
IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 1

Confidence-based 6D Object Pose Estimation
Wei-Lun Huang∗, Chun-Yi Hung∗, and I-Chen Lin†, Member, IEEE

Abstract—The aim of this paper is to estimate the six-degree-
of-freedom (6DOF) poses of objects from a single RGB image
in which the target objects are partially occluded. Most recent
studies have formulated methods for predicting the projected
two-dimensional (2D) locations of three-dimensional keypoints
through a deep neural network and then used a PnP algorithm
to compute the 6DOF poses. Several researchers have pointed
out the uncertainty of the predicted locations and modelled it
according to predefined rules or functions, but the performance
of such approaches may still be degraded if occlusion is present.

To address this problem, we formulated 2D keypoint locations
as probabilistic distributions in our novel loss function and
developed a confidence-based pose estimation network. This
network not only predicts the 2D keypoint locations from each
visible patch of a target object but also provides the correspond-
ing confidence values in an unsupervised fashion. Through the
proper fusion of the most reliable local predictions, the proposed
method can improve the accuracy of pose estimation when target
objects are partially occluded. Experiments demonstrated that
our method outperforms state-of-the-art methods on a main
occlusion data set used for estimating 6D object poses. Moreover,
this framework is efficient and feasible for realtime multimedia
applications.

Index Terms—6D pose estimation, prediction confidence for-
mulation, deep neural network.

I. INTRODUCTION

DETECTING objects in an image and estimating their
six-degree-of-freedom (6DOF) poses, namely their three-

dimensional (3D) rotations and translations, has been an im-
portant topic in the fields of multimedia and computer vision.
It plays a crucial role in several applications, such as image
content analysis, augmented reality, and robotic manipulation.
Recently, many methods [1]–[4] involving depth data of an
input image have produced compelling results. However, depth
sensors require additional power consumption and are not
extensively applied to portable computing devices, such as
smartphones and tablets. They limit the applications of these
methods based on red-green-blue-depth (RGB-D) information.

RGB images can be acquired with ordinary cameras, but 6D
pose estimation from RGB images involves further challenges.
In real scenes, target objects are usually not completely
visible. Without depth information to ease segmentation, such
a method must estimate postures from partially occluded and
cluttered color data. Moreover, 6D pose estimation applica-
tions typically require instant feedback. A pose estimation
method should be concise and capable of providing precise
poses as soon as possible.

W.-L. Huang, C.-Y. Hung, and I.-C. Lin are with the Institute of Multimedia
Engineering, College of Computer Science, National Yang Ming Chiao Tung
University (former National Chiao Tung University), Taiwan.
∗ equal contribution to this work.
† corresponding author, e-mail: ichenlin@cs.nctu.edu.tw.
The published manuscript and supplementary document are available at

http://ieeexplore.ieee.org. DOI: 10.1109/TMM.2021.3092149

(a) Input image (b) Segmentation result

(c) Conceptual diagram of predicted 2D points (distributions).

(d) Estimated poses

Fig. 1. Example of 6DOF pose estimation of multiple objects with the pro-
posed method. Given a single input RGB image (a), our network can evaluate
two outputs, specifically the multiobject segmentation results presented in (b)
and 2D keypoint locations with confidences as illustrated in (c). The 6D poses
estimated from the fusion of these outputs are displayed in (d), where white
bounding boxes denote the ground-truth poses and the bounding boxes in
other colors denote the predicted poses of different classes.

Generally, 6D pose estimation methods predict the projected
two-dimensional (2D) locations of predefined 3D keypoints
of target objects. These 2D-to-3D correspondences are then
used to evaluate the poses with a perspective-n-point (PnP)
algorithm [5]. Traditionally, these 2D locations are detected
according to handcrafted feature extractors, such as SIFT [6]
or SURF [7]. However, these handcrafted features are not
applicable to weakly textured or textureless objects. Some
recently developed 6D pose estimation methods rely on con-
volutional neural networks (CNNs). Given an input image, a
CNN can output the features of objects for object detection [8]
or even directly regress the 6D object pose [9]. These methods
involve the use of holistic information and achieve remarkable
performance. However, when applied to a scene with partially
occluded objects, their performance easily degrades because
parts of salient features are not visible or confused with

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 2

others. A few researchers [10]–[13] have also recognized
this key problem and combined multiple predictions from
local information to gain more robust poses. However, these
researchers have modeled the uncertainty or confidence of
the predicted location during training according to predefined
rules, such as the proximity of the predicted location to the
ground truth.

