
Human-MoE: Multimodal Full-Body Human Image
Synthesis with Component-driven

Mixture of Experts
Yu-Jiu Huang

College of Computer Science
National Yang Ming Chiao Tung University

Hsinchu City, Taiwan
joehuang1999.cs11@nycu.edu.tw

I-Chen Lin
College of Computer Science

National Yang Ming Chiao Tung University
Hsinchu City, Taiwan

ichenlin@cs.nycu.edu.tw

Abstract—Conditional full-body human synthesis is to generate
and edit realistic images based on given conditions. Previous
methods lay a solid foundation but may have limitations in
adjusting human poses and appearance. They usually adopt a
monolithic design, and the details of generated images are prone
to be indistinct or distorted due to the high variation of hu-
man appearances. To tackle the above-mentioned challenges, we
propose Human-MoE for multi-modal full-body human synthesis.
Users can control the image generation through three types of in-
put representations: parsing maps for geometry, text descriptions
for appearance attributes, and pose maps to distinguish postures.
Our framework specifically designs a mixture-of-experts module
to capture and synthesize details in specific regions with high
fidelity. These synthesized details are then applied to refine the
appearance. Our method achieves top scores in experiments by
multiple metrics, especially FID and SSIM, demonstrating its
advance in visual quality and controllability.

Index Terms—Human body image synthesis, mixture of ex-
perts, multimodal control, latent diffusion model

I. INTRODUCTION

Full-body Human Image Synthesis (FHIS) aims at generat-
ing complete and coherent representations of the entire human
body, where the head, torso, limbs, and clothing details are
revealed. It has become attractive and employed in various
applications, such as virtual try-ons [1] and pose transfer [2].
To make the generated results meet the expectation of users,
recent related methods [3], [4] use multi-modal frameworks to
conditionally synthesize images according to various inputs,
such as poses, text descriptions, or reference images.

While previous methods generated impressive results, we
found that they usually encountered two challenges, realism
and controllability. Regarding realism, they often focus on
global features, and have difficulty in capturing intricate facial
and hand details, leading to blurriness in these areas. When the
legs of a target cross, artifacts frequently occur (as shown in
Fig.A of the supplementary document). Regarding controlla-
bility, we found that there are limitations and it is not always
easy to specify the desired appearance conditions in related
framework. For instance, in Text2Human [3], the text control
component relies solely on one-hot encoding, which restricts
users to selecting specific tokens.

Fig. 1: Overview of the functions of our framework: (a)
image generation according to parsing maps, pose maps, and
text descriptions, (b) image editing according to multimodal
and multi-component conditions. Its provides users with text-
driven, semantic-region-driven, and component-driven editing.
The text-driven editing changes the color of a region according
to the replaced text.

The objective of our work is to achieve high-fidelity human
image synthesis and keep the generation process controllable.
We utilize a Latent Diffusion Model (LDM) [5] as the
foundational architecture and a Vector-Quantized Generative
Adversarial Network (VQGAN) [6] as the autoencoder. To
more precisely and intuitively control the generation process,
our framework takes parsing maps, text descriptions, and
pose maps as input. Parsing maps provide multi-class labels
that enable intuitive control over the shape and structure of



objects, and allow for precise geometric management. Text
descriptions indicate appearance attributes such as gender,
skin tone, as well as clothing color and texture. Pose maps
mark human keypoints to disambiguate the limb postures and
remove related artifacts. To address the detail missing issue,
we introduce a component-based Mixture of Experts (MoE)
module, in which specialized autoencoders and LDMs are
trained as regional experts for the face, hands, and both upper
and lower clothing. A gating mechanism allocates regions to
the corresponding experts, and the generated regional details
are fused with the target image using composition techniques.

Our work can not only generate human images but also
be applied for editing. For the generative model, the LDM
operates in latent space and uses a noise predictor to es-
timate noise in a noisy image based on given conditions.
The decoder then maps the generated embeddings back into
pixel space to produce the final result. For the editing model,
additional information from a binary mask is incorporated
through concatenation, while the rest remains similar to the
generative model. We compare our method with related state of
the arts through multiple quantitative metrics, including FID,
CLIP-Score, SSIM, pose distance, and semantic intersection.
They demonstrates the diversity, realism, and controllability
of the generated results by the proposed method. Fig. 1
demonstrates the functionality of our work. Our contributions
are summarized as follows:

• Human-MoE framework is proposed, which integrates
multiple conditions (parsing maps, pose maps, and text
descriptions) to achieve highly controllable human image
generation and editing.

