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Abstract 

With the rapid development of facial animation and facial motion analysis, the 
necessity of motion capture techniques increases dramatically. However, existing 
motion capture devices are still very expensive and have specific limitations.  

In this dissertation, an accurate and inexpensive procedure for estimating 3D 
facial and lip motion trajectories from mirror-reflected multi-view video is proposed. 
Two plane mirrors are located near a subject’s cheeks and a single digital video 
camcorder is utilized to capture markers’ front and side view images on a face 
simultaneously without special synchronization mechanisms. A novel closed-form 
linear algorithm is proposed to reconstruct 3D positions from real vs. mirrored point 
correspondences, where the extrinsic environment parameters do not need to be 
calibrated in advance. 

Since nice symmetric properties of mirrored objects are exploited, our 
computer simulations and expected error estimation manifest that the proposed 3D 
position estimation approach is more robust against noise, more accurate and 
simpler than general-purpose stereovision approaches by a linear algorithm or 
maximum likelihood optimization. In our experiments, a root mean square (RMS) 
error less than 2mm in 3D space can be reached while we use only 20 arbitrary 
point-corresponding pairs to evaluate the orientations and locations of mirror planes.  

For 3D facial motion extraction, our proposed procedure can track markers 
semi-automatically under normal light conditions.  Adaptive Kalman predictors 
and filters are employed to improve the tracking stability and to conjecture the 
occluded markers’ positions. The motion tracking can be fully automatic with 
fluorescent markers illuminated by ultraviolet(UV) “blacklight blue”(BLB) lamps. 
For the problems of missing marker and false marker detection as well as false 
tracking, we employ the spatial coherence on face surfaces and the temporal 
coherence in motion to judge, rectify and compensate false tracking trajectories 
automatically. More than 300 markers on a subject’s face and lips are tracked from 
30 fps video clips. This system will be extended for real-time tracking from live 
video in the near future. The estimated 3D facial motion data have also been 

 



 

practically applied to our facial animation system. 

In addition, a web-enabled talking head is also proposed, where facial 
animation is driven by natural speech. A speech analysis module is employed to 
obtain the corresponding phoneme sequence within the input speech, and then they 
are converted to the MPEG-4 high-level facial animation parameters called visemes 
to drive a 3D head model performing corresponding facial expressions. The talking 
head has been developed as plug-ins for web browsers and requires only 6 Kbps to 
stream high-resolution animation through Internet. 

Furthermore, my work was also used in a collaborative project between INRIA 
of France and National Taiwan University for a French-driven talking head system. 
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Chapter 1 

Introduction 

1.1 Motivation 

Human faces may be the most noticeable and expressive part of our bodies. We 
can identify people from their faces, and we also realize others’ feelings and moods 
from their facial expressions. No matter pursing lips, raising eyebrows, grinning, or 
even making a delicate expression may reveal certain meanings for us. Moreover, 
mouth and lip motions are regarded as another major channel in recognition and 
understanding of spoken language. In M. Breeuwer and R. Plomp’s experiment 
[BREE85], visual speech significantly improves the perception from 23% to 79% 
when auditory speech is degraded. Since faces are so important, subtle and closely 
related to our life, synthesizing realistic facial animation is one of the most attractive 
topics in computer graphics for decades. 

With the rapid improvement of hardware and software techniques, 
computer-generated facial animation starts to play a vital role in various kinds of 
applications, such as computer graphics based movies, and video games. Recently, 
we can even see some virtual characters reporting news on television. However, up 
to now, synthesizing realistic facial animation is still a difficult problem due to our 
familiarity with human faces. As mentioned above, facial expression is one of our 
major communication approaches, and we should pay more attention to even minor 
variations on a face. An observer can easily detect even the slightest flaw. 
Furthermore, I.S. Pandzic et al. [PAND99] noticed that significant artifacts of mouth 
motion in facial animation could even worsen the understanding. 

Therefore, to realistically mimic facial animation, a synthetic face’s behaviors 
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must precisely conform to those of a real one. However, facial surface points, being 
nonlinear and without rigid body properties, have quite complex action relations. 
During speaking and pronunciation, the facial and lip motion variation can be more 
complicated. Motion trajectories of a point between articulations are also nonlinear 
and depend on not only current articulations but also preceding and successive ones, 
which are so called co-articulation effects [COHE93]. An example is shown in 
Figure 1.1 

Performance-driven facial animation [WILL90, GUEN98] provides a direct 
and convincing approach to handling delicate human facial variations. This method 
animates a synthetic face using motion data captured from a performer. In modern 
computer graphics-based movies such as “Final Fantasy”, “Shrek”, and “Toy Story”, 
optical or magnetic motion trackers are utilized to capture markers’ 3D motion 
trajectories on a performer’s face. These devices usually track only a limited number 
of markers; however, the dozen or so markers they can place on facial feature points 
only sparsely cover the whole face area. Therefore, to derive a vivid facial animation, 
animators must adjust for the uncovered areas. 

On the other hand, many methods proposed to approximate human facial 
motion by physical dynamic systems or mathematical formulations. Some of the 
researches try to control face surfaces as bicubic patches [REEV90]. K. Waters and 
D. Terzopoulos [WATE87, TERZ90] proposed a muscle-based face model with 
three-layer tissues. Cohen et al. [COHE93] suggested that the weights of transitions 
between visemes should be overlapping dominance functions with bases of negative 
exponential functions. Even though these hypotheses try to parameterize 
complicated facial motion, they encounter critical problems. For example, “What are 
the parameters’ values?” and “How much error will occur when adopting certain 
parameter values?”.  We can only answer these questions by comparing simulations 
with measured data from a real human face. However, existing measurement devices 
such as the optoelectronical motion trackers, though highly accurate, are also quite 
expensive and pose limitations on the marker number and their placement on 
surfaces. 

Another concern for synthetic faces is from the viewpoint of data transmission. 
Due to bandwidth constraints, “streaming” high-resolution videos is quite difficult. 
Model-based video coding approaches, using synthetic faces and talking heads 
instead of current frame-based videos, are considered to be a good substitute. 
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Figure 1.1 Captured lower lip tip motion trajectories of an utterance /pap/ and 
corresponding visemes “p”, “a” and “preparation” (shown only y-axial motion). The 
curve with dots is the trajectory of /pap/, the light purple one is “preparation”, the 
orange one is “p”, and the brown one is “a”. The nonlinear motion transitions 
between current visemes are dependent on preceding and successive visemes. [The 
unit in x axis: NTSC frame (1/29.97 sec); the unit in y axis: meter] 
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1.2 Problem Description 

To tackle the problem of acquiring facial motion data, the goal of this 
dissertation is to develop an accurate and inexpensive procedure to estimate 3D 
facial animation parameters. The motion estimation can be further divided into two 
main issues: 3D position reconstruction and motion tracking. 

 
3D position reconstruction 

It is well known that we can reconstruct 3D structure from multiple view 
images [LONG81]. To avoid the estimation error caused by imperfect 
synchronization between multiple cameras, we adopt mirror-reflected multiview 
video clips to acquire multiple views simultaneously with only a single video 

Figure 1.2 A diagram of our cap

camera, as shown in Figure 1.2. 

ture equipment. Two plane mirrors are placed next 

Using mirror-reflected multi-view video clips for facial motion estimation has 

to a subject’s face, and the front view and mirror-reflected images are captured 
simultaneously with a single video camera. 
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been

otion tracking 

 point correspondence, 2D point correspondence between camera 
view

ors will disturb our marker extraction in video clips, and 
they 

 efficient procedure for tracking a considerable 
num

 mentioned in a few researches [PATT91, BASU97] where the processes are 
either simplified or some general-purpose stereovision approaches are employed. 
Nevertheless, in our early trial, general-purpose stereovision approaches, such as the 
two-view approach  [WENG89, WENG93], can easily degenerate due to slight 
measurement errors of 2D corresponding point pairs. However, we find that there 
exist nice symmetric properties between front and mirror-reflected objects that can 
be utilized. With these properties, a novel closed-form linear algorithm is proposed 
in this dissertation to estimate 3D position robustly and accurately. 

 
M

Two kinds of
s within a frame and 3D point correspondence between frames should be 

estimated in 3D motion tracking. The first issue, 2D point correspondence within a 
frame, is that we have to find out the correct point correspondence between each 
view to reconstruct the correct 3D structure in a video clip. After the 3D structure of 
each frame are reconstructed, the 3D point correspondence between frames should 
be estimated to recover the 3D motion trajectories of facial surface points. The 
difficulty of point correspondence estimation will be raised dramatically as the 
number of feature points increases since the candidates of corresponding point pairs 
will increase quadratically. 

Moreover, various fact
can roughly be classified as variation due to projection and noise in video. The 

problem of variation due to projection is inherent in systems using projected images. 
For examples, markers’ colors vary due to reflective angle change; markers’ 
projected shapes vary in different viewpoints. Sometimes, markers may even be 
occluded, and this situation is quite critical since it is difficult to detect and 
compensate occlusion. On the other hand, the problem of noise in video is inherent 
in modern video camera design. For example, the use of a field as the unit instead of 
a frame causes the interlaced effects; the sensors of digital cameras, such as CCD 
(charge-coupled device) truncate the continuous projection image into discrete data. 
Thermal noise is another concern. 

In our work, we propose an
ber of 3D markers, notably more than 200. It can detect and compensate 

false-detection and missing markers in the tracking fully automatically. 
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Delivering facial animation across Internet 

, another issue in this dissertation is 
how 

sertation, a talking head based on MPEG-4 FDPs, FAPs is proposed. 
We u

1.3 Contribution 

This dissertation presents procedures to estimate facial motion accurately from 
real 

hting conditions are used for different requirements of data. In the 
norm

al motion fully automatically, a different procedure 
is pr

In addition to facial motion acquirement
to deliver facial animation across Internet efficiently. The international standard 

MPEG-4 [MPEG99], which tries to standardize both natural and synthetic media, 
includes synthetic faces as a part of visual objects. In the standard, the head model 
parameters and the controls of facial expressions are defined as a set of MPEG-4 
Face Definition Parameters (FDPs) and MPEG-4 Face Animation Parameters (FAPs) 
respectively. 

In the dis
se plug-ins techniques for web browsers to transmit vivid facial animation in a 

very low bit rate. 

 

subjects’ faces with off-the-shelf and inexpensive devices. Therefore, we 
propose extracting 3D facial animation parameters from mirror-reflected multi-view 
video clips. 

Two lig
al light condition, our tracking system is semi-automatic. This is because the 

markers’ projected colors and skin colors can vary significantly due to different 
reflective angles, and manual adjustment is required occasionally. However, to 
acquire the correct facial texture, capturing under normal light is necessary. A 
derivate research about facial animation with detailed expression mapping is 
proposed by P.-S. Tu [TU2003]. 

In order to estimate 3D faci
oposed for tracking under blacklight-UV lamps. We employ UV-responsive 

fluorescent markers, and the feature point detection becomes easier and more 
accurate. In our current experiment, we can fully automatically track 300 markers 
over 9.2 frames per second on a Pentium 4 3.0G Hz PC, and it is capable of tracking 
more than 100 markers in real time from live video. 
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The following are my major contributions: 

z A closed-form linear algorithm for 3D position reconstruction from 

sitions in advance, 
the p

z 

jects are applied, the 
prop

z is 

ve Kalman filter is utilized to improve the stability of marker 
track

z ure for automatically tracking a large number of 

rker false 
detec

 

 A web-enabled talking head is proposed. 

ial animation on Internet with 
only 6K bits per second and the web-enabled talking head has been further 

mirror-reflected multi-view video clips is proposed. 

Without measurement or calibration of mirrors’ po
roposed linear algorithm can first reconstruct mirrors’ location and 

orientations from a set of real vs. mirrored point correspondences. 3D 
positions of feature points can then be evaluated. 

Comparison and discussion of the proposed method with 
general-purpose two-view approach is presented. 

Since nice symmetric properties of mirrored ob
osed method is more robust, more accurate and simpler than general 

two-view approaches for 3D structure reconstruction. Four sets of 
computer simulation experiments are done and expected errors are 
estimated theoretically to prove the benefit of the proposed method. The 
advantages and disadvantages of the two approaches are also discussed. 

A procedure for 3D motion tracking under a normal light condition 
proposed. 

Adapti
ing and an interactive graphical user interface is also provided for 

manual adjustment. 

An efficient proced
markers under a blacklight-UV light condition is proposed. 

The proposed procedure can detect and handle the ma
tion and missing marker problems fully automatically during motion 

tracking. To our best knowledge, there are no other video-based systems 
up to now that tracked more than 200 facial markers in 3D. Furthermore, 
seldom systems can automatically capture a large quantity of 3D facial 
motion trajectories with only a regular PC and a camera. 

z

The proposed system can “stream” fac
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licen

 

1.4 Overview and Organization 

ure from (i)3D position and motion 
estimation, (ii)marker tracking in video clips to (iii)facial animation is proposed. 
First

nd it also manifests correlations between 
chap

 that estimates 3D position from real versus mirrored-point correspondence. 
Sinc

atically track markers’ 3D trajectories under 
a no

, and the 
proc

sed and improved by Cyberlink, Corp. as a commercial product 
“Talking show” in 2000 [TALK]. 

In this dissertation, a complete proced

 of all, chapter 2 presents state-of-the-art researches and publications in related 
areas, which are composed of 3D structure reconstruction, motion tracking and 
human face synthesis. The benefits and drawbacks of methods derived from 
different conceptions are also mentioned.  

Then, components of the procedure are proposed in following chapters. Figure 
1.5 is a flow chart of the proposed work, a

ters. The complete procedure and its components are briefly introduced as 
follows. 

Chapter 3 is the core of the proposed work, where we deduce and propose an 
algorithm

e position extraction of projected markers cannot be entirely exact, 
measurement noise will degrade the results produced by the algorithm. To evaluate 
effects of the measurement noise, expected error of the proposed algorithm is 
calculated theoretically in Section 3.3. 

The facial motion tracking procedures are proposed for two lighting conditions. 
Chapter 4 describes how we semi-autom

rmal light condition. The left tracking flow in Figure 1.3 shows this procedure. 
The concept and the equipment setup and are specified in Section 4.1 and 4.2, and 
block-matching-based feature extraction is presented in section 4.3. At last, this 
section also proposed our approach to estimate facial motion trajectories from 3D 
candidate sequences reconstructed by the algorithm proposed in Chapter 3. 

Chapter 5 presents a fully automatic procedure for tracking a large quantity of 
fluorescent markers under the blacklight ultraviolet (UV) lighting condition

ess corresponds to the right tracking flow in Figure 1.3. Similar to the procedure 
for the normal light condition, Section 5.1 introduces the concept and Section 5.2 
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mentions equipment setting and the feature extraction process. Since fluorescent 
markers can emit luminescence when they are illuminated by UV fluorescent light, 
these special markers are prominent in video. Therefore, the process of fluorescent 
marker extraction can be more reliably achieved by general computer vision 
methodology, including conditioning, color labeling, grouping, extracting, etc. When 
tracking such numerous markers, false alarms and missing problems are much more 
seriously. How to utilize spatial and temporal correlations of the numerous markers 
for fully automatic tracking is proposed in Section 5.3. 