In this work, we argue that incorporating uncertainty in
formulation is helpful for both training and inference. Instead
of basing predictions on global information or combining them
according to predefined rules, we assume that the accuracy
of 6D pose estimation can be improved through the proper
integration of multiple predictions of different locations of an
object. We propose a confidence-based 6D pose estimation
network that can predict the projected 2D locations of 3D
keypoints and the corresponding confidence values from each
visible patch of an object. After the selection of valid patches
from candidates, the predicted 2D keypoints are regarded as
several probabilistic distributions and fused together according
to the predicted locations and confidence values (which can
be transformed into variances).

To realize the aforementioned approach, we derived a novel
loss function from the statistical distance between the pre-
dicted and ground-truth distributions. The derived loss function
contains two competing terms: the first term is a weighted L1
distance that focuses on the most concentrated distributions,
and the second term is an unsupervised term for concentrating
the predicted distributions. The mutual competition provides
the proposed network with an intuitive means of leveraging
the location loss and variance loss. Finally, the number of
deviating cases can be reduced, and more robust poses can be
obtained through the proper integration of the most concen-
trated distributions. The fused 2D keypoint locations are then
input into a PnP algorithm for the 6D pose of each target object
to be obtained. We also conducted experiments to analyze
the effect of applying two popular 3D keypoint sets, namely
the eight corners of the 3D bounding box (BBox) and the
farthest-point-sampling (FPS) keypoints in [13]. Our strategy
for selecting 3D keypoint sets is described in the Experiments
section.

We evaluated the performance of our method on the Oc-
clusion LINEMOD [14] data set, which is one of the most
extensively used and challenging benchmarks because the
background of each image is cluttered and the target objects
frequently occlude each other. Our method introduces the
unsupervised confidence into the loss function during train-
ing and combines the most reliable local predictions during
inference to mitigate deviation caused by occlusion, thereby
achieving state-of-the-art performance. In addition to being
effective, the proposed method is also feasible for real-time
applications. Fig. 1 presents an example of 6D pose estimation
with the proposed method.

To summarize, the contributions of our work are as follows:
• A confidence-based distributional 6D pose estimation

framework that can be applied to partially occluded
images is proposed.

• A novel loss function is derived for our proposed network
to apply training for location prediction and confidence

prediction through mutual competition. The predicted
confidence values can be utilized to integrate the pre-
dicted locations.

• We experimentally evaluated two different sets of 3D
keypoint locations with our framework and report our
strategy for keypoint selection.

• The proposed network achieves state-of-the-art accuracy
on the Occlusion LINEMOD dataset and real-time per-
formance.

II. RELATED WORK

This section introduces several representative methods re-
lated to 6DOF object pose estimation. We first discuss the
pros and cons of classical methods and then present recent
deep-learning-based methods. In addition to discussing work
related to 6D pose estimation, we also introduce several repre-
sentative methods for object detection because such methods
are typically employed in object pose estimation frameworks
to distinguish target objects from their background.

A. Classic methods for object pose estimation

Classic object pose estimation techniques generally fall into
two categories: feature-based and template-based approaches.
Feature-based approaches [6], [7], [15]–[17] are employed to
extract image features, such as shape, texture, and color, which
match those in a target image. Such methods can tolerate
high levels of background clutter and changes in illumination.
However, they cannot be used to estimate the poses of weakly
textured or textureless objects because no salient feature is
available for extraction. Template-based approaches [18]–[25]
produce the templates of objects from different viewpoints
and identify the template that matches the target image.
These methods can estimate the poses of textureless objects
but perform poorly when occlusion is present because they
typically compare the entire projected shape of a target object.

B. CNN-based object detection

Well-known two-stage detectors [26]–[31] first select re-
gions of interest from the input image and generate a set of
region proposals. They then classify these proposals to identify
the target objects. By contrast, one-stage detectors [32]–[39]
produce region proposals and classifications simultaneously.
Although one-stage detectors are much faster than two-stage
detectors are, their prediction accuracy is often worse than that
of multistage detectors. Lin et al. [40] proposed RetinaNet and
introduced a focal loss to solve the foreground–background
class imbalance problem during training. You Only Look
Once, version 3 (YOLOv3) [36] is the result of integrating
FPN [41] and ResNet [42] into YOLOv2 [34]. It has compa-
rable accuracy to that of RetinaNet but with faster detection.
In our work, we employed YOLOv3 as the backbone network
because of its efficiency and effectiveness and applied a focal
loss function to optimize the detection accuracy.

