• The proposed part aggregation module improves the performance when combining multiple
point clusters by incorporating global feature of shape and deforming local point sets.

• Experiment results shows the superiority of the proposed approach in both qualitative and
quantitative evaluations compared to related state-of-the-art approaches.
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Fig. 3. Overview of the proposed parts-to-whole framework. Multiple part-specific generators are employed
for translation by parts, and these parts are then gathered and refined by a part aggregation module.

2 RELATEDWORK
2.1 Point Clouds with Deep Networks
Since point clouds directly represent the geometric coordinates and are relatively easy to edit, they
have been widely used in 3D shapes modeling. To process such sparse and unordered data, several
methods have been proposed to process point clouds with permutation-equivariant networks. A
key breakthrough in connecting point clouds to neural networks is PointNet [Qi et al. 2017a]. It
uses multi-layer perceptrons and global pooling operations to solve the permutation invariant
problem. To concentrate more on local structures, PointNet++ [Qi et al. 2017b] applies PointNet
recursively in a hierarchical manner and leverages neighborhoods at multiple scales. The idea of
local structures is further developed by DGCNN [Wang et al. 2019b], which proposes the edge
convolution over graphs to incorporate local neighborhood information.
However, these methods usually use the max-pooling operation in the encoding phase, fine-

grained information is lost and difficult to recover in the decoding phase. To address this issue,
PCT [Guo et al. 2021] presented a novel framework based on Transformers [Vaswani et al. 2017].
Since Transformers have a strong capability to handle long-sequence inputs, they can handle
the permutation invariant problem of the point cloud. Although the attention mechanism in
Transformers is effective in extracting global features, local geometrical information may be ignored.
To make Transformers more suitable for point cloud, PoinTr [Yu et al. 2021] introduces a geometry-
aware block, which can be plugged into any transformer architecture. With this geometry-aware
block, the model can better capture the geometric relation. Motivated by the above, we followed
PoinTr and incorporated a geometry-aware transformer mechanism into our encoder. In order
to make the representation more thorough, we adapted our feature extractor to be a multi-scale
graph-based model.

2.2 Unpaired Domain Translation
Translating an input from the source domain to the target domain without paired data supervision
is a challenging task. One of the main difficulties is that there are multiple possible mappings
between the two domains, which can lead to instability of training and fails of translation. To tackle
this problem, pioneer works [Kim et al. 2020, 2017; Park et al. 2021; Yi et al. 2017; Zhu et al. 2017]
proposed the concept of cycle consistency. It assumes that the generated image can be translated
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back by inverse mapping and the cycle-reconstructed image should be as similar to the input as
possible.
Inspired by these methods, LOGAN uses the cycle consistency loss to train their translation

network. In addition, they also added a feature preservation loss, which is formally equivalent to
the identity loss [Taigman et al. 2016]. Our translation network is also trained with the same loss
set as LOGAN. Unlike LOGAN, which only considers the whole feature, we further evaluate and
exploit features of multiple parts. This makes cyclic reconstruction more similar to the input point
cloud and facilitates the cross-domain translation.

2.3 3D Part-based Modeling
As the availability of 3D shape datasets with part annotations [Chang et al. 2015; Mo et al. 2019b; Yi
et al. 2016] increases, more and more research is interested in 3D part-level object understanding.
Several researches promote decomposing 3D shapes into individually meaningful parts using either
supervised or unsupervised learning. Previous methods [Delanoy et al. 2018; Niu et al. 2018; Sun
et al. 2019; Tulsiani et al. 2017; Zou et al. 2017] learn to assemble objects using cuboid structure
and require only a small number of parameters. Approaches such as [Ganapathi-Subramanian et al.
2018; Genova et al. 2019; Kim et al. 2013] utilize the efficiency of template 3D shapes and transfer
their structural information onto new objects, while other methods [Li et al. 2017; Mo et al. 2019a;
Wu et al. 2020] generate 3D shapes by parts.