To compare the proposed method with general-purpose stereovision approaches, 
we conducted computer simulations and actual experiments for different control 
facto

ll set of 
proto

 

rs. The experiment results and discussions are presented in Chapter 6. 

In Chapter 7, our work for face synthesis is proposed. We propose a 
speech-driven facial animation system that animates based on a sma

type facial motion parameters in Section 7.2. The system is further developed 
as a low-bit-rate talking head to efficiently stream facial animation over Internet. 
Section 7.3 mentions how we construct a synthetic face cloning a real one. The way 
we use estimated 3D FAPs to drive facial animation is presented in Section 7.4. 

Finally, Chapter 8 concludes my research and the future work is described. 
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&  

Synthesis 

Analysis 

Web-enabled 
talking head 

{Section 7.2} 

Speech-driven 
facial animation 

{Section 7.2} 

Face 
synthesis 

{Section 7.3}

Performance-driven facial 
animation 

{Section 7.4} 

Experiment 
 discussion

{Chapter 6} 

Expected 
error analysis 
{Section 3.3} 

Speech 
analysis 

3D FAPs estimation 
from UV markers 

{Section 5.3} 

3D FAPs estimation 
from normal markers

{Section 4.3-4} 

3D position estimation from real versus mirrored 
point correspondence 

{Section 3.2} 

UV marker extraction 
in video  

{Section 5.2} 

Normal marker 
extraction in video 

{Section 4.3} 

Video recording under 
UV light 

{Section 5.2} 

Video recording under 
normal light 

{Section 4.1} 

Figure 1.3 The flow chart of the proposed work on analysis and synthesis of 
realistic 3D facial animation. The corresponding chapter or section of each 
component is also annotated. 
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ure 1.4 The 3D facial motion trajectories estimated with the proposed algorithm 
realistic facial animation. The red points in the lower part of the figure represent 
estimated markers’ 3D positions, and the upper part depicts synthesized facial 
ation of the pronunciation “O-U”. 
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Chapter 2 

Related work 

2.1 Introduction 

Since the proposed work comprises techniques of 3D structure reconstruction, 
facial motion estimation and face synthesis, some state-of-the-art researches and 
statuses in these three domains are introduced in this chapter. 

 

2.2 3D Structure Reconstruction from multiple views 

3D structure reconstruction is an essential process for 3D computer vision, e.g. 
3D object modeling, 3D object recognition, and 3D motion tracking. 

Multiple view directions are required to reconstruct 3D structure from images. 
Most of modern stereovision-based 3D structure estimation approaches derive from 
epipolar constraints. These approaches first use corresponding points in images of 
different viewpoints to estimate the essential matrix. Then, the rotation R and 
translation t between cameras are decomposed from the essential matrix. Finally, 
each point’s 3D position can be estimated by intersecting casting vectors from the 
cameras’ optic center.  [LONG81, ZHAN92, ZHAN95, WENG93, HUAN94] 
provide a good reference or discussion on estimating 3D structure or the essential 
matrix from images. 

Using multiple cameras simultaneously is a common approach to acquire 
multiple views. Since each camera can have different parameters, this will cause 
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different distortions on each image. Therefore, before reconstruction methods 
mentioned above are performed, captured images have to be undistorted and 
normalized in advance. Generally, two kinds of camera parameters, extrinsic 
parameters and intrinsic parameters, are mainly concerned. Extrinsic parameters are 
the rotation and translation that related the world coordinate to the camera 
coordinate system; intrinsic parameters, also called the camera model, comprise lens 
distortions, the focal length, the principal point, etc. R.Y. Tsai’s method provides a 
paradigm in camera calibration [TSAI87]. Recently, J. Heikkilä and O. Silvén’s 
camera calibration procedure [HEIK97, BOUG] and Z. Zhang’s flexible calibration 
method [ZHAN00] are widely utilized. 

Besides multiple cameras, placing mirrors in a scene is another way to acquire 
multiple views. A.R.J. François et al [FRAN03] proved that 3D reconstruction from 
a single perspective view of a mirror symmetric scene is geometrically equivalent to 
reconstructing the scene with two cameras symmetric to the unknown 3D symmetry 
plane. The advantage of utilizing mirrored views is that only one camera is 
necessary, and errors caused by imperfect calibration between cameras can be 
avoided. However, the locations or orientations of mirrors have to be estimated in 
this case.  

In the research proposed by H. Mitsumoto et al. [MITS92], they recovered the 
plane symmetry using the vanish point. D.Q. Huynh [HUYN99] proposed an affine 
reconstruction method from a monocular view with a symmetry plane. In his method, 
he reconstructed a 3D object via solving the epipole with a symmetry plane 
constraint. In our proposed method, 3D positions are reconstructed via estimating 
the mirror plane from projected corresponding points.  

Even though, Huynh’s and our method took different points of views in the 
beginning, we found that Huynh’s solution for the restricted epipole is equivalent to 
our mirror plane estimation. Huynh's work focused on the problem solving of 3D 
reconstruction with a symmetry plane and discussed the advantage of non-linear 
computation. On the other hand, our work not only estimates 3D positions but also 
take advantage of the perfectly-synchronized property between multiple mirrored 
views to track 3D facial motion. Furthermore, we did computer simulations and 
deduced the theoretical expected errors to manifest the outstanding benefits of 3D 
position and motion estimation from mirror-reflected video clips compared to 
two-view algorithms, where multiple cameras are applied. We also discuss the 
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advantages and disadvantages between the proposed method and two view 
approaches. 

In addition to plane mirrors, J. Guckman and S.K. Nayar [GLUC99, GLUC02] 
presented stereo sensors using a single camera with various combinations of mirrors, 
e.g. two spherical mirrors, two convex mirrors, and four planar mirrors. 

 

2.3 Facial Motion Tracking 

Depending on applications, different devices and sensors are used for facial 
motion tracking. T. Goto et al. [GOTO01] proposed a simple procedure to roughly 
extract motion of feature points on a bare face from video. FaceStation developed by 
Eyematic Interface Inc. [FACE] can also automatically locate and track facial 
features from a video camera. These kinds of systems can provide user-friendly 
interfaces for exaggerated and expressive facial animation. Nevertheless, while an 
application requires accurate 3D facial motion or requires motion of points besides 
distinct facial features, e.g. points on cheeks or on the forehead, conspicuous 
markers are usually necessary to adhere to a subject’s face. 

About 3D facial motion tracking from multiple cameras, an optoelectronic 
system, e.g. Optotrak [OPTO, HAVE96], uses optoelectronic cameras to track 
infrared-emitting photodiodes on a subject’s face. Since the root mean square (RMS) 
error of this system can be as low as 0.1mm in horizontal and vertical and 0.15mm 
in depth, such an instrument suffices for research demanding high accuracy such as 
facial biomechanics or co-articulation effect analysis. However, each diode needs to 
be powered by wires, which may interfere with a subject’s facial motion. 

Video-based systems that apply passive markers avoid this problem. For 
example, the VICON series [VICO] uses six to 24 specifically designed cameras 
with resolution 1280x1024 pixel2 and frame rate 60 to 1000 fps to capture markers’ 
motion in visible or infrared spectrums. This kind of costly motion capture system is 
popular in the computer graphics industry for movies or video games. They usually 
make use of protruding spherical markers for easiness of shape analysis, but these 
markers don’t work well for lip surface motion tracking because people sometimes 
tuck in or otherwise obstruct lip surfaces. Besides, the extracted motion of 
protruding markers is not the exact motion on a face surface but the motion at a 
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small distance above the surface. 

In addition to capturing stereo videos with multiple cameras, E.C. Patterson et 
al. [PATT91] proposed using mirrors to acquire multiple views for facial motion 
recording. They simplified the 3D reconstruction problem and assumed a plumb 
camera and vertical mirrors. S. Basu et al. [BASU97, BASU98] employed a front 
view and a mirrored view to capture 3D lip motion. In their work, they regarded the 
mirrored view as a flipped image of a virtual camera and applied a general-purpose 
stereovision approach to estimating 3D lip motion. We also apply mirrors for 
acquirement of new images with different view directions. However, Our algorithm 
proves simpler yet more accurate because it conveniently uses nice symmetric 
properties of mirrored objects. 

Some devices and researches take other concepts to estimate 3D motion or 
structure. For example, the ShapeSnatcher system [SHAP, KALB01] projects grids 
onto a face, and therefore it can extract 3D shape and texture from a single image. 

 

2.4 Human face synthesis 

In general, the framework of a synthetic face, the controls of facial expression, 
and the driven events for facial animation are three principal considerations in a 
facial animation system. 

Researches for the framework of a synthetic face can be approximately 
classified into three categories: 2D-mesh-based, 3D-polygon-based, and 
image-sample-based. The 2D-mesh-based approach is the most easily controlled and 
computationally effective design. Only a single image texture and a face mesh are 
required to construct a synthetic face [PERN98]. The main disadvantage is that the 
view directions of a 2D face are limited and it is difficult to be combined into a 3D 
graphical environment. Most researches adopted the 3D-polygon-based approach to 
avoid problems mentioned above. Modeling and controlling a 3D face is much more 
delicate. Laser scanners such as those produced by Cyberware Corp. [CYBE] can 
acquire a precise 3D face shape with texture mapping. W. Lee et al. [LEE99] applied 
a semi-automatic approach, which modeled a 3D face model based on the 
orthogonal view images of a person. In F. Pighin and others’ work [PIGH98], 
photographs taken from different view directions were integrated to construct a 
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delicate face model with view-dependent texture mapping. V. Blanz et al. [BLAN99] 
established an excellent system to build a personalized 3D head model from only a 
single face image by statistic information of human heads. 

Image-sample-based systems synthesize faces and facial expressions by 
metamorphing between several photographic images. The morphing technique 
proposed by T. Beier and S. Neely [BEIE92] made an impressive animation of 
transitions between different faces in Michael Jackson’s MTV “Black or White”. 
“Video Rewrite” proposed by C. Bregler et al. [BREG97] synthesized video realistic 
facial animation by combining image samples of a face and mouth according to 
input phonemes. E. Cosatto et al. [COSA00] further decomposed the samples into 
smaller facial parts and formed a sample space. These made the synthetic process 
with more flexibility and efficiency. Up to the present, the image-sample-based 
approach could be the most realistic one among all the approaches, but it suffers the 
same disadvantages of the 2D-mesh-based approach, where the view directions are 
limited. This problem can be solved by the view morphing technique [SEIT96]. 
Nevertheless, a large database of image samples or heavy computation are 
indispensable. In addition, it is difficult to apply the sample data to others’ faces. 

For facial expression synthesis, a muscle-based approach imitates anatomy of 
human faces, which controls expressions by adjustment of interior muscles. K. 
Waters [WATT87] developed a dynamic face model with linear muscles and 
sphincter muscles. In D. Terzopoulous and K. Waters’ research [TERZ90], a face 
tissue model of a three-layer structure was proposed to simulate skin, subcutaneous 
tissue, and muscles. The muscle-based approach is conformed to the facial action 
coding system (FACS) [EKMA78] and is suitable to model exaggerative expressions. 
From F.I. Parke and K. Waters’ words [PARK96] “FACS seems complete for 
reliably distinguishing actions of the brows, forehead, and eyelids. FACS does not 
include all of the visible, reliably distinguishable actions of the lower part of the 
face”, human faces and lips are so subtle that an approximate model can still hardly 
simulate many fine variations. 

Since the exterior face shape is the main concern in computer animation, the 
feature-point driven approach simulates facial expression by controlling the feature 
point on a synthetic face surface directly. This kind of approach assumes the exterior 
face shape as several parametric surfaces, such as bicubic surfaces [REEV90], or 
radial-basis functions [NIEL93, PIGH98]. The advantage of feature-point driven 
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facial expression is that facial expressions can be generated intuitively from motion 
captured data or manual adjustment. On the other hand, it requires a lot of control 
points to synthesize those subtle facial motions. 

As mentioned in Chapter 1, performance-driven, text-driven and speech-driven 
facial animations are three major approaches to drive synthetic faces. The 
performance-driven approach synthesizes facial animation directly from captured 
motion data. Guenter et al. [GUEN98] produced a remarkably lifelike facial 
animation by abundant motion captured information. They recorded 182 dot 
markers’ positions and facial textures on a subject’s face on 30 frames per second. A 
text-driven talking head translates each input word into visemes and performs 
animation by interpolating visemes according to input time stamps. To produce 
voices of a text-driven talking head, a text-to-speech (TTS) module synthesizes 
auditory speech according to time stamps synchronously. A speech-driven face 
system is quite similar to the text-driven one but translates visemes from input 
natural speech instead. The benefit of a speech-driven face system is that it uses 
natural speech as output voice and does not suffer the unnatural synthetic voice as 
that in the text-driven one. However, the faithfulness of facial animation depends on 
how accurate the input speech is recognized. A common problem in text-driven and 
speech-driven facial animation is the motion transition function between visemes. 
M.M. Cohen and D.W. Massaro [COHE93] introduced several hypotheses. The 
voice puppetry proposed by Brand [BRAN99] further applied the Hidden Markov 
Model (HMM) to approximate facial motions driven by various audio features. T. 
Ezzat et al. [EZZA02] proposed a multidimensional morphable model (MMM) to 
synthesize novel facial motion trajectories based on a small set of prototypes. 

There are some other related researches on synthetic faces. A wavelet-based 
method for prototyping facial textures and transforming the age of facial images is 
presented by B. Tiddeman et al. [TIDD01]. Z. Liu et al. [LIU01] proposed 
synthesizing delicate details on a face with expression ration images (ERI). Noh and 
Neumann [NOH01] presented a method to retarget facial motions and preserve the 
relative features of original facial animation. 

 

 



 

Chapter 3 

3D Position Estimation from 
Mirror-reflected Multi-view video 

3.1 The Problem Statement 

As the conceptual diagram shown in Figure 3.1, a mirrored image can be 
regarded as a “flipped” image taken by a “virtual camera”, which is in a distinct 
view direction comparing to the real one. For the detailed proof of the relation 
between real and virtual cameras, we refer to the reference [FRAN03]. With two 
mirrors next to a subject’s face, we can simultaneously acquire three facial images 
from different viewpoints and can also avoid the problem of data synchronization 
among different cameras. 

Before we use these images for 3D position estimation, orientations and 
locations of mirror planes must be estimated in advance. Some research [ZHAN98] 
required explicit measuring these properties. Explicit measurement is not 
user-friendly and reliable, or precise devices must be employed. Hence, accurate 
methods to directly handle the whole process from image sequences are necessary. 

In some related researches [BASU97, BASU98], 3D positions of the 
aforementioned situation were estimated by modified general-purpose stereovision 
approaches, which estimate the affine transformation (rotation R, translation T) 
between two cameras from the essential matrix [LONG81, WENG89, WENG93, 
HAR95]. After evaluating the rotation and translation between two cameras, the 3D 
position of a target can then be approximated from intersection of cast rays from 
optical centers of different cameras. 
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However, there are some nice properties of mirrored images that can be utilized 
to deduce a more accurate 3D reconstruction algorithm for mirror-reflected 
multi-view images. We present our approach in the following section. 