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 3

C. CNN-based object pose estimation

CNN-based pose estimation methods can generally be cate-
gorized as pose-regression-based and keypoint-based methods.
Pose regression methods [9], [43]–[47] directly estimate the
6D pose of a target object. PoseCNN [43] localizes target
objects in an image and predicts their depths to obtain their
3D locations. However, its performance degrades when the
input is an RGB image without depth information. Liu et al.
[9] utilized a triplet network to create a strong correlation
between an object’s features and 6D pose for regression. To
address the nonlinearity rotation space, several methods [44]–
[47] have been developed for discretizing the rotation space
and transforming the rotation estimation into a classification
task. These approaches typically estimate coarse results first
and rely on pose refinement methods [48], [49] to obtain
precise 6D object poses.

Instead of directly predicting 6D object poses, keypoint-
based methods [10]–[13], [50]–[55] use a two-stage strategy.
This strategy involves first detecting the 2D keypoints of a
target object and then using a PnP algorithm to calculate
the 6DOF pose according to 2D-to-3D correspondences. For
recent neural network structures, predicting 2D keypoint lo-
cations is more straightforward than estimating nonlinear 3D
rotations and translations. BB8 [50] identifies different targets
through segmentation and regresses 2D keypoints from each
segmented region. YOLO-6D [51] employs YOLOv2 [34]
architecture for the prediction of object keypoints based on
the confidence value at each location of a low-resolution
feature map. YOLO-6D defined their confidence as a function
of the distance between a predicted point and the ground
truth. These methods exhibit impressive performance on the
LINEMOD [24] data set but are easily distracted by occlusion
and noise due to their heavy reliance on global information.

Several recent approaches have been proposed for over-
coming the occlusion problem. Oberweger et al. [11] used
an encoder–decoder architecture to obtain keypoint heatmaps,
which are then aggregated to serve as the input of a PnP
algorithm. They applied the predictor in a sliding window
fashion, which is unsuitable for real-time processing. PVNet,
developed by Peng et al. [13], estimates pixel-wise unit
vectors pointing to the object keypoints and generates 2D
keypoint hypotheses according to random-sample-consensus
(RANSAC) based voting. An uncertainty-driven PnP algo-
rithm is then used to estimate the object 6D pose according
to the spatial distributions, i.e. means and covariances, of
keypoints. These spatial distributions are characterized by
weighted hypotheses of keypoint locations, where the weight
of a hypothesis is higher if it coincides with more predicted
directions. Their vector fields can predict the positions of
keypoints of an occluded or even truncated target. However,
this network is trained individually for each class. Under such
conditions, it cannot concurrently detect multiple objects of
different classes.

Zakharov et al. [52] adopted the same backbone network as
that of PVNet [13] but with the utilization of three decoders.
Instead of predicting pixel-wise vector fields, they encoded
each target object with UV maps, where a color denotes a

3D location. With these correspondence maps, they turned the
regression problem into a classification problem. Song et al.
[55] also designed a network based on PVNet. In addition
to predicting 2D keypoint locations, they also estimated edge
vectors and symmetry correspondences and integrated them
into the input of the following refinement modules.

Hu et al. [12] adopted YOLOv3 [36] architecture as a
backbone network with two branches, namely a segmenta-
tion branch and a regression branch, where the segmentation
branch identifies objects of different classes and the regression
branch predicts the 2D locations of the projected 3D key-
points. They gathered predictions of each visible object patch
according to predicted confidence values, which are defined
to reflect the proximity of the predicted 2D locations to the
ground truth. The RANSAC EPnP [5] algorithm is then used
to evaluate the 6D pose on the basis of predicted 2D keypoints.
Hu et al. later proposed a method [56] that directly regresses
6D poses from the predicted correspondences. Our network
architecture is derived from their work [12]. However, we
regard the 2D keypoint locations as probabilistic distributions,
where the confidence can be determined in an unsupervised
fashion. Moreover, the proposed confidence can be applied to
integrate multiple predictions for EPnP.

III. METHOD

Our goal is to detect and estimate the 6DOF pose of each
target object in real time given a single RGB image. These
target objects are rigid, and their 3D models are provided in
advance. A 6D pose is defined as a rigid transformation (R; t)
from the object space to camera space. R and t represent the
3D rotation and translation, respectively.