Recently, 3DPointCapsNet [Zhao et al. 2019] is based on renowned 2D capsule networks [Sabour
et al. 2017] and extends them for 3D data. With multiple independent convolutional layers to capture
3D local features and dynamic routing, 3DPointCapsNet extracts powerful latent representation
from input point clouds. In their decoder, they followed the AtlasNet [Groueix et al. 2018] convention.
AtlasNet samples 2D points uniformly in the unit square for each latent representation and jointly
learns to deform a 2D point set to a surface. Sun et al. [2021] also used the capsule encoder to learn
part decomposition. However, they assigned each point to one of the K parts through multiple
attention maps and their decoder architecture was similar to AtlasNetV2 [Deprelle et al. 2019].
AltasNetV2 also adopted surface-parametric approaches from AtlasNet, but they used trainable
grids called learnable elementary structures. Although these methods performed adequately on
point cloud reconstruction, they were usually troubled by outliers and rough surfaces. AXform
[Zhang et al. 2022] proposed an attention-based decoder to address these issues and generated
point clouds using only latent features. In addition, AXform had fewer network parameters and
faster convergence speed. For the above advantages, we adopted AXform as our point generator.
Besides, we further present a part aggregation module to improve the multi-part results.

2.4 Point Set Displacement
Displacement-based approaches have been applied to several related work. Yin et al. [2018] im-
plemented the skeleton-to-shape transformation. They fed the learned noise-augmented feature
vectors to a set of fully connected layers to produce pointwise 3D displacement vectors. By applying
these displacement vectors to the source shape, they could transform a source point set into a
target one. Wang et al. [2019a] also proposed a network to estimate per-vertex offsets, which would
deform the source model to resemble the target. Unlike other approaches, the offsets in their work
were learned according to point locations and global features of the source and target. Wang et
al. [2021] introduced a novel 3D representation method that uses the spherical point cloud as the
template. They progressively deformed the template by point-wise offsets to fit the target shape in
a coarse-to-fine manner.

Although these methods achieve impressive results, they cannot significantly change the shapes.
Besides, 3D objects after point-wise displacements still belong to the same domain. In this work,
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we propose a part aggregation module to learn per-point displacement. Our module divides a
3D object into multiple smaller point clusters and each point cluster is processed and displaced
separately. With such a design, our framework has more opportunity to learn the details during
the cross-domain translation.

3 METHOD
The main issue of shape translation is how to well preserve distinctive structure and fine local
details. Related approaches use a single encoder and generator to generate the translated shape.
Since learning both global and local features with a single generator is difficult, we found that such
a strategy is prone to lose local features of the source shape during translation.

To alleviate this problem, we design a novel network that includes a transformer-based encoder
and multiple part-specific generators. We use individual feature mapping modules to extract differ-
ent part features and translate shapes by parts. Meanwhile, our network can learn to automatically
segment point clouds into multiple parts. For better parts aggregation, we propose a part aggrega-
tion module that incorporates the global feature and deforms local point clusters. Our network and
its training procedure are illustrated in Figure 4.

3.1 Overview of our network
Our goal is to translate shapes from the source domainS to the target domain T . Without additional
annotated information, our network has to implicitly learn the common features existing in two
domains. In the autoencoder network, as shown in Figure 4a, our encoder E encodes point clouds
from two domains into latent space. In latent space, we describe Zw

S
and Zw

T
as latent codes in

domain S and domain T , respectively, and the superscriptw represents the whole shape features
for point clouds. We have k feature mapping modules that take the whole latent codes as input to
extract multiple local part latent codes Zp

S
. These part features are then sent to different generators

to be converted into point clusters, which are concatenated to form reconstructed coarse output.
To better combine point clusters, our part aggregation module introduces the global features into
local parts and adds per-point displacement to parts. We take the ensemble of these displaced point
clusters as our final reconstructed output.
For translation, inspired by LOGAN [Yin et al. 2019], we perform our transformation in latent

space. As shown in Figure 4b, we have two translators TS7→T and TT7→S . The translator TS7→T

can transfer a latent code from domain S to domain T , while TT7→S performs on the opposite
direction. Our training process is different from LOGAN [Yin et al. 2019] and UNIST [Chen et al.
2022], they trained their autoencoder and translators separately. We train our autoencoder and
translators alternately. When we train our autoencoder, we fix the parameters of translators, and
vice versa. The reason for this training strategy is that if the autoencoder is trained first, the feature
distribution will be fixed and thus limiting the learning of the translators. Through such alternate
training, our autoencoder and translators can gradually be enhanced.