 

Figure 3.1 The conceptual diagram of “virtual cameras”. Properties of a virtual 
camera, including intrinsic and extrinsic parameters, are symmetric to those of an 
actual camera with respect to a mirror plane. 

 

3.2 The Proposed Closed-form Linear Algorithm 

In this section, we introduce our algorithm for 3D position estimation in 
condition of one mirror, which can be easily extended to two mirrors’ condition. We 
assume that input images have been normalized by camera calibration processes 
[HEIK97, BOUG, ZHAN00], and we also assume that real and mirrored markers’ 
projected positions and correspondences have been extracted. The details of marker 
extraction, tracking and recovering point correspondences under normal light and 
blacklight conditions are presented in Chapter 4 and 5. 

With the point correspondences, now, we can calculate markers’ 3D positions 
by first evaluating mirrors’ orientations and locations in the camera coordinate 
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system and then estimating markers’ 3D positions as a minimization problem.  

In the first step, we assume plane mirrors and use only the image data within 
the m

ax + by + cz = d      (3.1) 

u = (a, b, c)t, ||u|| = 1, where u 

Figure 3.2 The geom ected virtual 
e projection points p, 

irrors’ range. A mirror’s location and orientation can be represented using a 
plane equation: 

is the plane’s unit normal and vector u has two 
possible directions. Without loss of generality, we take the direction of c < 0. In the 
following discussion, we assume that I is the camera film’s image plane and f is the 
focal length. (If images are undistorted and normalized according to the normalized 
camera model, f is 1.0.) We assume the camera’s lens center O to be the origin in the 
coordinate system, and the camera’s line of vision, also called the optic axis, is the 
positive z axis. 

point m′ , and th
etric representation of a physical point m, the refl

p′ . 
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In Figure 3.2, m  is the actual 3D siti po ion of marker i, mi = (xmi, ymi, zmi)
t, and 

is the 3D position of virtual marker i in the mirrored space, . im′  t
mimimii zyxm ),,( ′′′=′
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oplanar, and thus 

       (3.2) 

where k is a scale value. Vectors mi, im′

i

, u are c

0)( =×⋅′i mum       (3.3) 

“•” is the dot product and “×” is the cross product. 

From Equation 3.3, we reformulate in terms of p , i ip′
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and simplify it as 

.     (3.5) 

 

We can then represent Equation 3.5 in terms of u as 

















−
−

−
==′

0
0

0
  where,0)(

ab
ac

bc
UUpp i

t
i

 



3D position estimation from mirror-reflected multi-view video                              23 

[ ] 0)()()( ,,,, =















−+−−

c
b
a

xyyxfxxfyy pipipipipipipipi   (3.6) 

By collecting Equation 3.6 for each marker correspondence, we can form a 
matrix M,  
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The mirror might not be perfectly flat, however, and we should also allow for 
noise in marker shape and position on image plane I. We therefore apply the least 
square method to estimate the vector u with the least error. It’s well known that the 
solution of 

Muumin , subject to 1=u      (3.8) 

is the eigenvector corresponding to the smallest eigenvalue of the matrix MtM. 

Another mirror property is symmetry: 

 

)()( Θ−=Θ−′ iui mHm       (3.9) 

where  is an arbitrary point on the mirror plane Mirror;  is 

the Householder matrix, and I
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From Equation 3.10, we see that once we have determined vector u, zmi and 
 are proportional to variable d. The value d can be determined by comparing 

estimated data with a reference ruler in the real world.  
miz′

Thus, along the above-mentioned steps, unit vector u is first estimated by 
Equation 3.8, and then the position [xmi, ymi, zmi]t of each marker or feature point can 
be reconstructed from the depth information solved by a least square method in the 
form 

duGzz −min  , where        (3.11) t
mimi zzz ),( ′=

based on singular value decomposition (SVD) or QR factorization. We refer readers 
unfamiliar with numerical matrix computation to the reference [GOLU96]. 

Moreover, to reduce the influence of marker position estimation errors in the 
front view image, we simply mirror the virtual marker mi′  back to the actual world, 
set as , im ′′

Θ+Θ−′=′′ − )(1
iui mHm          (3.12) 

and take 
2

)( ii
i

mmm
′′+

=′′′  as the 3D position of marker i. 

To more accurately estimate m ′′′ , we can also apply nonlinear maximum 
likelihood optimization that minimizes the location variation on an image plane to 
improve the estimated mirror normal u. However, a mirror plane’s useful properties 
mean the vector u estimated by a linear algorithm is sufficiently accurate. In our 
simulation, maximum likelihood optimization improved less than 2 percent of the 
root mean square (RMS) 3D position error under quite noisy circumstances. 

The whole algorithm is organized as follows: 
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The proposed algorithm 
Note: real vs. mirrored point positions and correspondences are extracted in 
advance. The reconstructed 3D positions will be more accurate if the point 
positions are undistorted and normalized by camera calibration processes. 
(f=1, if the normalization is applied) 
� Mirror plane u estimation (ax+by+cz=d) 

Known: (xpi , ypi) and ( , )pix′ piy′ are the estimated positions of marker i in real 

and mirrored images. 
Unknown: a, b, c 

1. Form matrix M, 
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2. Muumin , subject to 1=u   

u = (a, b, c)t 
 
� 3D position estimation from real vs. mirrored point correspondence 
Unknown: d, zmi and depth of actual and virtual marker i. miz′

Take an initialization of dtmp. (dtmp = 8.0 in our setting) 
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2. Estimate m , a refinement of m :  ′′′

Θ+Θ−′=′′ − )(1
iui mHm

)2( 33
t

xu uuIH −=

For each marker i, 

,  

where , and  

 

3. Estimate d, 

calculate the scale  

where A can be the perimeter of specific markers on calibration 
objects, or average distance between specific markers, etc. 

. 

4. For each marker i,  
Its estimated 3D position is  

Note: for facial animation, a scaled position is sufficient. Step 3 and 4 can be 
ignored. 
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3.3 Error Estimation for the Algorithm 

To evaluate stability of an algorithm, magnitude of output estimation errors 
according to input source errors is a useful criterion. In this section, we try estimate 
the expected error of the proposed algorithm theoretically. Error estimation by 
computer simulations is then presented in Chapter 6. 

In our proposed algorithm, inputs are projected point positions and point 
correspondence. Input source errors, therefore, include feature detection errors, 
spatial quantization errors, point mismatching and camera miscalibration. Among 
them, feature detection errors can result from variation due to projection, as 
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mentioned in Section 1.2, or inaccuracy of tracking methods; the digitization process 
of a CCD camera causes spatial quantization errors. We sum up these errors and 
model them as random variables with Gaussian distributions. 

For error estimation, we follow the work proposed by J. Weng et al. [WENG89, 
WENG93], where the expected error is calculated instead of a worst case bound. 
That is because their algorithm and ours both apply a large amount of data (>30 
point pairs) in a least square manner and the variance of the error distribution in the 
solution is small comparing to the image coordinate system. The worst case bound is 
too large and it is almost never reached. 

� The expected error in mirror plane u estimation 
We assume that the camera have been calibrated therefore, f = 1. n is the number of 
point corresponding pairs. 
Algorithm: 

Muumin , subject to 1=u ,  

where 
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u = (a, b, c) is the eigenvector corresponding to the smallest eigenvalue of MtM 

The expected error: 

We denote )(εpix , )(εpiy , )(εpix′ , )(εpiy′  are noise-corrupted inputs to the 

algorithm.  

xpipipi xx δε +=)( , where xpi is the actual projected position of marker i, and 

xpiδ  is the noise; as well, ypipipi yy δε +=)( , pixpipi xx ′+′=′ δε )( , 

piypiy ′+′=piy′ δε )( . 

Since the noise xpiδ , ypiδ , pix′δ , piy′δ , etc. are small perturbation, we ignore 
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the higher order terms. In the following deduction, only the first order perturbation 
are taken into account and we use the sign “ ≅ ” to indicate that it is a linear 
approximation. 

M

piy

xpiδ

2

1

xpn

xp

xp

δ

δ

−

(

t

The first step is to calculate MM −=∆ )(ε , which is noise perturbation of 

the matrix M. Among )(εM , the third column is 
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To calculate the expectation of matrix
M

∆ , we have to calculate expected 
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values of all the elements in the matrix. For convenience of deduction and 

presentation, we use  to denote the jjM t )(∆ th column of the matrix ∆  and use 

suffixes, such as m×n to represent the dimension of the matrix or vector. Therefore, 

tM
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L . We also rearrange matrix  and form a 
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Assume that the errors , ypi , pix′δ , piy′δ  between different points and 

different views in the image coordinates are uncorrelated and they are zero-mean 

and have the same variance . Since ( ) ( ) 22
ppi σδ =Ε2

pσ +2
piδ =Ε , the expectation of 

 is reduced as: 
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While we denote matrix Pi as  

, the expectation of 

 can also be represented as: 
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 will later be used for calculating the expectation error of 

mirror plane normal vector u, but before this step, we have to calculate the 
corresponding δ , the estimation error of u, given a perturbed input matrix )(εM . 

u is the eigenvector of MtM associated with the smallest eigenvalue. From the 
theorem “perturbation of eigenvalues and eigenvectors” presented by J. Weng et al. 
[WENG89][WENG93], the first-order perturbation of u can be approximated as  
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In Equation 3.18, 1λ , 2λ  and 3λ  are the eigenvalues of noise-free MtM in 
non-decreasing order; h1, h2 and h3 are the eigenvectors associated with 1λ , 2λ  
and 3λ . Equation 3.18 can be reformed as: 
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However, we need to relate 
MM t∆

ψ  to tM∆
ψ . By first-order approximation, it 

follows that 

MMMM t
MM

t
MM

t
MM tt ∆+∆=∆+∆≅∆       (3.21) 

After rearrangement and simplification, the first-order relation between 
MM t∆

ψ  and 

tM∆
ψ  is as follows: 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

13

2

1

3933333233313

33233223312

33133213311

21

21

21

)(

)(
)(

)(00)(00)(00
0)(00)(00)(0
00)(00)(00)(

×

××××

×××

×××
∆





















∆

∆
∆










































+

















≅

nn
t
M

t
M

t
M

nn

n

n

n
ttt

n
ttt

n
ttt

MM

IMIMIM
IMIMIM
IMIMIM

MMM
MMM

MMM

t

M

L

L

L

L

L

L

ψ  

                  (3.22) 

Again, we collect data invariant to input noise and rewrite Equation 3.22 as 
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From Equation 3.20 and Equation 3.23, we get 
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Therefore, the covariance matrix of uδ  can be estimated from Equation 3.17 and 
Equation 3.24, as follows: 
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The Euclidean norm of the expected error of vector u can be estimated from the 
square root of the trace of the corresponding covariance matrix. 

)(trace uu δδ Γ≈         (3.26) 

As suggestions in J.Weng and others’ work, for the problem of estimating 
errors in relative depths, it is not evaluated because we just get two observations for 
each 3D point. The expected error of depth estimation is not really representative or 
reliable in this case. 
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Chapter 4 

3D Marker Tracking under Normal 
Light 

4.1 Markers’ Placement and Equipment Setting 

How many feature points and where these feature points should be placed are 
essential problems for performance-driven facial animation, and the MPEG-4 face 
object [MPEG99] tries to standardize these problems. 68 MPEG-4 facial animation 
parameters (FAPs) are defined to control a synthetic face. Except 2 high-level FAPs, 
66 FAPs are defined for feature-point motion controls. The advantage of using 
MPEG-4 FAPs is its convenience to communicate with other MPEG-4 compatible 
face systems. However, in these 66 facial animation parameters, only 6 of them are 
parameters in the z-axial direction, and 58 of them are parameters in the x- or y-axial 
directions. Comparing with human’s plentiful and subtle facial expressions, the 
MPEG-4 facial animation parameters could be insufficient to represent some 
delicate facial motion accurately. 

In our face synthesis system, we separate a face into 11 regions. While 
regarding each region as a smoothly deformable surface, we find that there are 50 
points (10 for lip contours, 12 for the lip surfaces, 10 for the mouth, 8 for cheeks, 
and 10 for the forehead) on a face, where the variations are empirically the most 
representative to control the surface deformation. Therefore, we mainly take these 
50 positions as feature points to drive 3D facial animation. In other words, 150 facial 
animation parameters are captured. In order to acquire precise 3D positions and 
motions of feature points on a subject’s face, colorful dot markers are pasted onto 
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feature points. We use thin markers without protrusion to avoid interfering with 
natural lip motion. With these markers, tracking of feature-point movement is much 
easier and more accurate. Figure 4.1 shows our tracking equipment. We place two 
planar mirrors next to a subject’s face and use only one digital video (DV) camera to 
capture perfectly synchronized images－one frontal view and two mirrored ones, as 
shown in Figure 4.2. The orientation and location of mirrors can be arbitrary as long 
as each marker is visible in at least two views. Our proposed algorithm described in 
Chapter 3 can reconstruct these properties. 

As mentioned in Chapter 3, to improve the accuracy of 3D trajectory 
reconstruction, either captured images or extracted markers’ projected positions 
should be calibrated by a normalized camera model [HEIK97, BOUG, ZHAN00]. 
For computational efficiency, we suggest that the feature extraction is performed on 
the original and unnormalized images, but the extracted markers’ positions are then 
normalized for further computation. To avoid redundancy, in the following 
introduction and discussion, we assume that the camera coordinate system is 
normalized. 

In this chapter, the tracking process is semi-automatic under a normal light 
condition, but we propose another procedure that is fully automatic and can extend 
the quantity of markers to more than three hundreds. 
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Figure 4.1 Equipment setting. Two plane mirrors are placed near a subject’s cheeks 
and a single video camera is applied to capturing front and side view images 
simultaneously. 

 

 

Figure 4.2 A mirror-reflected multi-view video clip captured by a digital video 
camera in 720×480-pixel resolution. (55 markers: 10 for the lip contour, 12 for lip 
surfaces, 10 for mouths, 8 for cheeks, and 10 for the forehead) 
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4.2 Adaptive Kalman Filter for Stability Improvement 

The Kalman filter is a linear, unbiased, and minimum error variance recursive 
algorithm to optimally estimate the unknown state of a linear dynamic system from 
noisy data at discrete time intervals, and it is widely applied to control systems, 
radar tracking and etc. [BOZI79, ZHAN92]. Here we briefly mention the concept of 
the Kalman filter, which is used to improve stability of tracking. 

Let s(t) denote an M-dimensional state vector of a dynamic system at time t, 
and the propagation of the state in time can be expressed as a linear equation 

)()1()( twtAsts +−= , t = 1,2,...,Tlimit, 

where A is a state-transition matrix and w(t) is a zero-mean, random sequence with a 
covariance matrix Q(t), representing the state model error. 

Suppose that a series of measurement h(t) are available, which are linearly 
related to the state variable as 

)()()( tvtCsth += , t = 1,... ,Tlimit. 

where C is the observation matrix and v(k) denotes a zero-mean, noise sequence, 
with covariance matrix R(k).  