Inspired by recent work [12], [13], [52], [55], we adopted a
two-stage strategy. An encoder–decoder architecture is adopted
to predict the 2D keypoint locations of a predefined 3D
target object along with the confidence values, which are
subsequently used as the inputs of the inference module for 6D
pose estimation. In contrast to related methods, in our method,
2D keypoint locations are regarded as normal distributions
for the derivation of our loss function and fusion of multiple
predictions according to confidence values. Our proposed
framework contains a shared encoder and two separate de-
coders responsible for distinct tasks. One decoder produces
coarse semantic segmentation of the input image, and the other
predicts the 2D keypoint locations along with the confidence
values of the segmented regions. Fig. 2 depicts the pipeline
of our proposed network. In the remainder of this section, we
introduce our network architecture and then elaborate on the
functions of the two decoder branches. Finally, we describe
our inference module.

A. Network architecture

To focus the benefits of our new loss function and inference
module, we adopted the same base architecture proposed by
Hu et al. [12], which contains a shared encoder with two
decoders for different tasks. The encoder is the Darknet-53 of
YOLOv3 [36], which is pretrained with COCO data set. The
two decoders are feature pyramids [41] based on the results

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 4

Fig. 2. Overview of our framework. The input image is processed first by an encoder and then by two separate decoders, which produce a coarse segmentation
and the 2D keypoint locations with confidences, respectively. The two output tensors are then fed into an inference module, which fuses the predictions belonging
to the same class and finally outputs the 6DOF pose of each visible target object.

of the encoder. We adopted an identical architecture for these
decoders, except for the channel size of the final convolutional
layers. One decoder performs semantic segmentation, and the
other performs regression. The output channel sizes of the the
segmentation and regression branches are denoted Dseg and
Dreg , respectively. Please refer to the supplementary material
for the detailed network structure.

B. Segmentation branch

The input image space is divided into a grid of H × W
patches based on the spatial resolution of the output tensor,
where the grid element is referred to as the cell. The segmen-
tation branch estimates the probability of every object class
for each cell and adopts the class with the highest probability
as the predicted label. Fig. 3a depicts the predicted result of
the segmentation branch. The size of the output channel of the
segmentation branch is Dseg = C+1, where C is the number
of object classes, and one additional channel is used for the
background.

During the training stage, we projected the 3D models of
target objects onto an input image space according to the given
ground-truth poses and camera intrinsic matrix to acquire the
segmentation masks. Because most areas of an image have
variations in the background and object sizes, we adopted the
focal loss function proposed by Lin et al. [40] to resolve the
class imbalance problem by dynamically weighting the cross-
entropy loss.

We first computed the pixel-wise class frequency fi in the
training dataset and then defined the median frequency weights
wi proposed in [57] as follows:

wi =
median({fi|i = 0, 1 . . . , C})

fi
, (1)

(a) Object segmentation (b) 2D keypoint locations from a
foreground cell

Fig. 3. Outputs of our proposed network. For a virtual cell superposed on
an image, our network estimates a class label and K offset vectors with
confidence values. The vectors point from the center of a cell to K projected
keypoint locations. The final projected position of a keypoint is inferred
according to the predictions of multiple cells.

where wi is the median frequency weight of the ith class and
median() returns the median of the values in the input set.
Finally, we adopted a class-balanced version of the focal loss
function as our segmentation loss function:

Lseg =

C∑
i=0

−δihgtwi(1− pi)τ log(pi) (2)

where δihgt is the Kronecker delta function. The output is 1
when i = hgt, which is the ground-truth class; otherwise, it
outputs 0. pi is the predicted probability for class i, and τ
is a positive hyperparameter that adjusts for the effect of the
modulating factor (1− pi).

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 5

C. Regression branch
The goal of the regression branch is to predict the projected

2D locations of the predefined K 3D keypoints of each visible
target object. The configurations of 3D keypoints can vary as
long as they are not coplanar. Following the configurations
of state-of-the-art methods [11], [12], [51], we first selected
the corners of the model bounding box as the 3D predefined
keypoints (K = 8 in our case). We compared the results
by using two representative configurations of predefined 3D
keypoints mentioned in Section V.

For each cell (image patch) that belongs to a target object,
the regression branch estimates the 2D coordinates (u, v) of
the projected K 2D keypoints along with the confidence val-
ues. Inspired by [58], in which the 2D bounding box locations
are regarded as distributions, we formulated the 2D keypoint
locations as several probabilistic distributions. The output
channel size of the regression branch Dreg is 3K, which
is composed of 2K channels for the 2D coordinates (u, v)
and K channels for the confidence values of K projected 2D
keypoints.