3.2 Part-level Translation
LOGAN [Yin et al. 2019] used the multi-scale latent codes to represent the entire shape of the input
point cloud. The latent codes can be used to recover the shape by a single generator. However, we
observed that such a design may lose important local details during translation. Instead, UNIST
[Chen et al. 2022] proposes position-aware encoding to incorporate positional information into a
latent grid. They employed a neural implicit representation of shapes, rather than point clouds. By
contrast, we propose a parts-to-whole model for point clouds, which adopts multiple part-specific
generators to generate point clusters and finally integrates them to form a whole point cloud. Our
network architecture is introduced as follows.
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(a)

(b)

Fig. 4. Overview of training our network. We exploit an alternate training strategy which can be divided into
two parts: (a) autoencoder training and (b) translator training. In (a), we use a single encoder and multi-branch
feature mapping modules and generators. Our autoencoder encodes shapes from two input domains and
generates reconstructed coarse and final outputs. In (b), we have two translators to transfer point clouds
between domain S and domain T . Our translator is trained in an adversarial setting to ensure that the
transferred point cloud matches the target domain through the discriminator.

Multi-scale encoder. Our encoder is inspired by PoinTr [Yu et al. 2021], in which a transformer-
based encoder is applied to reduce the loss of fine-grained information. They used a lightweight
DGCNN [Wang et al. 2019b] as their feature extractor. To get a more comprehensive shape repre-
sentation, we employ a powerful feature extractor to preserve details. Following the procedure in
[Hassani and Haley 2019], we use a series of graph convolution, convolution, and pooling layers in
a multi-scale fashion to learn shape features for point clouds Our encoder is illustrated in Figure
5. Deriving the idea of the graph convolution from DGCNN, we use K Nearest Neighbor (KNN)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 1, Article . Publication date: May 2023.
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Fig. 5. The architecture of our transformer-based encoder.We adopt amulti-scale graph-basedmodel modified
from [Hassani and Haley 2019] as the feature extractor. It takes multi-scale features at each FPS(furthest
point sample) center position. The following transformer encoder takes the center features with positional
embedding as input, and outputs the fused feature vector representing the whole shape.

with multiple K parameters to form multiple neighbor graphs and extract multi-scale features. We
concatenate these multi-scale features to form per-point features. We downsample the points ac-
cording to centers extracted by the furthest point sample (FPS) approach. The 256-channel features
at these 256 extracted point centers can approximate the regional features of the model. Afterwards,
the following transformer encoder then fuses these center-point features to be the whole shape
features by self-attention, feed-forward and other network mechanisms.

Point generator. To extract the part features, the whole feature is fed into separate feature
mapping modules with MLP architecture. In our generator, we take the attention-based generator
proposed in AXform [Zhang et al. 2022] as the backbone. Compared to other parts-to-whole
generators, AXform generates fewer outliers and network parameters and converges faster. We
employ this attention-based generator to convert the part features into point clusters. These point
clusters are then aggregated to generate the target point clouds. The detailed architectures of the
feature mapping module and point generator are introduced in the supplementary materials.

Translator. Our translators aim to learn which shape features should be transferred during
cross-domain translation. The translator network is derived from the translator in LOGAN.We train
our translator in the adversarial setting. Unlike LOGAN and UNIST, they applied two discriminators
in two domains separately, and both discriminators work in the latent space. We employ an auxiliary
discriminator that can simultaneously judge inputs from two different domains. In such a way, we
can reduce memory usage. Our point discriminator first extracts a feature vector by PointNet [Qi
et al. 2017a] and predicts the likelihoods through two different branches. The detailed architecture
of our discriminator is provided in the supplementary materials.

3.3 Point clusters deformations
Although AXform [Zhang et al. 2022] achieves state-of-the-art results among parts-to-whole
methods, we found that their approach has several drawbacks. In their work, each small point
cluster is generated according to the corresponding part feature, and each branch for part generation
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Fig. 6. Architecture of our part aggregation module. The inputs of the part aggregation module are the feature
for each point and a point cluster. The part aggregation module can generate a displacement to deform a
point cluster. The variable N represents the number of parts.

is independent of the others. When the number of point clusters increases, it is easy to observe
gaps or rugged seams among the synthesized point clusters.
To better integrate multiple local parts, we propose a point aggregation module. As shown in

Figure 6, our point aggregation module takes the whole feature and one point cluster as inputs and
generates per-point displacement for the corresponding local part. The whole feature goes through
the convolutional layers to extract important global information for this task before feeding it to
the point aggregation module. With our point aggregation module, the global feature of the shape
can cooperate with each local feature, which improves the performance when combining multiple
point clusters.