Given the measurement h(t), the state vector can be estimated as 

[ ])1()()()1()( −−+−= tCAsthtKtAsts , 

where the K(t) is so called the Kalman gain matrix. And the s(t+1) can be predicted 
as 

s(t+1| t) = As(t). 

In our work, similar to Y. Altunbasak and others’ tracking system [ALTU95], 
we adopt an adaptive Kalman filter to improve the stability of marker tracking in 
video. We assume the state transition equation to be 
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where spx(t), svx(t), spy(t), svy(t), spy(t), and svy(t) represent the state values of positions 
and velocities in x-, y- and z-axial directions at time t respectively. And wvx(t), wvy(t) 
and wvz(t) represent the change of velocity in x, y and z axial directions respectively 

over an interval Tint with variance ,  and . )(2 tvxσ )(2 tvyσ )(2 tvzσ

The relation between measurement and the state vector can be written as 
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where vpx(t), vpy(t) and vpz(t) represent the position measurement error in x, y and z 

axis with variance ,  and . ,  and  are 

variables and can be adjusted according to the confidence of measurement. The 
details of the Kalman filter and some applications are well described in the reference 
book [BOZI79, TEKA95]. 

)(2 tpxσ )(2 tpyσ )(2 tpzσ )(2 tpxσ )(2 tpyσ )(2 tpzσ

 

4.3 Semi-automatic Marker Motion Tracking 

In this section, the procedure to estimate 3D marker motion trajectories from 
mirror-reflected multi-view video clips is presented. We just introduce the process 
for one-mirror status and the process for another mirror is similar. Figure 4.3 is the 
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flow chart of our semi-automatic motion tracking under normal light. The detail 
process consists of the following steps: 

 

Step 1. Initialize parameters. A user is required to manually designate pi(1), the 
projected position of actual marker i, and )1(ip′ , the projected position of 
mirrored marker i, in the first video clip (t = 1), for i = 1 … N. N is the 
amount of markers the mirror covers.  

 

Step 2. Estimate rough mirror positions and orientations relative to the camcorder 
from real versus mirrored point correspondences assigned in the first 
frame. Estimate mi(1), the actual 3D position of marker i, for i = 1 … N. 

 

Step 3. Predict the 3D position at t + 1 as )|1( ttmi +  and generate mirrored 

position  for i = 1 … N. Update the time stamp, set t = t + 1. )|1( ttmi +′

 

Step 4. Project the actual and mirrored markers back to the image plane I as 
, . Within the searching area centered at , 

find the best γ (for example, γ = 6) 2D projected candidates  

{j = 1... γ} with minimum ColorCost, which is L2-norm of color 
differences in block matching compared to that of p

)1|( −ttpi )1|( −′ ttpi )1|( −ttpi

)1|( −ttpcij

i(t − 1) and pi(1).  
The ColorCost of a position px at time t for marker i is 
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and weight is a user-defined parameter to specify the effect weight 
between the previous image and the first one.  
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Repeat this process to find γ candidates )1|( −′ ttcp ik

)1|(

 {k = 1... γ} of the 

mirrored part.  

−ttpcij

))1|( −ttijk

 

Step 5. For each j and k combination, generate 3D candidates  from 

the projected point correspondence of 

)1|( −ttmcijk

,  and 

calculate the cost function  
        Cost

)1|( −′ ttcp ik

ijk = αDistCostijk + β(ColorCostij + ColorCostik),    (4.5) 

        DistCostijk = ( )1|( −− mcttmf i               (4.6) 

where α and β are user-defined constant values and f is a user-defined 
monotonically increasing function. Figure 4.4 is a conceptual diagram and 
detail description of our 2D/3D candidate search. 

 

Step 6. Find the best candidate with the minimum Costijk, and adjust the 
measurement error variances according to ColorCostij + ColorCostik.  
Set the best candidate as the measured 3D position and filter it as mi(t). 

 

Step 7. If t < Tlimit, {go to step 3} else {manual fine-tuning with GUI tools} 

 

Step 8. Calculate Ufine, the mirror’s fine positions and orientations, from 
user-tuned projected point correspondences. Re-estimate accurate 3D 
markers’ motion trajectories by Ufine and tuned projected point 
correspondences. 
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Adjusting measurement-error variances in Step 6 accords with image similarity. 
When a marker image is occluded or interfered with by interlace effect or intense 
specular-lighting noise, the cost function value will be dramatically high, and the 
measurement error variances will be large. This decreases the Kalman gain. In other 
words, the impact weights of contaminated measurement data are diminished and 
the effects of noise or occlusion can be alleviated. 

Users designate 
markers’ projected 

positions in 1st 
frame. 

Re-estimate mirror 
plane and 3D motion 

trajectories 

GUI Editor Approximate 2D/3D 
marker trajectories 

(for t = 2 ~ Tlimited) 

Predicted 
positions in 
t+1th frame 

Delay 
Search for the 

3D position with 
minimum cost 

for each marker 
(t th frame) 

Kalman 
predictor

Adaptive Kalman 
filtering 

 

Roughly estimate 
mirror planes and 

markers’ 3D positions 
in 1st frame. 

Figure 4.3 The flow chart of semi-automatic markers’ 3D motion tracking under 
normal light. 
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Figure 4.4 A conceptual diagram of 2D/3D candidate finding. As mentioned in Step 
4 and Step 5 of the tracking procedure, to estimate ,  is first 
predicted by an adaptive Kalman filter based on the previous trajectory of m

)(tmi

|(

)1|( −ttmi

)1

i and 
 is also evaluated. A block matching method is applied to search the best 

γ 2D candidates around projection predicted position 

)1|( −′ ttmi

−ttpi  and  

(γ=2 in this diagram). 

)1|( −tt′pi

)1|( −ttijk

)1− |(

mc  is the 3D position estimated from the 2D 

candidate pair { , |( ttpcij )1−′ ttcp ik }. 
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4.4 FAP Extraction 

In the previous step, markers’ 3D motion trajectories have been estimated. 
However, a subject under test may swing or nod his or her head when speaking and 
making facial expressions, and thus the motions of 3D markers are composed of not 
only facial motions but also head motions. To acquire precise facial motion, the head 
motion must be estimated and removed from 3D motion trajectories. 

As mentioned in T.S. Huang and A. Netravalis’ review [HUAN94], with 3 
non-collinear 3D points, the movement of rigid object can be uniquely determined 
by a rotation matrix Rhead, and translation vector Thead. 

)()1()()( tTmstRtms headsheads +×=       (4.7) 

where mss(t) is 3D position of a specific point s on a rigid object at time t, and where 
mss(1) is the 3D position of point s on a rigid object at the initial time. 

Therefore, the 3D data of more than 4 additional markers placed on the 
performer’s ears are regarded as points on a rigid body, and we applied an algorithm 
for rigid-body motion estimation proposed by K. Arun et al. [ARUN87] to determine 
the head rotation Rhead(t) and head translation Thead(t) for each video clip. After the 
rotation and translation of successive time stamps are determined, we can extract 3D 
facial motion of marker i at time t without head movement as 

( ))()()()( 1 tTtmtRtfm headiheadi −= −      (4.8) 

where mi(t) is the original estimated 3D position of marker i at time t. 

 



 

Chapter 5 

Fully Automatic Mass 3D Marker 
Tracking Under Blacklight-UV Lamps 

5.1 Introduction 

In Chapter 4, a semi-automatic 3D motion tracking procedure is proposed. User 
intervention is necessary in the above-mentioned system for two reasons. The first 
reason is due to difficulty of marker identification. Under a normal light condition, 
reliable extraction of makers is not easy since markers’ colors and projected shapes 
can change dramatically in different reflective angles, and some facial parts may 
occasionally be misjudged as markers for the same explanation. To avoid extracting 
markers, we apply block matching for tracking, it compares the color variation 
between previous and successive video clips. But, we still have to identify where the 
markers are in the first frame and manual selection is required. The second reason is 
due to ambiguity and occlusion in tracking. While applying block matching for 
tracking, perturbation of markers’ reflective colors and projected shapes can make 
the tracking trajectories “trembling”. By chance, it may even make the tracking 
“derail” to where there is no marker. We utilize adaptive Kalman filters to alleviate 
these situations. But, occlusion is still the most critical problem to prohibit the 
tracking method in Chapter 4 from being fully automatic. For example, when our 
mouths are pouted or greatly opened, the markers below the lower lips vanish in 
video clips. We also tried to use thresholding in block matching and Kalman 
predictors to tackle this problem. Notwithstanding, it works satisfactorily only for 
short-term marker occlusion. 
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To be fully automatic tracking, some researches employed a generic facial 
motion model. T. Goto et al. [GOTO01] utilized separate simple tracking rules for 
eyes, lips, etc. respectively. F. Pighin et al. [PIGH99] proposed to track 
animation-purposed facial motion based on linear combination of 3D face model 
bases. In the “voice puppetry”[BRAN99], M. Brand applied a generic head mesh 
with 26 feature points, where spring tensions are assigned to each edge connection. 
Such a generic facial motion model can rectify “derailing” tracking trajectories and 
is beneficial for sparse feature tracking. However, an approximate model can also 
restrict the feature tracking while a subject does prominent or extraordinary facial 
expressions. 

From another aspect, applying special lights to highlight markers is effective to 
improve the feature extraction. As mentioned in Chapter 2, active markers, which 
emit infrared rays, or passive markers, which is of high infrared response, are all 
widely utilized in industrial motion capture products. E.C. Patterson et al. presented 
a facial tracking system with a dozen passive markers for ultraviolet (UV) light. In 
the research of B. Guenter et al. [GUEN98], they track 182 dot markers painted with 
fluorescent pigments for near UV light. This research not only used special markers 
and lights to enhance the feature detection, but also take into account the spatial and 
temporal consistency for reliable tracking. 

B. Guenter and others’ work [GUEN98] inspired our tracking method proposed 
in this chapter. We also apply markers with special pigments for blacklight blue 
(BLB) fluorescent lights to considerably increase the distinctness of markers from 
others in color space; we also utilize the spatial and temporal coherence to detect 
and compensate the missing and false-detection problems in tracking. However, the 
proposed method is more efficient and versatile. It is able to capture more than 300 
markers and will be extended to track more than 100 markers from live videos in 
real time on a regular pc. In Guenter and others’ work [GUEN98], a subject’s head 
was required to be immobile due to the limitation of markers’ vertical order in their 
marker matching routine, and therefore, the head movement then must be tracked 
independently as a postprocess. By contrast, the proposed method is capable of fully 
automatic tracking both facial expressions and head motions simultaneously. 

In Section 5.2, how to detect markers with fluorescent pigments is presented; 
the tracking procedure that can be fully automatic is proposed in Section 5.3. 
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5.2 Equipment Setting and Feature Extraction 

In order to enhance the distinctness of markers from others in video clips, we 
apply UV-responsive markers and UV blacklight blue (BLB) lamps. Here, an 
introduction to these devices and the UV light are briefly mentioned. 

Ultraviolet (UV) light represents a section of the light spectrum, extending 
from the blue end of the visible (400nm) to the x-ray region (100nm). It can activate 
some materials, such as phosphors, to the luminescence condition. Luminescence is 
composed of fluorescence and phosphorescence. The main difference between these 
two conditions is the period of radiation. Fluorescence vanishes but 
phosphorescence continues for a while as the UV radiation stops. UV light is further 
divided into three subsections, UV-A, UV-B, and UV-C. UV-A light is the longest 
wavelength (400nm-315nm) and the lowest energy among three subsections and is 
also referred to as “black light”. Since the black light is less harmful comparing to 
the most aggressive component UV-B, it is usually used to detect counterfeit money 
in banks or for special effects in nightclubs or theaters.  

In the proposed tracking system, we also utilize the fluorescent phenomenon to 
emphasize markers in video clips. Markers are covered with fluorescent pigments 
and blacklight blue lamps are used to excite fluorescence of markers. The 
fluorescence is visible in the visible light spectrum, and therefore, we don’t need 
special attachment lenses for light filtering. Figure 5.1 is a photo of the proposed 
tracking equipment taken under normal light and Figure 5.2 is a video clip captured 
by a digital video camera, where fluorescence of markers is excited by UV light. For 
further introduction of UV light and luminescence, please refer to the bibliography 
[ILLU85]. 

Figure 5.3 is an example and the flow diagram of our marker extraction method. 
As shown in the original video clip (Figure 5.3(a)), owing to application of 
UV-responsive markers and blacklight blue lamps, markers are prominent 
comparing to others in video clips; therefore, the automatic feature extraction is 
more reliable and more feasible than feature extraction in the normal light condition. 
We mainly follow the methodology of connected component analysis in computer 
vision, which are composed of thresholding, connected component labeling and 
region property measurement, but we also slightly modify the implementation for 
computational efficiency. With the modification, our system can be extended to 
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real-time tracking for live videos on a regular pc. 

Since the intensity of UV-responsive markers is much higher than that of others, 
to exclude pixels that have less probability of marker projection, the first stage is 
color thresholding. Thresholding distinguishes pixels with higher R, G, and B values 
from pixels with lower values. Figure 5.3(c) is a color-thresholded image, and pixels 
that pass the threshold are displayed in white. The threshold is determined 
empirically. 

In many feature extraction systems, mathematical morphology operations, such 
as dilation, erosion, opening, closing, etc., are performed before or after color 
thresholding, but our system are not. That is because thresholding works 
satisfactorily in most cases; the most difficult case, interlaced scan lines as shown in 
Figure 5.3(g), can be solved more efficiently by merging nearby connected 
components. 

The second stage is color labeling. In our experiment, we collected six 
UV-responsive markers that are pink, yellow, green, white, blue, and purple when 
illuminated by normal fluorescent lamps, but there are only four typical colors, pink, 
blue-green, dark blue and purple while illuminated by blacklight blue lamps (as 
listed in Figure 5.3(d)). Hence, four classes of colors are adopted and each color 
class comprises dozens of color samples. A selection tool is provided to select these 
color samples from training videos. To classify the color of a pixel in video clips, the 
nearest neighborhood method (1-NN) is applied. To diminish the classification error 
resulting from intensity variation, the matching operation work on a normalized 
color space (nR, nG, nB), where 
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and (R, G, B) is the original color value. In general, the more color samples is in a 
color class, the more accurate color class of a pixel is classified. For real-time or 
near real-time applications, four color samples in each color class are sufficient. 
Figure 5.3(e) is the color-labeled image represented by typical colors in color 
classes. 