In the following paragraphs, we provide a step-by-step
overview of how the the loss functions for the regression
branch are derived. We represent the ground-truth distribution
of a keypoint location gj as a Dirac delta function:

PD(x) = δ(x− gj), (3)

For an estimated keypoint location ej , we formulate it as a
Gaussian distribution PΘ(x) with standard deviation σj :

PΘ(x) =
1√

2πσj2
e
−

(x−ej)
2

2σj
2
, (4)

where Θ is a set of learnable parameters.
The goal is to determine the Θ̂ value that maximizes

the similarity between the PΘ(x) and PD(x) values. We
adopt Kullback–Leibler (KL) divergence as the basis of the
loss functions of the regression branch. The concept can be
formulated as follows:

Θ̂ = argmin
Θ

DKL(PD(x)||PΘ(x)). (5)

The KL-Divergence loss can be expanded as follows:

DKL(PD(x)||PΘ(x))

=

∫
PD(x) logPD(x)dx−

∫
PD(x) logPΘ(x)dx

= H(PD(x))− logPΘ(gj)

= H(PD(x))− log(
1√

2πσj2
e
−

(gj−ej)
2

2σj
2

)

= H(PD(x))− log(
1√

2πσj2
) +

(gj − ej)2

2σj2

= H(PD(x)) +
(gj − ej)2

2σj2
+

log(2π)

2
+

log(σj
2)

2
,

(6)

where H(PD(x)) is shorthand for
∫
PD(x) logPD(x)dx. Be-

cause H(PD(x)) and log(2π)/2 do not depend on the value of
the parameter set Θ, the formulation is abstracted as follows:

DKL(PD(x)||PΘ(x)) ∝ (gj − ej)2

σj2
+ log(σj

2). (7)

Because σj
2 is a denominator, it may cause numerical

problems during training, such as division by zero. Therefore,
we instead make the regression branch predict the localization
confidence value cj = 1

σj2
. The KL divergence loss function

can then be rewritten as follows:

DKL(PD(x)||PΘ(x)) ∝ cj(gj − ej)2 − log(cj). (8)

We subsequently split the KL divergence loss function into
regression loss Lreg and confidence loss Lconf functions as
follows:

Lreg =

K∑
j=1

cj(gj − ej)2

Lconf =

K∑
j=1

− log(cj),

(9)

where ej , cj , and gj represent the estimated 2D location,
estimated confidence value and 2D ground-truth location of
the jth keypoint, respectively. The regression loss Lreg is a
confidence-weighted squared distance, and the confidence loss
Lconf is a negative log likelihood.

Instead of directly predicting the absolute 2D keypoint
coordinates, we predict the offsets from the center of each
foreground cell to the K 2D keypoint locations. Fig. 3b depicts
the ground-truth offsets assigned for a foreground cell (patch)
of a target object. In practice, for the regression loss Lreg ,
we replace the squared distance with the L1 distance because
the L1 distance is less sensitive to outliers. Similar to the
segmentation loss, the regression loss and confidence loss face
the problem of class imbalance. Therefore, we again apply the
median frequency weight to both losses. The class-balanced
version of the two losses is formulated as follows:

Lreg =

C∑
i=1

K∑
j=1

δihgtwicj‖gj − ej‖1

Lconf =

C∑
i=1

K∑
j=1

−δihgtwi log(cj),

(10)

where δihgt is the Kronecker delta function and wi is defined
in Eq. (1).

D. Total loss

The total loss Ltotal of the whole network is defined as
follows:

Ltotal = αLseg + βLreg + γLconf , (11)

where α, β, and γ are the weights to balance the influences
of the three losses. Lreg and Lconf in the regression branch
compete with each other. Lconf seeks high confidence values,
whereas Lreg seeks low confidence values to downweight the
L1 distance term. The inclusion of these competing terms
enables our network to regress the 2D keypoint locations
and assign confidence values concurrently. When the network
identifies a prediction that should have a higher confidence
value, the higher confidence weight causes the prediction
to contribute a greater portion of regression loss for quick
convergence, and vice versa. The performance of the network

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 6

in the inference stage is also facilitated because our method
selects only predictions with high locational confidence values
for fusion.

E. Inference module

Given an image, our network predicts the object class and
2D locations with the localization confidence values of the K
projected keypoints for each foreground cell in the H ×W
grid. We present a confidence-based voting strategy with a
PnP algorithm to fuse information from multiple patches and
estimate 6DOF poses.