3.4 Loss functions
Since we train our autoencoder and translators alternately, the loss functions used in our framework
can be divided into two parts: Autoencoding and Translation.

Loss Functions for Autoencoding. In our autoencoder network, we calculate the reconstruc-
tion loss not only on the self reconstruction but also on the cyclic reconstruction. The self recon-
struction is to directly use the features extracted from encoder to generate point clouds. For cyclic
reconstruction, it performs reconstruction with features sent to a translator and inversely-mapped
by another translator. To measure the similarity between two point clouds, we adopt Chamfer
Distance (CD) [Fan et al. 2017] and Earth Mover’s Distance (EMD) [Rubner et al. 2000] for our
reconstruction losses.
Given two point clouds P1 and P2, the chamfer distance is to calculate the squared distance

between each point and its nearest neighbor in the other group set. The chamfer distance (CD) can
be defined as:

dCD (P1, P2) =
∑
x ∈P1

min
y∈P2

∥x − y∥ 2
2 +

∑
y∈P2

min
x ∈P1

∥x − y∥ 2
2 . (1)
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For measuring point clouds P1 and P2 with identical sizes, the EMD distance finds the point
correspondences with the minimum distance and reports the distance. It can be described as:

dEMD (P1, P2) = min
ϕ :P1→P2

∑
x ∈P1

∥x − ϕ(x)∥2, (2)

where ϕ : P1 → P2 is a bijection.
If we only use the chamfer distance, the generated point cloud is prone to gather in a few regions.

We therefore employ both chamfer distance and EMD distance to generate results with more
uniform distribution. In the reconstruction loss, we evaluate two kinds of outputs which are the
reconstructed coarse output P̃S(coarse) and the final output P̃S(f inal ). The reconstructed coarse
output P̃S(coarse) is generated by multiple part-specific generators and the final output P̃S(f inal ) is
the result refined by our part aggregation module.

Therefore, our reconstruction loss and cycle-reconstruction loss can be expressed as:

Lr econs =λ1dCD (PS, P̃S(coarse)) + λ1dCD (PS, P̃S(f inal ))

+ dEMD (PS, P̃S(coarse)) + dEMD (PS, P̃S(f inal )),
(3)

Lcycle−r econs = λ2dCD (PS, P̃S7→T7→S(f inal )) + dEMD (PS, P̃S7→T7→S(f inal )), (4)

where PS is input point cloud, P̃S(coarse) is the reconstructed point cloudwith coarse shape, P̃S(f inal )
is the reconstructed point cloud with fine shape, and P̃S7→T7→S(f inal ) is the point cloud transferred
back to its domain. The total loss to train our autoencoder is described as follows:

LAE = Lr econs + λ3Lcycle−r econs , (5)

and we set the weights λ1 to 104, λ2 to 103, and λ3 to 0.1
Loss Functions for Translation. In our translation network, we take a similar loss set as

LOGAN and further enhance the part similarity. For simplification, we only explain the loss
function in details for TS7→T . The loss functions for the opposite direction can be obtained by
directly swapping the S and T in equations. To achieve cross-domain translation, our discriminator
predicts whether the input is real or fake and estimates which class it belongs to. Based on WGAN
[Gulrajani et al. 2017], the adversarial loss is formulated as:

LS7→T
WGAN (PT, PS7→T) = E[P(S = real |PT)] − E[P(S = f ake |PS7→T)] + λдpLдp, (6)

where PT is the point cloud in domain T , PS7→T is the point cloud translated from domain S to
domain T . Lдp is the gradient penalty proposed by [Gulrajani et al. 2017] for regularization and
λдp is the weight set to 10. For domain classification, we employ cross entropy loss. It is defined as:

LS7→T
class (PT, PS7→T) = −E[YlogP(C = T |PT)] − E[Y logP(C = T |PS7→T)], (7)

where Y is the likeihood of real class label.
To encourage one-to-one mapping between the two domains, we apply the cycle-consistency

loss to train our translators. We consider both whole shape latent code Zw
S
and multi-part latent

codes Zp
S
. The model focuses not only on global features, but also on local features. It makes the

latent codes cycle-transferred back more similar to its original ones. Thus, the cycle loss with global
and part features is illustrated as:

LS7→T
cycle =

Zw
S
− Zw

S7→T7→S

smooth
1 + λpar t

k∑
i=1

Zpi
S

− Z
pi
S7→T7→S

smooth

1
, (8)

where ZS7→T7→S is TT7→S(TS7→T(ZS)) and k denotes the number of parts in latent code decomposi-
tion. λpar t is the weight set to 0.1.
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LOGAN uses a feature preservation loss which is similar concept to the identity loss in [Zhu
et al. 2017]. We also adopt this loss to maintain the invariance of shape characteristics. Similar to
our cycle loss, our feature preservation loss also measures both whole and part features to enhance
local shape characteristics. It can be formulated as:

LS7→T
f p =

Zw
S
− Zw

S7→S

smooth
1 + λpar t

k∑
i=1

Zpi
S

− Z
pi
S7→S

smooth

1
, (9)

where ZS7→S is TT7→S(ZS).
In summary, the total loss for training our translators is formulated as follows:

LTotal = LWGAN + Lclass + λcycleLcycle + λf pLf p, (10)

where we set λcycle and λf p to 20.

4 EXPERIMENTS
4.1 Experimental settings
In our experiments, we applied the ShapeNet Core [Chang et al. 2015] as our dataset which contains
more than 50,000 3D mesh models in 55 common categories in total. We trained our model on
three pairs of domains, i.e., armchairs and armless chairs, tall tables and short tables, and chairs
and tables. In the arm and armless chair translation, we have 2138 armchairs and 3572 armless
chairs. 80% of them are used for training and 20% for testing. In the tall and short table translation,
we took 2,500 training models and 500 testing models for each domain, respectively. In the chair
and table translation, the chair dataset has 4,768 training models and 2,010 testing models, and the
table dataset has 5,933 training models and 2,526 testing models. Each mesh model was normalized
by setting the longest diagonal of its bounding box to 1, and 2048 points were sampled from each
model for our point cloud dataset.
To train our network, we set the batch size to 16 and trained our network for 400 epochs with

a single NVIDIA 3090 graphics card. The training time is about 30 hours. we adopted the Adam
optimizer with initial learning rates 0.00005, 0.00025, and 0.0002 for our autoencoder, translators
network, and discriminator respectively. These learning rates were halved every 100 epochs until
200 epochs. In each iteration, we first trained the discriminator twice and then train the autoencoder
and translators once separately.

4.2 Qualitative Comparisons
There has been few methods on unpaired shape-to-shape translation. LOGAN [Yin et al. 2019]
and UNIST [Chen et al. 2022] are two impressive approaches aiming at this task. LOGAN uses
single generator to recover a point cloud, which may lose control of local details. UNIST addresses
this problem by introducing the positional information into latent codes, while it uses volume
representation instead of point clouds. To compare these two methods, we reproduced the results
by their official codes. Since UNIST employs a neural implicit representation as their 3D shape, we
obtained 2048 points from the surfaces of the meshes by the sampling strategy from [Chen and
Zhang 2019] for fair comparisons. The comparison of these two methods and ours were conducted
on three sets of 3D shape datasets (i.e., armchairs and armless chairs, tall tables and short tables,
and chairs and tables).

Chair↔ Table. The qualitative comparison results are demonstrated in Figure 7. Since LOGAN
uses a single generator to construct a point cloud, a few local details are lost. Taking the first row in
Figure 7c and the second row in Figure 7g for examples, they are difficult to retain the fine details
of the chair and table legs. UNIST incorporates the positional information into latent codes, so
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Fig. 7. Comparison of translation results by ours, LOGAN, and UNIST on Chair↔ Table dataset. (a) Input
chairs. (b) Our transferred tables from (a). (c) The transferred tables of LOGAN from (a). (d) The transferred
tables of UNIST from (a). (e) Input tables. (f) Our transferred chairs from (e). (g) The transferred chairs of
LOGAN from (e). (h) The transferred chairs of UNIST from (e).

they can better preserve local details. However, they can lose control of distinctive input shape
characteristics such as the horizontal bars between the chair legs in third and fourth rows of Figure
7e. Our approach is able to preserve the local details and generate results more similar to the shape
characteristics of input than other methods on some special shapes (e.g. second row in Figure 7a).
We found that sometimes the generated table top is slight rugged due to seams between parts, but
it can be smoothed by post-processing methods such as moving least squares (MLS) or applied
additional loss for smoothness.