Connected component labeling is the third stage in our feature extraction. It 
groups connected pixels with the same color label number as a component and we 
adopt 8-connected neighbors. Several connected components algorithms were 
proposed, for examples, iterative algorithms, the classical algorithm, space-efficient 

 



Fully automatic mass 3D marker tracking under blacklight-UV lamps                        49 

two-pass algorithms, etc. [HARA92]. These algorithms are general-purpose and take 
into account all circumstances of connection. Nevertheless, in our case, a marker’s 
projection is smaller than a radius of 5 pixels, and thus, the process of connected 
component labeling can be much simplified. We modify the classical algorithm as 
the following C-like pseudo-code: 

void PreliminaryCCL()  

{ 

 //initialization 

 for( c =0; c < color_class; c++) { 

  newLabel[c]=0; 

}//for i 

//labeling 

 for( i = 0 ; i < I_height; i++) { 

  for( j=0; j < I_width; j++) { 

   cl = ColorLabel[i][j]; 

   if(IsValidColorGroup(cl) { 

    A = PrecedingNeighbors(i, j, cl); 

    if(IsEmpty(A) { 

     CCL[i][j] = newLabel[cl]; 

     newLabel[cl]++; 

} else { 

 CCL[i][j] = MIN(A); 

}//else 

   }//if 

}//for j 

}//for i 

}//void PreliminaryCCL() 

In the pseudo-code, the result of preliminary CCL are placed in the array CCL, 
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and the function PrecedingNeighbors(i, j, cl) for the pixel at (i, j) which collects 
valid CCL values at (i-1, j-1), (i, j-1), (i+1, j-1), and (i-1, j). The PreliminaryCCL, 
unlike the classical algorithm, checks only preceding neighbors. Not all 8-connected 
components can be labeled as the same group by PreliminaryCCL since we do not 
utilized a large equivalent class table for transiting label numbers as in the classical 
one. But the inconsistency is local and can easily solve in our next stage. A result 
image processed by PreliminaryCCL is shown in Figure 5.3(f). 

After the process of preliminary connected component labeling, there are still 
redundant connected components caused by interlaced fields of video, incomplete 
connected component labeling or noise (as shown in Figure 5.3(g)). The fourth stage 
is to refine the connected components to make each extracted components as close 
as the actual markers’ projection. Since markers are placed evenly on a face and the 
shortest distance between two markers of the same color class is less then diameter 
of a dot marker, nearby connected components should belong to the same marker. 
Therefore, the first two kinds of redundant connected components can be simply 
tackled by merging components of a distance less than the markers’ average 
diameter. For the redundant components caused by noise, we suppress them by 
removing connected components less than four pixels. Figure 5.3(h) is the 
refinement of Figure 5.3(g); Figure 5.3(i) is the extracted markers’ projection. 

The extracted connected components are still not equivalent to the actual 
markers’ projection. Responsive colors of a fluorescent marker can still vary due to 
changes of view direction. This may result in erroneous classification of color 
classes and cause missing or redundant extraction of projected marker. Besides, the 
position of an extracted marker is also disturbed by noise. 

To compensate the imperfect feature extraction, the following section proposes 
a procedure to automatically track 3D motions of mass markers with missing and 
false-detection in feature extraction. 
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Figure 5.1 The tracking equipment for the blacklight condition. The photo is taken 
under normal light. Two “Blacklight Blue”(BLB) lamps are placed in front of a 
subject and mirrors. The low-cost special lamps are coated with fluorescent powders, 
and it can emit long wave UV-A radiation to excite luminescence. 

 

 

Figure 5.2 A captured video clip of fluorescent markers illuminated only by UV 
“Blacklight Blue” lamps. The fluorescence is visible in the visible light spectrum 
and no special lens is required for filtering. (300 markers are evenly pasted upon a 
subject’s face.) 
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Feature extraction of UV-responsive markers 
 
� An original video clip composed of a front and two side views: 

(a) 
The RGB color histogram: 

(b) 
 
� Valid pixels that passed the color threshold: 

(c) 

Color thresholding: 

RGB (65,76,92) 
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n classes of color samples: (n=4, in this case) 

(d) 

 
� The color-labeled image represented by typical colors of color classes: 

(e) 
 
 
 
 
� The preliminary connected component labeled image: 
(A red cross represents the center of a connected component) 

(f) 

Efficient grouping by a simplified connected component labeling method. 

Color labeling by the 

nearest normalized 

color sample. 
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Redundant connected components caused by interlaced effects, incomplete 
connected component labeling or noise: 

(g) 
Refinement of connected components: (Merging nearby components  
of the same color class and removing those with pixels less than 4) 

(h) 

� Extracted projected positions of UV-responsive markers: 
(A red cross represents the center of an extracted markers’ projection) 

(i) 

Refinement 

of connected 

components 

Figure 5.3 An example and the flow diagram of feature extraction of UV-responsive 
markers. The process starts from color thresholding, color labeling, connected 
component grouping to refinement. 
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5.3 A Fully-Automatic Tracking Procedure for Mass 3D Markers 

Fully automatic tracking multiple target trajectories over time is an important 
problem, called the “multitarget tracking problem”, in radar surveillance systems 
[BUCK00]. With only measurement error and false detection, this problem is 
equivalent to the minimum cost network flow (MCNF) problem. The optimal 
solution is feasible and the computation complexity is O(N3logNC), where N is the 
number of nodes in network and C is the maximum value of the coefficients among 
edges [CAST90, WOLF89]. Nevertheless, when measurement errors, missing 
detection and false alarms all occur in tracking, time-consuming dynamic 
programming, etc. are required to estimate approximate trajectories and the tracking 
results can degenerate seriously as the number of missing detection slightly 
increases [BUCK00]. As mentioned in the previous section, even though fluorescent 
markers and blacklight lamps are used to enhance the distinctness of markers and to 
improve the steadiness of markers’ projected colors, missing and false detection are 
still unavoided in the feature extracting process. 

Fortunately, markers’ motion on a facial surface is unlike that of targets tracked 
in radar systems. Targets in the general multitarget-tracking problem are moved 
independently and consequently only the prior trajectory of a target can be utilized 
to conjecture the target’s movement from detected candidates over time. By contrast, 
points on a face surface have not only earlier information but also spatial coherence 
within the current time stamp. Except for the mouth, nostrils and eyelids, most parts 
on a face are continuous surfaces, and position and motion of a facial point are 
similar to those of its neighbors. With this additional property, automatic diagnosis 
of missing and false detection becomes feasible and the computation is more 
efficient. 

Figure 5.4 is the flow chart of the proposed tracking procedure for the UV light 
condition. Here, we first present issues encountered in 3D motion tracking of mass 
UV-responsive markers and our proposed solutions. 

� Equipment setting 

In the first step, equipment setting, two mirrors, and two UV-blacklight blue 
lamps are placed in front of a video camera as shown in Figure 5.1. As mentioned in 
previous chapters, the camera’s intrinsic parameters are first estimated by camera 
calibration methods [HEIK97, ZHAN00], and we adopt a well-organized camera 
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calibration library developed by J.-Y. Bouguet [BOUG]. All operations in the 
following steps are performed in the normalized camera coordinate based on the 
evaluated camera parameters. The mirror planes orientations and locations are then 
estimated by the proposed method introduced in Chapter 3. All the equipments 
should be fixed stably to avoid re-calibration of device parameters. 

� Recovering point correspondence in the neutral face 

Initialization of the tracking procedure is to reconstruct the 3D positions of 
markers in the first frame. In Chapter 4, since the markers in video clips are not 
distinct enough, user interaction is required to explicitly specify all markers’ 
projected positions and point correspondence. Comparatively, UV-responsive 
markers are much more distinct and markers’ projected positions can be 
automatically estimated by the method presented in Section 5.2. For efficient 
recovering point correspondence in the first frame, two ways are utilized for 
different conditions. 

The first approach is to employ 3D range scanned data. Figure 5.5 shows the 
operation of a 3D laser scanner and Figure 5.6 shows the process to recover point 
correspondences. First, markers’ projected positions are extracted (as shown in 
Figure 5.6(a)). Then, a user has to manually select n (n>3) corresponding point pairs 
on the nose tip, eye corners, mouth corners, etc. in the first video clip to form a 3D 
point set. After corresponding feature points in 3D scanned data are also designated, 
the affine transformation between 3D scanned data and specified markers’ 3D 
structure can be evaluated by a least square solution proposed by K.S. Arun et al. 

[ARUN87]. While we extend the vector iop , where o is the lens center and pi is the 

extracted projected position of marker i in the frontal view, the intersection of line 

iop  and 3D scanned data are regarded as the conjectured 3D position of marker i, 

denoted as mi. The corresponding point in a side view is then recovered by mirroring 
mi and projecting the mirrored one back to the image plane. Due to perturbation of 
measurement noise, the nearest point of the same color within a tolerant region is 
regarded as the corresponding point ip′ . 

The second approach is to recover point correspondences by evaluating a 
subject’s 3D face structure from rigid-body motion directly. If an object is rigid or 
not deformable, affine transformation (rotation R and translation t) resulting from 
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motion is equivalent to the inversed affine transformation resulting from changes in 
the coordinate system. And therefore, reconstructing 3D structure from rigid-body 
motion is equivalent to reconstructing 3D structure from multiple views [ZHAN92, 
WENG93, HUAN94]. With this property, we require a subject to retain his or her 
face in a neutral expression and slowly move his or her head toward four directions: 
right-up, right-down, left-down, and left-up. A preliminary 3D structure of the face 
can be estimated from markers’ projected motion in the frontal view, and point 
correspondence can then be recovered. 

� Construction of 3D candidates by mirrored epipolar lines 

If Nf and Ns feature points of a certain color class are extracted in the frontal 
and side views respectively, each point corresponding pair can generate a 3D 
candidate, and therefore, there are total NfNs 3D candidates of the color class. In B. 
Guenter and others’ work [GUEN98], they took all these NfNs potential 3D 
candidates to track Nmrk markers’ motion. However, in a two-view system, given a 
point pi in the first image, its corresponding point is constrained to lie on a line 
called the “epipolar line” of pi [ZHAN95, HARA93]. With this constraint, one only 
has to search features along the epipolor line. The number of 3D candidates 
decreases substantially and the computation is much more efficient. 

There is a similar constraint in mirror-reflected multi-view images. Since a 
mirrored view can be regarded as a flipped view from a virtual camera, the 
constraint is also tenable but flipped. We call this mirrored constraint “mirrored 
epipolar line”. We briefly introduce the concept of the mirrored epipolar line by 
Figure 5.7. We assumed that p is an extracted feature point, o is the optic center, and 

, the unknown corresponding point in the mirrored view, is unknown. Since p is a 
projection, the actual marker’s 3D position, m, must lie on the line l
p′

op. According to 

the mirror symmetry property, the virtual marker’s 3D position, , must lie on m′ opl′ , 

which is a symmetric line of lop with respect to the mirror plane. While a finite-size 

mirror model is adopted, the projection of opl′  is a line segment and it is denoted as 

bp′ap′ . The corresponding point p′  then must lie on the mirrored epipolar line 

segment ba pp ′′ , or otherwise the marker m is not visible in the mirrored view. 
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The mirrored epipolar line of a point p can easily be evaluated. From Equation 
3.5, where , we expand p and 0)( =′ Upp t p′  by their x, y, and z components and 
the equation becomes 
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and the line 

0)()()( =+−+′−+′+− pppppp aybxyacxxbcy    (5.2) 

is the mirrored epipolar line of p. 

Due to the perturbation resulting from noise, the corresponding point may not 
lie on the mirrored epipolar line exactly. To evaluate potential 3D candidates with 
noise tolerance, we extend the line k pixels up and down (k=1.5 in our case) to form 
a “mirrored epipolar band” and search corresponding points within the region 
between two constraint lines 

0)()()()( =−++−+′−+′+− kacxaybxyacxxbcy ppppppp     (5.3a) 

and    0)()()()( =−−+−+′−+′+− kacxaybxyacxxbcy ppppppp .    (5.3b) 

Figure 5.8 shows an example of potential point corresponding pairs generated 
by the mirrored epipolar constraint; Figure 5.9 shows the 3D candidates generated 
from the constrained point correspondences. 

� Head movement estimation and removal 

In Chapter 4, markers’ 3D motion trajectories are first reconstructed by a 
block-matching based search method with adaptive Kalman predictors and filters. 
For estimation of head movement, specific markers’ trajectories are used and facial 
motion parameters are then evaluated by removing head movement from markers’ 
motion trajectories. 

As we have mentioned, markers’ 3D motion trajectories comprise both facial 
motion and head motion. Because the moving range of a head is larger than those of 
facial muscles, when a subject does facial expression and moves his or her head 
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concurrently, most of the markers’ motion results from head motion. This situation 
could make the Kalman predictors and filters dominated mainly by head motion but 
little by facial motion. Our experiments coincide with our intuitive inference. We 
find that prediction and filtering are more accurate if separate Kalman 
predictors/filters are applied to head motion and facial motion tracking respectively. 
And also, our proposed method for finding frame-to-frame 3D point 
correspondences is more reliable if head motion is removed in advance. Therefore, 
here, we change our strategy and try estimating and removing head motion before 
finding frame-to-frame 3D point correspondence.  

We define that the head pose in the first frame (t=1) is upright, and the head 
motion at time t is the affine transformation of the head pose at time t with respect to 
the head pose at t=1. As we mentioned in Section 4.4, the affine transformation 
consists of rotation Rhead(t) and translation Thead(t). For automatic head movement 
tracking, seven specific markers are pasted on locations invariant to facial motion, 
such as a subject’s ears and the concave tip on the nose column. Adaptive Kalman 
filters are again to alleviate trembles resulting from measurement errors. It is 
different from the position-velocity state model of Kalman filter for each marker in 
Chapter 4. Another point of view is taken here.  

Rhead(t) and Thead(t) are both three degrees of freedom. Thead(t) = [tx(t), ty(t), tz(t)]. 
Rhead(t) can be parameterized by (rx(t), ry(t), rz(t)) in radian. 
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where Rz, Ry, and Rx are rotation matrices along z, y, and x axes; c( ) and s( ) are 
abbreviations of cos( ) and sin( ). We apply Kalman filters to these six parameters 
[rx(t), ry(t), rz(t), tx(t), ty(t), tz(t)] directly. The process of head motion evaluation is as 
follows: 
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Step 1. Users designate specific markers si (for i=1...Nsmrk) for head moting 
tracking from the reconstructed 3D markers of the neutral face (t=1) and 
denote the position as msi(1). 
(This step can be further extended to be fully automatic by clustering 
methods, such as the K-means algorithm (k=3), since markers on an ear 
are close to each other and far from those on the face.) 

Step 2. Initialize adaptive Kalman filters for head motion and set rx(0) = ry(0) = 
rz(0) = 0, tx(0) = ty(0) = tz(0) = 0, and t = 1. 

Step 3. Predict the head motion parameters )|1( ttrx + , )|1( ttry + , , 

,  and 

)|1( ttrz +

)|1( tttx + )|1( ttt y + )|1( ttt z + by Kalman predictors and then 

construct  and T)|1( tthead +R )|1 t(thead +  by Equation 5.4. 
Increase time stamp t = t+1 

Step 4. Generate predicted positions of specific markers as 
       )1|()1()1|()1|( −+×−=− ttTmsttRttms headiheadi

)1−

       
(5.5) 
and find msi(t) by searching the nearest potential 3D candidates of the 
same color. The search is restricted within a spherical range centralized at 

 and of a radius r|( ttmsi srch. 
If no candidate is found, set the marker ineffective at time t. 
(The potential 3D candidates are constructed by the method in the above 
subsection.) 