• The component-based MoE module is introduced to re-
fine the quality of the face, hands, and clothing, and it
can be extended to other body parts.

II. RELATED WORK

The emergence of Diffusion Models (DMs) [7] has signifi-
cantly advanced image generation tasks. DMs generate images
by iteratively denoising a variable starting from noise. LDMs
[5] apply this process in latent space, reducing computational
complexity while maintaining high quality. Classifier Free
Guidance (CFG) is the main method to control LDMs [8].
CFG controls the generation process without an external clas-
sifier by leveraging a single DM trained on both conditional
and unconditional data. SpaText [9] further proposes multi-
condition CFG for finer control. The advent of LDMs has
driven significant advancements in various applications. Large
cross-modal models like Stable Diffusion (SD) [5] pave the
way for cutting-edge developments.

Palette [10] introduces a general framework for image-
to-image tasks based on conditional DMs. It demonstrates
that concatenating condition images with model inputs can
effectively controls the generation process. ControlNet [11]
aims to add spatial conditioning control to large pre-trained
text-to-image DMs, locking model parameters and replicating
encoding layers to retain the capability of original model.

Conditional methods [3], [4], [12] include appearance and
pose guidance. UPGPT [4] introduces a multimodal LDM
that uses 3D information to control poses, while combining
reference images of various body parts and text descriptions to
guide appearance. Text2Human [3] uses a two-stage architec-
ture converting human pose data into parsing maps to indicate
geometry, and controls appearance with predefined labels. It
employs a MoE mechanism with hierarchical VQVAEs [13]
to retain more information. Multi2Human [12] builds upon the
Text2Human parsing-to-human framework and incorporates
wavelet embeddings to enhance detail quality.

We express our gratitude to previous work. The design
of UPGPT multimodal LDM for the FHIS task and the
MoE concept proposed by Text2Human have inspired us.
Compared to the MoE in Text2Human, which assigns tasks
to experts based on garment textures, our component-driven
MoE module assigns tasks to experts based on body regions
and integrates the output of each expert. This strategy enables
us to synthesize body details beyond garments.

III. PROPOSED METHOD

The proposed Human-MoE takes the LDM [5] as the
foundational framework and can controllably generate and
edit high-fidelity images. As shown in Fig. 1, the generative
model uses parsing maps to define geometry, pose maps to
distinguish posture, and text descriptions to control appear-
ance. The editing model offers several key functionalities:
semantic-region-driven editing for modifying parsing maps
and controlling component geometry, text-driven editing for
adjusting attributes such as color and style, and component-
driven editing for altering components using the MoE mech-
anism and composition module. Our overview architecture is
shown in Fig. 2. We define the image dimensions in latent
space as h = H/8 and w =W/8. To synthesize an image x̂ ∈
RH×W×3, the input to the generative model includes a random
noise zT ∈ Rh×w×3, a parsing map cparsing ∈ RH×W×23

(where the channels represent the number of categories), a
pose map cpose ∈ RH×W×3, and a text description ctext. For
the editing model, an original image x ∈ RH×W×3 and an
additional binary mask cmask ∈ RH×W×1 are required to
specify the known and unknown areas.

A. Full-body Human Image Synthesis

Previous work has introduced various innovative methods
that have significantly advanced the field of human generation
technology. However, due to the richness and diversity of
portrait features, previous techniques often struggle to achieve
both high fidelity and fine control in FHIS. To balance
generation quality and efficiency, we chose the LDM as our
framework and combined it with multimodal inputs for fine-
grained control. The LDM requires an autoencoder to map
data between the pixel space and the latent space. We use
the VQGAN as the autoencoder, which consists of an encoder
E , a decoder D, a codebook C, and a discriminator Ddisc.
Given an original image x, we obtain the reconstructed image
x̂ = D(Q(E(x))) and use the trained E and C to generate