Armchair↔ Armless chair. Figure 8 illustrates our translation results compared with results
by other methods. LOGAN can preserve the general shape of the source input, but the local detailed
structures are often dissimilar to the original ones. Taking the second row in Fig. 8c and the first row
in Figure 8g as examples, they generated a wrong number of legs compared to the input swivel chairs.
Although UNIST preserves fine local details, there are still structural discontinuities in several cases
(e.g. first and third rows in Figure 8h). Our method produces the results with structural features
more similar to the input, as shown in the first row ofArmchair → Armless chair translation, only
our method can preserve the horizontal bars between the legs of the input chair.

Tall table↔ Short table. In Figure 9, we show our translation results on tall and short table
dataset. It is evident that our method can generate more similar shape characteristics than LOGAN.
As shown in the second row in Figure 9g and the fourth row in Figure 9c, LOGAN can only generate
part of the horizontal bars between the legs of the input table. UNIST preserves distinctive structure
and fine details well, and has high-quality results due to neural implicit shapes. However, in some
special shapes, taking the first and third rows of the right hand side of Figure 9, the shape of our
translation results is more similar to the source input.

Comparison to retrieval results. In the translation task, we have to verify that our framework
indeed learns shape transformations, rather than simply retrieves a training sample from the target
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Fig. 8. Comparison of translation results by ours, LOGAN, and UNIST on Armchair ↔ Armless chair dataset.
(a) Input armchairs. (b) Our transferred armless chairs from (a). (c) The transferred armless chairs of LOGAN
from (a). (d) The transferred armless chairs of UNIST from (a). (e) Input armless chairs. (f) Our transferred
armchairs from (e). (g) The transferred armchairs of LOGAN from (e). (h) The transferred armchairs of UNIST
from (e).

Fig. 9. Comparison of translation results by ours, LOGAN, and UNIST on Tall table↔ Short table dataset. (a)
Input tall tables. (b) Our transferred short tables from (a). (c) The transferred short tables of LOGAN from (a).
(d) The transferred short tables of UNIST from (a). (e) Input short tables. (f) Our transferred tall tables from
(e). (g) The transferred tall tables of LOGAN from (e). (h) The transferred tall tables of UNIST from (e).
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Fig. 10. Qualitative comparison of our translation results and retrieval results on different 3D shape datasets.
We use EMD distance to retrieve training shapes from the target domain that are closest to test input and
our output. Our translated shapes are novel and not simply retrieved from training sets.

domain. We took the EMD Distance to find training shapes from the target domain that are closest
to the test input and to our transferred output. As shown in Figure 10, we demonstrate the retrieval
results on different datasets. In Figure 10b-c and Fig. 10f-g, the shape of our translation results is
more similar to the test input than those retrieved directly from the training dataset. Besides, our
results are quite different from these retrieved training shapes (i.e., Figure 10d and Figure 10h).

4.3 Quantitative Comparisons
Unpaired shape translation does not have a ground truth dataset and translation results can be
highly varied. It is difficult to objectively assess the quality of a translated result. In the quantitative
comparisons, since there are no suitable metrics or exact ground truth for the chair and table
translation, we can only evaluate on other two datasets. In UNIST [Chen et al. 2022], they proposed
a way to evaluate 3D translations on Armchair ↔ Armless chair dataset. When converting an
armchair and an armless chair, we would expect the transferred chair to have only added or
removed armrests, and no other shape changes. Therefore, UNIST used one-sided Chamfer Distance
(one-sided CD) to evaluate the quality of a translation. Regardless of the direction of the translation,
this special CD is calculated from the armless chair to its corresponding chair with armrests. The
reason behind is that since the armless chair can be regarded as a part of its corresponding armchair,
we can find the distance between each point in the armless chair and its nearest neighbor in the
corresponding armchair. As the one-sided CD value is lower, the shape of the translated armless
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Arm→Armless Armless→Arm
LOGAN† 0.0249 0.0273
UNIST† 0.0234 0.0235
Ours* 0.0156 0.0111

Table 1. Quantitative comparison with other methods on Armchair ↔ Armless chair dataset using one-sided
CD. The best values are highlighted in bold. †: The reported distances of LOGAN and UNIST here are directly
extracted from [Chen et al. 2022]. *: The reported distances of ours here are scaled based on LOGAN’s
distances to fit the scaled distances reported in [Chen et al. 2022].