Step 5. Detect false tracking, whose estimated motions are odd comparing to 
other specific markers; set the markers of odd estimation ineffective at 
time t. 
(The false tracking detection is presented in the next subsection. We skip 
the details here) 

Step 6. Estimate the affine tranformation (Rmsr and Tmsr) of effective specific 
markers between time t and the 1st frame by the method proposed by K. S. 
Arun [ARUN87].  
Extract rmsr_x(t), rmsr_y(t) and rmsr_z(t) from Rmsr by Equation 5.4 and extract 
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tmsr_x(t), tmsr_y(t) and tmsr_z(t) from Tmsr. 

Step 7. Take [rmsr_x(t), rmsr_y(t), rmsr_z(t)] [tmsr_x(t), tmsr_y(t), tmsr_z(t)] as measurement 
inputs to the adaptive Kalman filter and estimate the output [rx(t), ry(t), 
rz(t)] [tx(t), ty(t), tz(t)]. 

Step 8. If t > Tlimit, stop; else goto Step 3. 

 

Operation of the Kalman filter for translation [tx(t), ty(t), tz(t)] is the same as the 
Kalman filter for each marker in Chapter 4, which takes 3D positions as input and 
the internal states are positions and velocities. The operation of the Kalman filter for 
rotation [rx(t), ry(t), rz(t)] is similar but the input is a set of angles and the internal 
states represent angles and angular velocities. With this improved procedure, the 
head motion tracking is more reliable and stable comparing to the process in Chapter 
4, where specific markers are tracked independently. 

Once the head motion at time t is evaluated, an inverse affine transformation 
similar to Equation 4.8 is applied to potential 3D candidates for head motion 
removal. 

� Finding frame-to-frame 3D point correspondence with outlier detection 

In the previous subsection, we have presented how to reconstruct markers’ 3D 
structure in the first frame, how to generate 3D candidates for tracking, and how to 
remove head motion from motion trajectories. In the subsection, we assume that 
head motion is removed from potential 3D candidates, and our goal is to track 
markers’ motion trajectories from a sequence of potential 3D candidates frame by 
frame. 

Figure 5.10 is a conceptual diagram of the problem statement. The number of 
potential 3D candidates in a frame is around 1.2~2.3 times the number of the actual 
markers. The additional 3D candidates can be regarded as the false detection in the 
multiple-target tracking problem. If only false detection occurs, the graph algorithms 
for minimum cost network flow (MCNF) can evaluate the optimal solution. In our 
case, we employ Kalman predictors and filters to efficiently grasp the time-varying 
position variation of each marker. However, a marker can “miss” in video clips 
occasionally. The missing condition results from blocking or occlusion due to view 
directions, incorrect classification of markers’ colors or noise disturbance. While the 
missing and false detection occur concurrently, a simple tracking method without 
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evaluation of false tracking would degenerate and the successive motion trajectories 
could be disordered. 

We use an example to explain the serious consequence of false tracking. In 
Figure 5.11, the marker B, is not included in the potential 3D candidates of the third 
frame, and its actual position is denoted as B(3). Based on the previous trajectory, 
B’(3) is the nearest potential candidates with respect to the predicted position. 
According to this false trajectory B(1)→B(2)→B’(3), the next position should be 
B’(4). Consequently, the motion trajectory starts to “derail” seriously and is difficult 
to recover. Furthermore, false tracking of a marker may even interference with 
tracking of other markers. In the example of Figure 5.11, the marker C is also 
undetected in the fourth frame; the nearest candidates with respect to the predicted 
position is C’(4). Unfortunately, C’(4) is actually the marker D at the fourth frame, 
denoted as D(4). Because each potential candidate should be “occupied” by one 
marker at most, a misjudgment would not only make the marker C but also the 
marker D depart from the correct trajectories. 

For detection of false tracking, we take advantage of the spatial coherence of 
face surfaces, which means a marker’s motion is similar to that of its neighbors. 
Before we present our method, the terms are specified in advance. For each marker, 
its neighbors are other markers that locate within a 3D distance ε from the marker in 
the neutral face. For the motion of marker i at time t, we don’t use the 3D location 
difference between time t-1 and t but use the location difference between time t and 
time 1 instead. We denote )1()()( iii mtmtv −= . This is because the former is easily 
disturbed by measurement noise but the latter is more reliable. The motion similarity 
between marker i and marker j at time t is the Euclidean distance between two 

motion vectors )()( tvtv ji − . 

A statistical approach is used to judge whether a marker’s motion is a false 
tracking at time t. For each marker i, we first calculate the similarity of each 
neighbor and sort them in decreasing order. To avoid the judgment being 
contaminated by the motions of unknown false tracking of neighbors, only the first 
α% neighbors are included in the sample space Ω (α = 66.67, in our experiments). 
We assume that the vectors within the sample space Ω approximate a Gaussian 
distribution. The averages and standard deviations of x, y, and z components of vj 
(for j ∈ Ω) are then evaluated and denoted as (µvx, µvy, µvz) and (σvx, σvy, σvz) 
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respectively. A tracked motion vi(t) is valid if it is not far from the distribution of 
most of its neighbors. 

The judgment criterion of valid or false tracking for the marker i is 



 ≤

 trackingfalse ,else
 tracking valid,),( thresholdtiJF

    (5.6) 

and the judgment function is 
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Sx, Sy, and Sz can be regarded as the divergence of vi with respect to the refined 
neighbors Ω along the x, y, and z directions. If the divergences are within the 
standard deviations, the values are smaller than one; on the contrary, if the 
divergences are larger, the values increase. In Equation 5.7, k is a small user-defined 
number. With k in the denominators, we can prevent unpredictable values of Sx, Sy, 
and Sz when markers are close to their locations of the neutral face. 

 After we eliminate the false tracking of 3D candidates, a conflicting situation 
can still exist. Two valid motions that do not share the same 3D candidates could 
have the same extracted 2D feature points in either the frontal view or the side view. 
We call this the tracking conflict. To prevent the tracking conflict, we simply 
evaluate the number of valid motions for each 2D feature point If a 2D feature point 
is “occupied” by more than one valid motion, we only keep the motion closest to the 
prediction as a valid motion. 

In our experiment, the average number of appearance of false tracking in a 
frame is 7.45%, and that of tracking conflict is 0.34%. 

� Conjecturing positions of missing markers 

If a false tracking is detected, the similarity of its neighbors in motion can also 
be used to conjecture the position or motion of the missing marker. Based on this 
idea, two interpolation methods are applied to the estimation. The first one is the 
weighted combination method. For a missing marker i, the motion at time t can be 
estimated by weighted combination of that of its neighbors and it can be presented 
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by the equation: 
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where dij is the distance between mi and mj in the neutral face and kc is a small 
constant to avoid a very large weight when the marker i and j are quite close in the 
neutral face. 

In addition, a RBF (radial basis function) based data scattering method is 
appropriate for the position estimation of missing markers. The above-mentioned 
weighted combination method tends to average and smooth the motions of all the 
neighbors; by contrast, the influence of nearby neighbors is greater in RBF 
interpolation in general (it depends on the radial basis function). And therefore, more 
prominent motions can be estimated. Details of the RBF interpolation are introduced 
in Chapter 7 for face deformation. Since the RBF interpolation is more 
time-consuming, the weighted combination is adopted for real-time or near real-time 
tracking. Figure 5.13 is the estimated motion by the proposed method; Figure 5.14 
shows the tracking results by a method with Kalman filtering only and by our 
method with rectification of false tracking. 

The complete procedure of automatic UV-responsive marker tracking is listed 
in the end of this chapter. 
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Figure 5.4 The flow chart of our automatic 3D motion tracking procedure for a large 
number of UV-responsive markers. 
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Figure 5.5 A 3D laser scanner is employed to acquire depth range images of a 
subject. We integrate two to three range scans for the 3D face structure of a subject. 

 

(a)

(c) (b) 

Figure 5.6 Recovering point correspondences with 3D scanned data and RBF 
interpolation. 
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Figure 5.7 A conceptual diagram of “mirrored epipolar line”. p is an extracted 

feature in the frontal view and l  is the line extended by op op .  is the line 

symmetric to  by the mirror plane. 

opl′

opl bamm  is the projection segment of  on 

the mirror plane. 

opl′

ba pp , the projection of bamm  on the image plane I, is the 

mirrored epipolar line segment of p. 

Figure 5.8 Candidates of point corresponding pairs under mirrored epipolar 
constraints. For each extracted feature in the frontal view, each feature point of the 
same color that lies within the mirrored epipolar band is regarded as a corresponding 
point.
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Figure 5.9 Potential 3D candidates generated under the mirrored epipolar
constraint and the distance constraint. 3D candidates are first constructed from
candidates of point correspondences; those whose positions are out of a bounding
box are removed from the list of potential candidates. 

 

 

 

Figure 5.10 A conceptual figure for the problem statement of 3D marker tracking. 
The markers’ 3D positions in the 1st frame are first evaluated. The goal of 3D motion 
tracking is to find frame-to-frame 3D point correspondence from potential 3D 
candidates. In our experiments, the number of potential candidates is around 1.2~2.3 
times the number of actual markers. (The additional candidates can be regarded as 
false detection.) 
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Figure 5.11 An example of false tracking due to missing markers. If there is no 
facility in judgment on false tracking, the motion tracking can degenerate 
immediately when missing markers appear.  

 

 

Figure 5.12 The rectified motion trajectories. We utilize the temporal coherence of a 
marker’s motion and the spatial coherence between neighbor markers to detect and 
rectify false tracking. 
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Figure 5.13 The motion flows of facial expressions. The 3D dots are the estimated 
markers’ 3D positions and the colorful line segments are the difference vectors 
between an expression and the neutral face. The expressions from the upper-left to 
the lower-right are sadness, joy, the mouth twisting toward the right side, the mouth 
twisting toward the left side, pout, and the mouth wide opening. 
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igure 5.14 The tracking results without vs. with false tracking rectification. The 
pper part is the result tracked without false tracking detection; the lower part is the 
esult tracked with our rectification method for false tracking. The snapshots from 
eft to right are captured at t=20, t=100, t=200, and t=500. If no detection and 
ectification mechanism is used for false tracking, the result will degrade 
ramatically as time goes by. 
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The motion tracking procedure for mass 3D UV-responsive 
markers 
 
Step 1.  Initialization of equipments’ parameters.  

� Evaluate intrinsic parameters of the digital video camera 
[HEIK97] [ZHAN00]. (All operations in the following steps are 
performed in the normalized camera coordinate.) 

� Estimate the mirror planes by the proposed method in Chapter 3. 
� t = 1. 

Step 2.  Reconstruction of markers’ 3D structure in neutral face. 
If a depth range image of the subject is provided { 
� Recover 2D point correspondences from depth range images 

generated by a 3D laser scanner. 
} else { 
� Find real versus mirrored point correspondences from a rough 

3D face structure generated by rigid-body motion sequences. 
} 
� Estimate accurate 3D structure from real vs. mirrored point 

correspondences. 
� For locations without depth images, recover the point 

correspondences and 3D position by RBF interpolation. 
� Designate specific markers for head motion estimation (by users 

or the clustering methods) 
Step 3.  Marker extraction in the frame. 

� t = t+1; 
� Extract feature points by the method in Section 5.2. 

Step 4.  Construction of 3D candidates by mirrored epipolar lines. 
� For each feature point in the frontal view, find the potential 2D 

point correspondence within mirrored epipolar bands. 
� Estimate potential 3D candidates from potential point 

correspondence by the method proposed in Chapter 3. 
Step 5.  Head motion estimation and removal. 

� Estimate 6-DOF head movement by the proposed process. 
� Apply the inverse head motion to potential 3D candidates. 
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Step 6.  Finding frame-to-frame 3D point correspondences with outlier 
detection 
� For each marker i, predict )1|( −ttmi  by the adaptive Kalman 

filter. 
� Find the 3D candidates closest to )1|( −ttmi  and denote it as 

. )(tmi

� Detect the false tracking and set the false-tracking motion as an 
invalid one. 

� Detect the tracking conflict and set the conflict motion as an 
invalid one. 

Step 7.  Conjecturing positions of missing markers 
� For each missing marker (with an invalid motion at time t), 

estimate its position by the weighted combination or the RBF 
interpolation from the neighbors’ motions. 

STEP 8.  KALMAN FILTERING 

� Filter the estimated 3D positions with the adaptive Kalman filter.
If (t ≤ Tlimit) { 
� go to Step 3 
} else { 
� Terminate the tracking process 

} 
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Chapter 6 

Experiments and Discussions 

In this chapter, some discussions between the proposed 3D pose estimation 
approach and common-use stereovision approaches are presented. To compare the 
accuracy and error tolerance of each approach in various conditions, these 
approaches were utilized to estimate randomly generated and noise-corrupted 3D 
point sets in a virtual space. Moreover, an experiment was also performed for actual 
accuracy evaluation. 

6.1 Concepts 

Conceptually, estimating 3D position from mirror-reflected multi-view images 
should prove more robust than methods that estimate 3D position by calculating 
rotation matrix R and translation vector T between two cameras. Rotation and 
translation are both three degrees of freedom respectively. In our case, we evaluate 
the mirror plane normal u and scale d, which has only four DOF. Furthermore, 
without loss of generality, when we take c, the z-axial component in u, in a negative 
direction and ||u||=1 (as mentioned in Chapter 3), the degrees of freedom is just three. 
In general, fewer DOF mean we can use much less information to reach accuracy of 
the same magnitude. 

Also, when estimating R and T, we have to first evaluate the essential matrix, 
which has eight DOF, and then estimate an analogous rotation matrix W. However, 
because W usually doesn’t conform to a rotation matrix’s properties, we must then 
further adjust W to fit the properties. We can then evaluate the vector T. Each of 
these steps involves many numerical matrix computations, and errors accumulate 
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with each step. Therefore, the two-view linear algorithm yields distorted R and T 
estimations, necessitating successive nonlinear optimizations such as 
maximum-likelihood evaluations. J. Weng et al. discussed error analysis and 3D 
position estimation and structure reconstruction from stereovision approaches 
[WENG89, WENG93].  

 

6.2 Error estimation by computer simulation and actual experiment 

In order to compare the accuracy and robustness of the proposed approach with 
general-purpose stereovision approaches, computer simulations are used. The three 
subject algorithms are as follows: 

Method(a). The proposed linear algorithm that reconstructs 3D positions via 
mirror-plane normal U evaluation. 

Method(b). A two-view linear approach that estimates 3D positions via 
evaluating rotation R, and translation T between physical and virtual 
cameras. 

Method(c). A nonlinear maximum-likelihood optimization that iteratively 
improves the result of the two-view linear approach. 

Method (b)(c) are modified from J. Weng et al’s research [WENG89][WENG93] by 
flipping the part of projected mirrored-reflected images to form the view of a virtual 
camera. 

The four experimental computer simulations are as follows: 

(i). Evaluating the relation between accuracy and the number of point 
correspondences. The conditions and results are shown in Figure 6.1. 

(ii). Evaluating the robustness of each algorithm in different noise conditions. 
The conditions and results are shown in Figure 6.2. 

(iii). Evaluating the effect of changes in image resolution for each algorithm. The 
conditions and results are shown in Figure 6.3. 