Fig. 2: Overview of Human-MoE architecture. For generative models, during training, parsing maps, pose maps, and text
descriptions are used as conditional inputs for the noisy predictor ϵθ. The output of ϵθ is the predicted noise added to a
noisy latent image zt. During inference, zt undergoes several denoising steps to obtain a generated latent image ẑ0, which
is input into the decoder D to obtain a generated image x̂. Editing models introduce binary masks and original images as
spatial conditions, while the rest of the operations are similar to generative models. The refinement network combines multiple
generative models, and each of them focuses on a specific body part, to collaboratively improve human details.

a latent representation z = Q(E(x)), where Q is the vector
quantization operation. The LDM consists of a noise predictor,
ϵθ, which is responsible for estimating noise based on noisy
images during the reverse diffusion process. The spatial input
is denoted by γ, which is formed by concatenating random
noise with other image conditions. The attention conditioning
input is denoted by ψ, which aligns with the image dimensions
through cross-attention. To explore the role of each condition,
we divide the discussion into pose and appearance guidance
for generation and regional manipulation for editing.

1) Pose Guidance: For each human image, we adopt a
parsing map cparsing and a pose map cpose as pose represen-
tations. cparsing tells which category (23 semantic categories)
a pixel belongs to. It is used for layout specification and
also helps with geometric editing. However, the annotations of
cparsing has inherent limitations, which lead to ambiguity. For
instance, the model could struggle to determine which limb is
in the front and results in distortions at overlapping regions.
Therefore, we incorporate cpose to address the aforementioned
issue. The pose is predicted by OpenPose [14] model. cpose
contains 25 full-body keypoints, 70 facial keypoints, and
21 keypoints for each hand, presented in RGB format. The
parsing encoder Eparsing and the pose encoder Epose consist
of pointwise convolutional layers that extract features from the
images while preserving spatial information. After inputting
cparsing and cpose into Eparsing and Epose, we obtain the
parsing embedding zparsing ∈ Rh×w×3 and pose embedding
zpose ∈ Rh×w×1. zparsing, zpose, and zt are concatenated as
γ to achieve pose guidance.

2) Appearance Guidance: We intuitively control human
appearance through a text description ctext, which includes
details such as hair color, skin tone, and clothing style. Since
CLIP [15] has strong text-image alignment capabilities, we
use its pre-trained text encoder Etext to convert ctext into
the text embedding ztext. We incorporate ztext into ϵθ using
cross attention, allowing the model to generate images that are
highly aligned with the given ctext more precisely.

3) Region Manipulation: Our region editing method shares
a similar core concept with Palette [10]. As shown in the
purple part of Fig. 2, given a original image x and a binary
mask cmask, we can obtain a original latent image zoriginal =
Q(E(x)) , where zoriginal ∈ Rh×w×3, and then compute the
inverse binary mask Invert(cmask). In cmask, the white areas
represent the unknown area, while the black areas represent the
known area. We perform element-wise multiplication between
Invert(cmask) and zoriginal, and then concatenate the product
with cmask to obtain zinpainting ∈ Rh×w×4. cmask effectively
identifies the target areas that need modification and zoriginal
provides crucial information regarding the known area. In this
way, our approach not only enhances the flexibility of editing
but also improves the consistency of the generated results.

B. Component-driven MoE Refinement Network

Capturing fine details presents a significant challenge for
the primary model. Therefore, we incorporate the component-
driven MoE module, which consists of a gate and multiple
experts. The gate selects the appropriate expert for processing
based on the input features. Each expert focuses on a specific
synthesis task. Given x̂, the gate identifies specific regions



based on the annotations from cparsing. The identified regions
in x̂ correspond to a dilated binary mask mroi. Our experts
target the face, hands, upper garment, and lower garment,
represented as Fface, Fhand, Fupper, and Flower, and each of
them has its own synthesis network, which operates similarly
to the holistic one. For example, for a random noisy image, the
parsing map and the pose map of Fface are square-cropped
versions of the original ones, and the text of Fface is generated
by Gemini [16]. The output of Fface is xface. The operations
of Fhand, Fupper, Flower are similar to Fface. We selectively
use Poisson blending [17] to smoothly integrate xface, xhand,
xupper, xlower with mroi to get the refinement image x̂refine,
as described in the following formula:

x̂refine = Poisson(S, T,M), (1) S = {xface, xhand, xupper, xlower}
T = x̂
M = mroi