Tall→Short Short→Tall
CD EMD CD EMD

LOGAN 0.0021 0.0457 0.0019 0.0431
Ours 0.0016 0.0375 0.0018 0.0429

Table 2. Quantitative comparison with LOGAN on Tall table ↔ Short table dataset using CD and EMD
distance. The best values are highlighted in bold.

Testing time (s) Memory usage (MB)
LOGAN 0.15 8763
UNIST 14.78 1649
Ours 0.14 1883

Table 3. Testing time is the translation time for each point cloud, and its value is in seconds (s). Memory
usage is the GPU capacity required by the network during the testing, and the unit is megabytes (MB).

chair is closer to the armless part of its corresponding armchair. However, in the calculation of CD,
it is possible that multiple points find the same nearest neighbor, which may bias the measure of
the quality of a translation.
We also used this metric to measure our shape translation between chairs with and without

armrests. The results are reported in Table 1. UNIST performs on a scaled volume, and they reports
the accuracy of their results and the results of LOGAN in that scale instead of the original scale
for ShapeNet models. We rescaled the values on our result to fit the scale of UNIST. The scale is
evaluated according to ratio between the one-side CD distance of LOGAN in ShapeNet and the
distance in volume scale (reported in [Chen et al. 2022]). Our method outperforms the state-of-the-
art methods on this metric. It manifests that our model learning both the global and local features
benefits the shape translation.
On Tall table↔ Short table dataset, since the transferred table is only different in height with

respect to the input and it should retain the shape characteristics of the input table, we therefore
use the scaled table as the ground truth to evaluate the shape similarity between the two tables.
We adopted Chamfer distance and EMD distance to measure the similarity between the ground
truth produced by us and the transferred result. Table 2 shows quantitative results. Our method
can achieve lower CD and EMD distance values than LOGAN. That reveals that our results are
closer to the ground truth.
Furthermore, we measured the testing time and memory usage required for our method and

other methods to translate a point cloud. As shown in Table 3, our testing time is close to the time
used by LOGAN, which is sufficient for applications of interactive shape translation. However,
since UNIST uses a neural implicit representation as their 3D shape, they need more time to process
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Arm→Armless Armless→Arm
w/o part loss 7.69 7.74
w part loss 6.28 4.48

Table 4. The performance of our model with and without part loss is measured by one-sided CD. The part
loss is to gauge part features within the cycle-consistency loss and feature preservation loss. The reported
one-sided CD has been multiplied by 104 for clear comparison.

Point clusters Arm→Armless Armless→Arm
1 7.69 7.32
4 7.31 5.17
8 6.88 5.17
16 6.28 4.48
32 5.60 4.63

Table 5. Ablation studies for the number of point clusters that compose of a point cloud by one-sided CD
on armchair and armless chair dataset. The reported one-sided CD has been multiplied by 104 for clear
comparison.

Arm→Armless Armless→Arm
w/o PA module 6.79 5.06
w/ PA module 6.28 4.48

Table 6. Ablation studies for our method with and without point aggregation (PA) module by one-sided CD
on the armchair and armless chair dataset. The reported one-sided CD has been multiplied by 104 for clear
comparison.

the data. In the memory usage, UNIST converts the point cloud into latent codes in advance so that
the encoder does not need to be loaded during the testing, so the required memory capacity is less
than that of LOGAN. The memory usage required by our network is between the two methods and
closer to the amount of UNIST.

4.4 Ablation Study
To verify the effectiveness of each component of our proposed method, in the following paragraphs,
we discuss the results of loss functions, hyperparameters, and our architecture under different
settings.