(iv). Evaluating the effect of changes in mirrors’ orientation (changes in included 
angles of two view directions) for each algorithm. The conditions and results 
are shown in Figure 6.4. 
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All these simulations were performed on a numerical computation software tool, 
MATLAB, Mathwork inc. [MATH]. 

We used hundreds of 3D point sets as testing objects. They are randomly 
generated within a 9,000 × 18,000 × 9,000 pixel cube and 40,000 pixels away from 
the optic center. For the second to the fourth tests, each testing set consists of 60 
randomly generated 3D points. The simulated camera has a 720 × 720-pixel 
charge-coupled device (CCD) array and a 1,500-pixel focal length. Assuming the 
object is 2 meters away, one pixel length equals 0.05 mm. 

For the first test, normal-distributed noise with constant variance was applied to 
simulating the sum of various kinds of noise disturbance in projection, and the 
contaminated projecting point data were then truncated to fit pixel grids on the CCD 
(charge-coupled device) array. Since the noise is random and with mean zero, the 
effects of perturbation can be alleviated in an overdetermined system. As shown in 
Figure 6.1, the more point correspondences are employed, the better estimation of 
3D positions is. Therefore, to improve the accuracy of a 3D position reconstruction 
system, one can increase the number of point correspondences. Because the 
unknown parameters in U evaluation are of fewer degrees of freedom (DOF) then R, 
T ones, the proposed method can reach the same accuracy by much fewer point 
correspondences than the general-purpose two-view ones. 

In the second test, the number of point correspondences is fixed at 60, and the 
standard deviations of noise varied from 0 to 3 pixles in both x-and y-axial 
directions. Similarity to the reason in the previous test, owing to the fewer DOF in 
unknown parameters, our method is more robust in the same noisy condition among 
three methods. As well, the third test also manifests that the proposed method can 
reach the same accuracy with lower resolution than linear or nonlinear virtual 
camera approaches. 

In the fourth test, to evaluate the effects of view directions, we select 28 distinct 
points on a 1/4 sphere. Then we take the tangent planes with respect to these 28 
points as mirror planes. These points are on the cross points of the longitute 15, 30, 
45 and 60 degrees and the latitude –45, –30, -15, 0, 15, 30 and 45 degrees. Each 
mirror orientation has a corresponding structure of real vs. virtual cameras. For 
example, the scene structure of the mirror plane tangent at the cross point (45o, 0o) is 
equivalent to that of of two cameras with a 90o included angle in view directions. 
The result manifests that our method is more accurate that the other two methods for 
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various view directions. The situations for the other 3/4 part of a sphere are similar 
and symmetric to the 1/4 sphere we used. 

We also developed an experiment to evaluate accuracy. We attached 20 markers, 
each 3 mm in diameter, to the right side of a plastic dummy’s face and placed a 
planar mirror next to the right cheek. To mimic reality, the front and side views of 
the face’s right side only occupied the full image’s left half. Because a 3D laser 
scanner has a measurement error range of less than 0.5 mm, we assumed that it 
provided exact data. By comparing positions estimated using our method with the 
3D scanned data, we found that our method’s RMS 3D position error is 1.95 mm. 
The maximal error of 2.94 mm occurs at a marker position beneath the lower lip. 
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Figure 6.1 Computer-simulated error estimation of three approaches with different 
numbers of point correspondences. The testing subjects are sets of random-generated 
3D points within a 9000×18000×9000 pixel3 cubic and 40000 pixels away from the 
lens center. The simulated camera is with a 720×720 pixel2 CCD array and a 
1500-pixel focal length. Gaussian distributed noise (mean = 0, standard deviation = 
1 pixel in both x-, y-axial directions) is applied to disturb the projection on the 
image plane before digitization of the CCD array. 
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Figure 6.2 Computer-simulated error estimation of three approaches under Gaussian 
distributed noise of different standard deviations. Every time a testing subject is a set 
of 60 random-generated 3D points within a 9000×18000×9000 pixel3 cubic and 
40000 pixels away from the lens center. The simulated camera is with a 720×720 
pixel2 CCD array and a 1500-pixel focal length. Gaussian distributed noise (mean = 
0) of different standard deviations (in both x-and y-axial directions) is applied to 
disturb the projection on the image plane before digitization of the CCD array.
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Figure 6.3 Computer-simulated error estimation of three approaches under different 
image resolutions. Every time a testing subject is a set of 60 random-generated 3D 
points within a 9000×18000×9000 pixel3 cubic and 40000 pixels away from the lens 
center. The simulated camera has a focal length of 1500 pixels and has fixed image 
plane size but variable pixel widths. At pixel width 1.0, the CCD array is 720×720 
pixel2; at pixel width 0.333, the CCD array is about 2160×2160 pixels. No 
projection noise is applied. 
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Figure 6.4 Computer-simulated error estimation of three approaches under different 
orientations of mirror planes (different included angles between two views). The 
orientations of mirror planes are defined by tangent planes of 28 selected points on 
1/4 sphere. These points are on the cross points of the longitute 15, 30, 45 and 60 
degrees and the latitude –45, –30, -15, 0, 15, 30 and 45 degrees. Every time a testing 
subject is a set of 60 random-generated 3D points within a 9000×18000×9000 pixel3 
cubic and 40000 pixels away from the lens center. The simulated camera is with a 
720×720 pixel2 CCD array and a 1500-pixel focal length. Gaussian distributed noise 
(mean = 0, standard deviation = 1 pixel in both x-, y-axial directions) is applied to 
disturb the projection on the image plane before digitization of the CCD array. 
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6.3 Discussions 

� Advantage 

Compared to the commonly used stereovision approaches that adopt two-view 
images, our approach that estimates 3D positions and motions via mirror plane 
evaluation from mirror-reflected multi-view images has many advantages. 

� Simplicity and computational efficiency 

In our algorithm, evaluating the mirror plane normal U requires solving only 
one equation by the linear least square evaluation, as shown in Equation 3.8, where 
the corresponding matrix M is n × 3. With the general-purpose two-view linear 
algorithm, however, estimating rotation matrix R and unit translation vector T0 
requires processing three linear least square evaluations, and their associated 
matrices are n × 9, 3 × 3, and 3 × 3. Furthermore, to obtain reasonable results, 
maximum-likelihood evaluation must be used. Because this optimization process is 
a kind of nonlinear iterative improvement, more computation results than that with a 
linear approach. For depth evaluation, both the proposed method and the two-view 
approach require another least square evaluation for each point correspondence. 

� Accuracy and robustness 

Our method has four unknown parameters rather than the six of 
general-purpose two-view approaches. As mentioned in Section 6.1, the 4 unknown 
parameters can be further restricted in 3 DOF without loss of generality. We demand 
less information, such as fewer point correspondences to reach the same accuracy as 
with stereovision. Our method also has a larger error tolerance. 

� Perfect synchronization and low cost 

Multiple-camera approaches face the critical problem of camera 
synchronization. In facial motion capture, the tip of a subject’s lower lip moves 
down more than 1 cm within 30 ms when quickly pronouncing “pa,” for example. 
When using only video-based synchronization, imperfect synchronization can make 
the expected measurement error of the lower-lip tip’s position more than 0.5 cm. 
Therefore, accurate motion capture by multiple cameras demands special 
synchronization devices. In our approach, one camera and two mirrors can 
simultaneously capture three images of different viewpoints. Perfect synchronization 

 



Experiments and discussions                                                         85 

among multiple views is inherent in our system. 

� Disadvantages 

Our method has two main disadvantages: 

� Restricted measurement range 

Because our method uses a single camera to capture three different views 
simultaneously, measured targets’ motion range must be within the volume of space 
between two mirrors. Mirrors’ orientations and sizes therefore limit the method’s 
applications. 

� Limited image area for each view 

Because our method includes three view images in a snapshot, each view can 
take up just one-third of the total image area. 

However, our third computer simulation (as shown in Figure 6.3) demonstrates 
that our method offers similar or even better accuracy than the maximum-likelihood 
optimized two-view approach: it provides identical point correspondence but four 
times the image resolution (two times both pixel width and height). 

� Applications 

For motion tracking without limited action space, stereovision approaches 
employing multiple cameras remain flexible and irreplaceable. Synchronization 
hardware and camera calibration with a large number of point correspondences can 
probably overcome the disadvantages of difficult synchronization and higher noise 
sensitivity when using multiple cameras. 

Nevertheless, our method provides a good and inexpensive solution in 
applications where motion ranges are restricted, such as 3D facial motion estimation, 
or finger or 3D hand gesture tracking. Because our method uses only a single 
camera and mirrors can reach high accuracy with few point correspondences, it 
doesn’t require heavy calibration. This makes the proposed algorithm adequate also 
for applications requiring fast or even real-time dynamic calibration. 
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Chapter 7 

Facial Animation and Applications 

7.1 Introduction 

In this chapter, our proposed work concerning facial animation is presented. 
Two facial animation systems are developed for different purposes. First, we 
propose our speech-driven talking head that is appropriate for the Internet in Section 
7.2. Since the web-enabled talking head is animated by key-frame interpolation, and 
is driven by input speech, it requires only a very low bit-rate to deliver lifelike 
animation. For realistic facial animation, captured faces and motions from subjects 
are utilized to mimic or reproduce real persons’ facial expressions. The processes of 
head modeling and applying our motion-capture data are presented in Section 7.3 
and 7.4. 

7.2 A Web-enabled Speech-driven Talking Head 

An application that animates facial expressions through speech analysis is 
presented in this section. To animate facial animation according to input speech, key 
frames of facial expressions are prepared in advance. A speech analysis module is 
employed to obtain basic phonemes within the voice data. These extracted 
phonemes are then converted to the MPEG-4 Facial Animation Parameters (FAPs) to 
drive the 3D head model with corresponding facial expressions. The approach has 
been implemented as a real-time speech-driven facial animation system. When 
applied to Internet, our talking head system can be a vivid web-site presenter, and 
only requires 6 Kbps with an additional header image (about 30Kbytes in CIF 
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format, JPEG compressed). 

The requirement of this proposed system could be stated as lifelike but low 
bit-rate animation data over Internet. A 2D image warping technique on a single face 
image was first employed in our previous talking head system [PERN98]. But the 
above animation is not very natural in rotation. When developing a system purely 
based on a 3D model, we can’t overcome the problem of hair rendering, which is 
one of the most difficult issues in real-time computer graphics. Thus, we adopt a two 
and half dimension head model, which consist of a half-cut 3D model and an image 
plane (Figure 7.1, Figure 7.2) with a frontal view head image. With this extra image 
plane, our talking head can exhibit one’s hair, neck, and smooth contours. The major 
advantage of this model is to combine both nice features from 2D mesh and 3D 
model: simple, vivid, and natural when a small-scale rotation less than 20 degree is 
applied. 

In order to synthesize facial animation according to speech data, we have to 

know which utterances appear in the input voice data. In addition, the starting and 

ending time stamps of a certain utterances should also be obtained for 

synchronization of the mouth shapes with voice data. 

For example, in Figure 7.3, it is the PCM data of a Chinese sentence “ni hau 

ma” spoken by the author. After getting this wave file, our system invokes a speech 

recognition engine and finds that from StartTime to TimeA is silence; TimeA to 

TimeB should be “ni”; TimeB to TimeC should be “hau”; TimeC to EndTime should 

be “ma”. Our system then translates these results into “neutral (from 0 to TimeA), 

“n”-“i” (from TimeA to TimeB), “h”-“a”-“u” (from TimeB to TimeC), “m”-“a” (from 

TimeC to EndTime) and appropriate key frames are fetched from the expression 

pool. 

Figure 7.4 is the flow diagram of speech-driven facial animation. First, voice 
data from a speech file or a microphone are fed to a speech recognition engine that 
helps us conjecture the phonemes within the speech. The engine compares the input 
voice data with its own database; then reports the most possible utterances and the 
time stamps of each utterance in the sequence. A mapping table translating 
utterances to phonetic notations is used to get essential mouth shapes. Therefore, we 
can get a sequence of basic mouth shapes according to the input speech data. With 
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this information, facial animation synchronized with the input voice data can be 
generated. For example, A Mandarin Chinese word “good” pronounced as /hau/ is 
converted to /h/+/au/, and the corresponding mouth motion is gradually morphed to 
“h” then transited to ”au”.  

Since our purpose is to synthesize facial expressions according to speech data 
and many mouth shapes of utterances are quite similar to each other, the recognized 
results don’t need to have high recognition rate. Currently an efficient speech 
recognition engine can be used to generate facial animation in real time. 

In general, the recognition rate for a speaker independent recognition engine is 
only around 60%. Since many different pronunciations have similar mouth shapes 
and the real difference is inside the mouth and not visible, the overall “viseme 
recognition rate” for this talking head system is higher than 90%. Actually, the 
visual effect is so strong that most people cannot see the difference. 

In order to be web-enabled, a talking head system must have characteristics of 
very low bit-rate, short responsive time, and natural animation, and our 
speech-driven facial animation system conforms to the requirement exactly. The 
implementation details of the web-enabled speech-driven talking head are presented 
as follows. 

Facial expressions of the proposed system are controlled by phonetic and 
emotion data that are key frame numbers and time-slice sequences. Speech data can 
be encoded by CELP (Code Excited Linear Prediction) coding techniques such as 
G.723.1. Thus, the bit-rate requirement of our proposed “VR Talk” is very low. To 
minimize the responsive time and make the animation perform smoothly, we adopt 
streaming framework with ring buffers to manage the data transmission on Internet. 
A VRT (VR Talk streaming data) format is also proposed, which includes data of the 
head model, facial animation control, and encoded speech. This format can be 
transformed to other streaming data format such as ASF (advanced streaming format) 
of Microsoft.  

The system is separated into two parts: the server side and the client side. In the 
server side, a VRT file is prepared in advance. Our web-enabled VR Talk player is 
implemented as a plug-in for web browsers. When a user enter a web page with a 
link to a VRT file, our plug-in downloads the VRT data in streaming and plays back 
the speech with corresponding facial animation. 
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In our self-defined VRT streaming data, images and speech data are major parts 
of its data size. To reduce the VRT header size, we use the JPEG image coding 
approach to encoding the facial texture image and backgrounds. At this moment, the 
display window is of size 256 x 256 pixels. The size of a texture image or a 
background image is about 15K to 20K bytes, and the size of alpha blending 
mapping table is about 12K bytes. There are about 900 triangles in the generic head 
mask. Currently, we just store the triangle data without further encoding, and the 
triangle data size is about 70K bytes. To sum up, the VRT header size is about 120K 
bytes. The VRT packets are composed of recognized viseme data, talking head 
emotion index data, and encoded speech. The animation control data are about 600 
bps, and the bit-rate of speech coding standard G.723.1 with silent detection is less 
than 5.3 Kbps. Thus, the total bit-rate requirement of VRT packet is about 6 Kbps. 

Comparing with current video-phone coding techniques such as H.261 and 
H.263, whose bit-rate is about 40K to 4M bits per second in QCIF format, our 
proposed web-enabled talking head system can provide a low bit-rate and 
high-quality tool for video applications on Internet. For the time being, our system is 
developed on Windows 98/2000. Two kinds of web browsers, Microsoft Internet 
Explorer and Netscape Navigator are supported. On a Pentium III 500Mhz PC 
without OpenGL hardware acceleration, the frame rate is about 20 frames per 
second. However, once the OpenGL hardware acceleration is turned on, the frame 
rate can reach more than 300 frames per second. 