, (2)

where S represents the source image, T represents the target
image, and M is used to specify the regions to be extracted
from S. We aim to blend S into T based on M . We iteratively
compute the edge gradients and dynamically adjust the range
of M to prevent color leaks. SSIM [18] is introduced to
compare the similarity of the component regions before and
after blending. If the similarity score does not exceed the
specified threshold, it indicates that the chosen parameters are
suboptimal, and thus S will be directly pasted onto T . To
improve inconsistencies at the boundaries between S and T ,
we further finetuned the SD [5] inpainting pre-trained model to
handle the edges effectively. This framework successfully alle-
viates face and finger blurring while enhancing clothing texture
preservation. The concept of the component-driven MoE can
be extended to handle additional body regions. Compared to
common holistic refinement methods, our MoE allows users
to achieve more detailed and customized synthesis.

C. Training and Sampling

During the training process, ϵθ needs to learn to predict
the noise stochastically added to z0. Our training objective is
represented by the loss function below:

L = EE(x),cspatial,ccross,ϵ∼N(0,1),t

[
∥ϵ− ϵθ(γ, ψ)∥22

]
, (3)

cspatial = {cparsing, cpose} ∪ {cmask}, ccross = {ctext}, (4)

where cspatial and ccross represent the sets of spatial and cross
domain conditions. Here, we obtain γ = {zt, zparsing, zpose}∪
{zmask} and ψ = {t, ztext}.

During inference, we propose a hybrid version of the
multi-conditional CFG based on the approach presented by
SpaText [9]. We calculate the joint condition ∆t

joint =
ϵθ(zt|{yi}Ni=1)−ϵθ(zt|∅), and apply the guidance scale ωjoint

to control the conditioning strength. This approach requires
two feedforward executions per denoising step: one for the
null condition and one for the joint condition. To control target
conditions independently during sampling, we can additionally

calculate the direction for target conditions ∆t
j = ϵθ(zt|yj)−

ϵθ(zt|∅) and linearly combine them using M guidance scales
ωindep. In the reverse process, the noise predicted at each time
step refers to the formula below:

ϵ̂θ(zt|{yi}Ni=1) = ϵθ(zt|∅)+ωjoint ·∆t
joint+

M∑
j=1

ωindep(j) ·∆t
j .

(5)
To increase sampling speed while maintaining generation

quality, we introduced DDIM [19] sampler, conducting fewer
sampling steps. After inference, we obtain the generated latent
image ẑ0, which is then input into D to decode and obtain x̂.

IV. EXPERIMENTS

We conducted experiments on the DeepFashion-Multimodal
dataset [3]. Following the Text2Human settings, we selected
11, 484 full-body images, which were split into training and
testing sets and downsampled to a 512×256 resolution. Pars-
ing maps included the original 23 label categories, excluding
the background. Pose maps were extracted by OpenPose [14],
covering the body, face, and hands. Text descriptions were
generated by BLIP-2 [20] and Gemini [16]. Binary masks were
created based on parsing labels or randomly generated strokes.

We evaluated model performance by five metrics. FID [21]
quantifies distribution differences between generated and real
images to assess quality. CLIP-Score [22] measures alignment
between images and text descriptions using cosine similarity
in shared embedding space. SSIM [18] calculates pixel-level
similarity for reconstruction accuracy. Pose distance (PD)
calculates the distance between keypoints to measure posture
accuracy. Segmentation intersection (SI) calculates the mIoU
between generated and real segmentations output by a fine-
tuned SAM [23].

A. Quantitative and Qualitative Comparisons

We compared our method with Pix2Pix-HD [24], SPADE
[25], Text2Human [3], and ControlNet [11]. Tab. I summarizes
the modalities and functionalities of each method. We trained
models for Pix2Pix-HD and SPADE with parsing maps as con-
ditions. For Text2Human, we adopted a pre-trained parsing-
to-human model, replacing textual descriptions with provided
token labels. ControlNet was used as a subnet to fine-tune
the SD [5] model with image-text pairs. During sampling,
ControlNet was configured in the same way as in our work.
Background regions were removed from each generated image
to focus on evaluating the quality of the human subject.