Effectiveness of part loss.We considered both global and local features on the cycle-consistency
loss and feature preservation loss (i.e., the second term in Equation (8) and (9)). To verify that the
calculated part loss preserves the local geometric characteristics, we qualitatively and quantitatively
analyzed the results. In Tabel 4, the one-sided Chamfer Distance value of the method with part loss
is lower than that without part loss. This implies that considering the losses on parts allows the
model to learn the local shape structures, which makes the transferred chair structure (omitted the
armrest) more similar to the input. We also demonstrate the qualitative results in the supplementary
materials.

Effectiveness of multi-part shape representation. To verify the efficacy of our multi-part
shape representation in preserving local details, we conducted an ablation study on the number of
point clusters. The number of point clusters represents howmany point groups a point cloud consists
of. The results given in Table 5 demonstrate that dividing shape features into more parts will lead
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Arm→Armless Armless→Arm
(a) Transformer encoder w/ one-scale feature extractor 6.45 5.06
(b) Only multi-scale feature extractor 6.41 4.52
(c) Each part w/ an individual PA module 6.97 5.71
(d) Global feature w/o ConvLayer 6.50 4.71
(e) Whole shape deformed by multiple PA modules 8.72 5.97
(f) Ours 6.28 4.48

Table 7. Quantitative comparison of different architectures on armchair and armless chair dataset by one-
sided CD. The reported one-sided CD has been multiplied by 104 for clear comparison.

to higher accuracy. However, when the number is larger than 16, the CD value of Armless → Arm
increases, although there is a decrease in Arm → Armless . In AXform [Zhang et al. 2022], they
show the improvement of performance decreases a lot when the number of point clusters is larger
than 16. Therefore, we also chose 16 for the comparison experiments.

Effectiveness of part aggregation module. As mentioned before, combining multiple point
clusters generated from independent part features is prone to shape discontinuities. We propose a
point aggregation module to make each part aware of the global information and deform them to
further fit the generated output to the target point cloud. As shown in Table 6, our method with
point aggregation module achieves better performance on one-sided CD. We also demonstrate the
qualitative comparisons in the supplementary materials to show the benefits of our part aggregation
module.

Comparisons of different architecture settings. To verify the effectiveness of our model
design, we show the performance of different architectures in Table 7. Table 7(a) is to replace our
multi-scale feature extractor with a one-scale feature extractor using only one KNN proposed by
PoinTr [Yu et al. 2021]. Table 7(b) is to remove the transformer and only use the feature extractor
with a max-pooling operation to extract the features of the point cloud. Since the multi-scale
architecture can represent more thorough features, and the transformer can fuse features, our
performance is better than these two settings.

For the aggregation of multiple point clusters, we tried a few different settings. We set the number
of point aggregation modules to be the same as the number of point clusters, and fed the same
global feature to individual modules. The results in Table 7(c) are worse than ours, suggesting that
displacing different parts should use the same module to transfer information between different
clusters. Before incorporating the global feature into each part, we sent it to the convolutional layers.
We expect convolutional layers to extract important features about part organization so that the
point aggregation module can better deform point clusters according to the implicit organization.
The values in Table 7(d) and (f) show that the performance can indeed be improved with the
convolutional layers. In addition, we tried another architectural design. The model first generates
the point cloud of the entire object and uses multiple PA modules to displace different point groups.
Comparing the results in Table 7(e) and (f), the values increase a lot. To further compare the
performance between these two architectures, we visualize the translation results on the chair and
table dataset in the supplementary materials.

5 CONCLUSIONS
In this paper, we propose a novel parts-to-whole architecture for unpaired shape translation of 3D
point clouds, which reconstructs a whole point cloud with multiple point clusters. Our method
decomposes a shape feature into multiple part features, and considers both global and local features
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on losses. Moreover, a part aggregation module is presented to incorporate global information
and deform each point cluster for refinement. This multi-part shape representation allows our
model to preserve fine local details and make the translation output more similar to the distinctive
shape feature of the source shape. Experiments manifest the effectiveness and advantages of our
architecture design compared to previous methods in shape transformation.
The limitation of our work is that when the number of clusters is large, multiple clusters are

prone to overlap. Especially in the translation between chair and table domains, the combination
of multiple parts may not always be smooth, especially on the table top. In the future, we would
like to investigate how to further constrain the relationship between multiple point clusters, and
we are also interested in applying such a technique for real-time applications, such as augmented
reality [Huang et al. 2022; Wu et al. 2016].
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