Furthermore, the proposed web-enabled talking head technique has been 
licensed and improved by Cyberlink Corp., Taiwan in an industrial-academic 
collaborative project. The proposed VRT file format was also redesigned for 
Microsoft Advanced Streaming Format (ASF). The ASF format is a frame-based 
framework. Once a frame is received, the decoder must decompress the frame 
immediately and the raw data should be sent to the rendering filter at the next step. 
With this issue, not only the key frames of each viseme but also intermediate frames 
should be interpreted when data is encoded. In the ASF streaming file derived from 
VRT format, the facial animation controls contains FAPs only. 9 high-level FAPs 
(viseme, expression, eye lid motion, and head rotation) defined in MPEG-4 are 
comprised in the streaming packets. These raw high-level FAPs data are transmitted 
frame-bye-frame without compression (should be done as specified in MPEG-4 with 
DCT, or arithmetic coding) and the bit-rate of the animation control stream is about 
8.6Kbps.
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Figure 7.4 The flow chart of speech-driven facial animation. 

 

 

Figure 7.5 The web-enabled speech-driven talking head “VR-Talk”. An emotion 
index slid bar is provided to control the emotional facial expression, and the 
background can be changed dynamically. 
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Figure 7.6 The VR-Talk is applied as a web-site narrator. 
 http:// www.cmlab.csie.ntu.edu.tw/~ichen/VR_Talk/VRTalk_Demo.htm 

 

 

http:// www.cmlab.csie.ntu.edu.tw/~ichen/VR_Talk/VRTalk_Demo.htm
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7.3 Face Synthesis 

The proposed approach mentioned in Section 3.2 for 3D position estimation can 

also be applied to construct a realistic head model. However, a 3D scanner can 

provide 3D models of error less than 1 millimeter. Thus, we exploit a 3D scanner to 

acquire 3D head information. Nevertheless, the 3D scanned data cannot be applied 

for facial animation directly for three main reasons. The first reason is that the 

topology of a face model generated by a 3D scanner is arbitrary and does not fit the 

characteristics of human faces; for example, the topology on the lip portion should be 

distinct from that of the mouth portion. The second reason is that there are always a 

lot of “holes” in 3D scanned data. The third reason is that the number of polygons 

generated by a 3D scanner is considerably large, and that is too many for real-time 

animation. For these reasons, a generic face model with a designed polygon topology 

is employed and it is personalized for a subject by fitting to the 3D scanned range 

data. 

Figure 7.7(a) is the figure of the generic model, and Figure 7.7(b) is the 

deformed model. In our current work, to personalized a face from 3D scanned range 

data, users have to manually specify the corresponding features such as the mouth 

corners, nose tip, eye corners etc. in the scanned face data. The deformation method 

we applied is the so-called RBF(radial basis function) based data scattering, which is 

a smooth interpolation function that can scatter the effects of feature points to 

non-recorded points. Supposed that mi is the 3D position of feature point i, moi is the 

corresponding point on the generic model, and ui= mi - moi is the displacement. We 

should construct a function that finds the unknown displacement uj of unconstrained 

vertex j from ui. 

In our case, a method based on radial basis functions is adopted to represent the 

influence of constrained points. We chose k
r

er
−

=)(φ , where k is a user-defined 

constant (k=16, in our case). The data scattering function is then of the form 

 



Facial animation and applications                                                     95 

∑ ++−=
i

tMmimmicmf )()( φ      (7.1) 

where mi is the constrained vertex; low-order polynomial terms M=(M1, M2, M3)t, t 
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Nielson’s research [NIEL93]. 

To determine the unknown coefficients ci and the affine components M and t, we 
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    (a)            (b)           (c)            (d)           (e) 

Figure 7.7 The personalized 3D face model with texture mapping. There are 6144 
polygons and 5902 vertices on the face model. (a) the generic model. (b) the 
deformed model. (c)~(e) synthetic faces in different view directions. 

 

 

 

Figure 7.8 The 11 regions of a generic head model: jaw, lower mouth, lower lip, 
upper lip, upper mouth, left cheek, right cheek, nose, left eye, right eye, and 
forehead. 
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7.4 Facial Animation driven by Extracted 3D Facial Motion 

A general face is separated into 11 regions: jaw, lower mouth, lower lip, upper 
lip, upper mouth, left cheek, right cheek, nose, left eye, right eye, and forehead (as 
shown in Figure 7.8). Control points within a region can only affect vertices in that 
region, and interpolation is applied to smooth the jitter effect at the boundary of two 
regions. 

These control points consist of motion-capture feature points, “fixed points” 
and “supplementary hypothetical points”. As mentioned in Section 4.1, feature 
points are the positions where markers are placed. “Fixed points” are the points 
where the position is always stationary no matter what the facial motion is 
performed, such as the points near ears and points near the bottom of the neck etc. 
“Supplementary hypothetical points” are the points difficult to be captured well due 
to video view point limitation; for example the points of jaw near the ear, etc. We 
use hypotheses to control the hypothetical points according to related feature points. 
Eyelids and some of the points on the jaw are hypothetical points. The blinks of 
eyelids are approximately once per 2.5 seconds as a random process. During 
blinking, the vertices on the eyelid move downward along the model of the eyeballs.  

The action of the jaw is given as the following pseudo code: 

If (the current jaw tip is higher than its position in the neutral face) { 

Teeth should be clamped together. 
Vertices of the jaw, except the neighbor area around the jaw tip, return to 
their neutral positions. 

} else if (the current jaw tip is lower than its position in the neutral face) { 

The jaw, which is now a rigid object, rotates and stretches around the 
hypothesis axes near the ears. 

} 

The inner lips represent another important and difficult-to-track facial region. A 
lip’s inner surface, hidden behind the outer part in a neutral face, partially appears 
when the mouth is open. The lower inner lip is especially important when a mouth is 
puckering or rounding, as it does when pronouncing “u” or “o.” At that time, almost 
half of the lower inner lip becomes visible, and it forms the lower lip’s inner contour. 
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We therefore used a supplementary inner lip model, shown in Figure 7.9. The light 
green part represents the lower outer lip, driven by feature points in motion captured 
data, and the dark green part depicts the supplementary inner lip model, which is a 
modified Hermite surface controlled by outer lip and jaw surface tangent vectors. 

After determining the displacement of all control points, a face can be 
deformed by the radial basis scattering function mentioned in Section 7.3. Once we 
repeat the above deformation process according to motion capture data frame by 
frame, we can generate realistic facial animation. Figure 7.10 demonstrates subtle 
facial motion of our synthetic face. Asymmetric facial expressions such as twisting 
the mouth can be synthesized because two mirrors are employed to capture the 
whole face’s motion. 

 

Figure 7.9 A cross-sectional view of lips. The lower lip is composed of the outer 
lower lip (light green), and supplementary rear lip model (dark green). 
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Figure 7.10 Synthetic subtle facial expressions of pouting and mouth twisting. 
Using two mirrors permits capturing asymmetric facial motions. 

F
d

igure 7.11 Synthetic subtle facial expressions of joy, sadness, anger, fear, and 
isgust. 
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igure 7.12 The synthetic facial expressions of pronouncing “a-i-u-e-o”. 

 

 

igure 7.13 Applying captured facial expressions to others’ face models. The 
xpressions from left to right are smiling, pouting, mouth twisting and eyebrow 
aising. 



 

Chapter 8 

Conclusion and Future Work 

In this dissertation, a complete procedure to estimate accurate 3D facial motion 
trajectories from real and mirror-reflected views of video clips is proposed. No 
pre-calibration process for locations and orientations of the video camera and mirror 
planes is required. We discuss the benefits of the proposed 3D position estimation 
algorithm and compare with general-purpose two view methods. In the two-view 
algorithms, they reconstruct 3D structure via evaluation of rotation and translation 
between two views. This is a problem of 6 degrees of freedom (DOF). By contrast, 
the proposed algorithm uses symmetric properties of mirrored objects and we only 
require solving a mirror plane equation of 4 unknown variables. It can be further 
reduced to 3 DOF without loss of generality. Our computer simulations reveal that 
the proposed procedure can be more accurate and more robust than commonly used 
two-view algorithms in conditions of input noise or limited calibration information. 

Under the normal light condition, our 3D motion tracking procedure, taking 
advantage of Kalman filters, requires a little user intervention to designate or correct 
false tracking. However, while tracking under blacklight blue lamps, we utilize the 
temporal and spatial coherence of mass UV-responsive markers on a face, and the 
problem of false tracking can be detected and rectified automatically. The proposed 
procedure can track 188 markers over 12.75 frames per second(fps) and track 300 
markers over 9.2 fps on a Pentium-4 3.0GHz PC; it will soon be extended for 
real-time motion tracking. 

The estimated facial motion parameters have been applied to our facial 
animation system, which can synthesize realistic facial expression with a frame rate 
of more than 30 frames per second on a Pentium-III 1GHz PC with the Nvidia 
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Geforce 2 MX OpenGL hardware acceleration. In addition, an application of a 
speech-driven talking head dedicated to the web environment is also presented. The 
talking head controlled by MPEG-4 high-level FAPs requires only 6Kbps bit-rate to 
“stream” lifelike facial animation through Internet. Currently, the web-enabled 
talking head has been implemented as ActiveX controls and plug-ins for web 
browsers including Internet Explorer of Microsoft and Navigator of Netscape. All 
the results are demonstrated in video, online plug-ins or executable programs on the 
websites:  

RFAP: http://www.cmlab.csie.ntu.edu.tw/~ichen/RFAP/RFAP_Intro.htm  
VRTalk: http://www.cmlab.csie.ntu.edu.tw/~ichen/VR_Talk/VRTalk_Demo.htm 
MFAPExt: http://www.cmlab.csie.ntu.edu.tw/~ichen/MFAPExt/MFAPExt_Intro.htm 

For the future work, besides the extension of our facial motion capturing 
system for live video tracking, the accuracy of feature extraction can be further 
improved. At this moment, the position of a marker in video clips is simply 
estimated from the center of its projected region. Some feature extraction techniques, 
such as refined corner detection, can have accuracy of 0.1 pixels. This will 
considerably improve the tracking results. Besides, statistical data association 
approaches, such as joint probabilistic data association, might improve or could be a 
comparison to our tracking method. 

In the current work, we can approximate facial motion by tracking a large 
quantity of markers. Some subtle variations on a face, such as wrinkles or creases, 
are also conspicuous, but they are difficult to capture by motion capture techniques. 
Now, for generating more realistic facial animation, we start to research on the 
extraction and presentation of the facial expression details. 

 

http://www.cmlab.csie.ntu.edu.tw/~ichen/RFAP/RFAP_Intro.htm
http://www.cmlab.csie.ntu.edu.tw/~ichen/VR_Talk/VRTalk_Demo.htm
http://www.cmlab.csie.ntu.edu.tw/~ichen/MFAPExt/MFAPExt_Intro.htm
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Appendix A 

The Two-view 3D Position Estimation 
Algorithm 

The following algorithm proposed by J.Weng et al. [WENG89][WENG93] is a 
common-use 3D position reconstruction approach that estimates 3D positions from 
two images of different view directions. 

Without loss of generality, the focal length is set to be the unit of coordinates, 
and the camera-centered coordinate system is adopted, where the images of different 
view direction d1, d2 is regarded as a rigid-body motion of an object between t1, t2. 
The denotations mainly follow those used in the original paper. 

xi = (xi, yi, zi)t is the 3D position of point Pi at time t1. 

xi’=(xi’, yi’, zi’)t is the 3D position of point Pi at time t2. 

Xi=(ui, vi, 1)t is the projected vector of Pi at time t1. 

Xi’=(ui’, vi’, 1)t = (xi’/zi’, yi’/zi’, 1)t is the projected vector of Pi at time t2. 

 

The two-view linear algorithm : 

Step (1). Solving for essential matrix E. 
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minh || Ah || = 1, subject to || h || = 1. 

[ ]















==

963

852

741

321 2
hhh
hhh
hhh

EEEE  

Step (2). Determining a unit vector Ts with T0 = ±Ts . 

minTs || EtTs ||, subject to || Ts || = 1. 

if( Σi(Ts × Xi’) • (E Xi) < 0 ), Ts = -Ts. 

Step (3). Determining rotation matrix R. 

W = [(E1×Ts + E2×E3) (E2×Ts + E3×E1) (E3×Ts + E1×E2)] 

  minR || R－W ||, subject to: R is a rotation matrix. 

Step (4). Checking T = 0, If T ≠ 0, determine the sign of T0. 

if α≤
⋅

×

ii

ii

XX

RXX
,

,

 for all i = 1 ~ n, then report T ≈ 0. 

else if ( Σi(Ts × Xi’) • (R Xi)＞0 ), then T0 = Ts, otherwise T0 = -Ts . 

Step (5). If T ≠ 0, estimate relative depths. 
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The nonlinear optimization by maximum likelihood estimation:  

The optimization first takes the result of the two-view linear algorithm as an 
initial guess; then it approximate the R, T by minm {|| f(u,m) ||} in a nonlinear least 
square approach, such as the Levenberg-Marquardt method, or the Gauss-Newton 
method. 

f(u,m) = prj(m, y(u,m)) – u,  

where u is the observed projected position, m is the motion parameters, y(u,m) is the 
best 3D positions of P, and prj(m, x) is the projected position of the input structure x 
and motion m.

 



 

Appendix B 

High-level MPEG-4 Facial Animation 
Parameters 

The followings are the definition of visemes and expressions, which are the 
high-level MPEG-4 facial animation parameters (FAPs) in MPEG-4 spec part 2: 
visual [MPEG99]. 

Table B.1 The definition of MPEG-4 visemes. 

viseme_select phonemes example 

0 none na 

1 p, b, m put, bed, mill 

2 f, v far, voice 

3 T,D think, that 

4 t, d tip, doll 

5 k, g call, gas 

6 tS, dZ, S chair, join, she 

7 s, z sir, zeal 

8 n, l lot, not 

9 r red 

10 A: car 

11 e bed 

12 I tip 
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13 Q top 

14 U book 

 
 
 

Table B.2 The definition of MPEG-4 facial expressions. 
expression_select expression 

name 
textual description 

0 na na 

1 joy The eyebrows are relaxed. The mouth is open and 
the mouth corners pulled back toward the ears. 

2 sadness The inner eyebrows are bent upward. The eyes are 
slightly closed. The mouth is relaxed. 

3 anger  The inner eyebrows are pulled downward and 
together. The eyes are wide open. The lips are 
pressed against each other or opened to expose the 
teeth.    

4 fear  The eyebrows are raised and pulled together. The 
inner eyebrows are bent upward. The eyes are tense 
and alert. 

5 disgust       The eyebrows and eyelids are relaxed. The upper lip 
is raised and curled, often asymmetrically. 

6 surprise  The eyebrows are raised. The upper eyelids are 
wide open, the lower relaxed. The jaw is opened.  
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