As shown in Tab. II, our model achieves the lowest (best)
FID score 19.88, indicating that the distribution of generated
images closely align with the distribution of the original
dataset. In terms of CLIP-Score, ControlNet achieved the
highest score 0.267, and our model reached a score 0.259. It
demonstrates that the proposed method is capable of generat-
ing high quality images based on specific descriptions without
relying on the prior of SD. For SSIM, the proposed model
attains the highest score 0.826, indicating that the generated
images have high structural and visual consistency. Regarding



TABLE I: Modalities and capabilities checklist. S, T and P
denote parsing, text, and pose, respectively. The abbreviations
of PC, AC, TE, and SE are pose control, appearance control,
text-driven editing, and semantic-driven editing, respectively.

Modalities Capabilities
Methods S T P PC AC TE SE

Pix2Pix-HD [24] ✓ ✓
SPADE [25] ✓ ✓

Text2Human [3] ✓ ✓ ✓ ✓
ControlNet [11] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE II: Quantitative results on DeepFashion-Multimodal
dataset. The bold highlight signifies the best-performing score.

Methods FID↓ CLIP-S↑ SSIM↑ PD↓ SI↑
Pix2Pix-HD [24] 28.26 0.233 0.818 1.39 0.962

SPADE [25] 27.84 0.228 0.817 1.25 0.971
Text2Human [3] 22.21 0.233 0.783 1.69 0.927
ControlNet [11] 32.13 0.267 0.783 1.83 0.938

Ours 19.89 0.259 0.826 1.47 0.947

PD and SI, our performance is slightly inferior to that of
SPADE and Pix2Pix-HD (conditioning with only the parsing
map), but surpasses other frameworks. We speculate that the
multimodal framework faces greater complexity in learning
the relationships among multiple modalities, but our work is
still close to the parsing-map-only-based models in terms of
pose accuracy.

Next, we conducted a visual comparison between our
method and others. In Fig. 3, in scenarios where only parsing
maps are used as control conditions, Pix2Pix-HD and SPADE
struggle to produce clear images and their results lack diver-
sity. The additional inclusion of text as a generation condition
can enhance the control over human appearance. Text2Human
can generate images with distinct local details and varied
clothing styles using semantic maps and text tokens. However,
its reliance on one-hot encoding for text vocabulary limits its
flexibility in handling new or synonymous words. It is difficult
to specify details such as garment color for their system.
ControlNet retains the excellent visual semantic alignment of
SD but fails to maintain detailed features during generation.
In contrast, our model generates higher realism images using
either parsing maps alone or combined with text descriptions.
It also shows stronger controllability over appearance when
both conditions are used. With the addition of pose conditions,
the model achieve higher precision in body posture control.

B. Ablation Study

We conducted an ablation study on the impact of the
component-driven MoE refinement network. As shown in
Table III, adding MoE improved all metrics except the CLIP-
Score compared to the baseline. The visual results after
applying MoE are shown in Fig. 4, where clearer details in
the face and hands, and more intricate clothing textures are

TABLE III: Quantitative comparison of the impact of
component-based MoE on generation results. The bold high-
light indicates the best-performing score.

Methods FID↓ CLIP-S↑ SSIM↑ PD↓ SI↑
Ours 19.89 0.259 0.826 1.47 0.947

w/o MoE 21.64 0.261 0.826 1.50 0.943

shown. However, color bleeding may still occur at component
boundaries, and there could be color discrepancies between
the source and target images. The above two situations are the
main reason we thought for the drop of CLIP-Score. This issue
can be alleviated by manually adjusting the mask boundaries
or by re-sampling. Please refer to the supplementary material
and codes1 for more details about experiments and implemen-
tation.

V. CONCLUSION

We propose Human-MoE, designed for FHIS tasks. By
combining multi-modal conditions: parsing maps, pose maps,
and text annotations, our method generates human images con-
sistent with the input conditions that are easily indicated. We
innovatively apply the component-based MoE to enhance fi-
delity in specific areas, including the face, hands, and clothing.
From the aspect of editing, our model is highly flexible and
allows users to easily adjust the pose and appearance features
of humans. We compare the results of our methods and related
work on multiple quantitative metrics. The experiments show
that our model achieves state-of-the-art performance in FID
and SSIM, and is also comparable to related methods in other
metrics.
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