Our inference module first clusters cells (patches) belonging
to the same class as representing one or multiple object
instances according to the centers of the 2D keypoint locations.
The cell with the highest mean confidence value of keypoints is
selected as the leader cell of the corresponding object instance.
A cell is inserted in the valid cell pool of the corresponding
object only when its center surrounds the center of the leader
cell and when it possess confidence values greater than or
equal to th.

Given the valid pool, the inference model takes the 2D key-
point locations with their confidence values from the filtered
cells and fuses them as follows:

efusedj =

∑N
k=1 cj,kej,k∑N
k=1 cj,k

, (12)

where efusedj is the fused 2D keypoint location of the jth
keypoint. cj,k and ej,k denote the confidence value and 2D
keypoint location, respectively, of the kth filtered prediction of
the jth keypoint. N is the candidate number that we select for
properly fusing the predictions, as discussed later in Section V.

The aggregated 2D keypoint locations and their correspond-
ing 3D keypoints then form the 2D-to-3D correspondences
for the input of the PnP algorithm to evaluate the 6 pose.
The confidence-based voting strategy is adopted to fuse the
predictions of each 2D keypoint location by weighting them
according to their confidence values. Because a more accurate
prediction corresponds to a higher confidence value and the
formulation conforms to spatially probabilistic distribution,
we can obtain a more precise estimation of 2D keypoint
locations through this strategy. Furthermore, this strategy is
more efficient than RANSAC-based methods because it does
not apply an iterative procedure to determination of the optimal
2D-to-3D correspondence set.

IV. IMPLEMENTATION DETAILS

Because we selected YOLOv3 [36] as the backbone net-
work, input images were first reshaped into a resolution of
608×608 pixels. The segmentation branch outputs a 76×76×
(C+1) tensor, where C is the number of object classes and one
channel is used for the background. The softmax function is
applied as the activation function of our segmentation branch.
The regression branch outputs a 76× 76× 3K tensor, where
K denotes the number of predefined 3D keypoints. The first
K channels are the predicted confidence values of the K 2D
keypoint locations, and the remaining 2K channels are the
2D coordinates of K projected 3D keypoints. We adopted a

sigmoid function as the activation function to normalize the
confidence values.

However, in the original definition cj = 1
σj2

, the range of
the confidence value cj is [0,∞], which differs from the output
range of the normalized values, which is [0, 1]. Therefore, we
designed a mapping function f for mapping the range of the
normalized confidence values to [0,∞]. f is defined as

f(x) = log(
1

1− x
), 0 ≤ x ≤ 1. (13)

Then, cj can be expressed as:

cj = f(cnorm), (14)

where cnorm is the normalized confidence value. cnorm is
an internal variable designed for the network output. It does
not influence the original loss functions in (10). We also
normalized the output 2D coordinates to the range [0, 10], as
in [12].

Our encoder was pretrained on the COCO data set [59], and
the two separate decoders were initialized with values sampled
from normal distributions. For the convolutional layers, which
are followed by a batch normalization layer, we set the mean
and standard deviation of the normal distribution to 0 and
0.01, respectively. For other convolutional layers, we applied
the same mean and standard deviation but set their bias to 0.
For the batch normalization layers, we selected 1 and 0.01 as
the mean and standard deviation of the normal distribution,
respectively, and set their bias to 0.

We trained our network for 300 epochs with the training
data sets described in SectionV. The initial learning rate was
set to 0.001, and it was divided by 10 after 50%, 75%, and
90% of the total number of epochs. We adopted the stochastic
gradient descent (SGD) as our optimizer, with a momentum of
0.9 and weight decay of 0.0005. With the batch size set to 18,
we trained our network on two 2080 Ti GPUs in parallel and
tested them on a 2080 Ti GPU. The frequency weights wi in
(1) were calculated for the training data set. In all experiments,
the hyperparameter τ in (2) was set to 2, and the weights α,
β, and γ used for the total loss function were 64, 8, and 1,
respectively.

V. EXPERIMENTS

A. Training data preparation

Most methods developed for 6DOF pose estimation of
partially occluded objects have been tested on the Occlusion
LINEMOD data set [14]. However, recently developed state-
of-the-art methods have adopted two approaches to collecting
training data. For a fair comparison, we prepared and applied
two training data sets according to these two different ap-
proaches.

Existing studies have mostly extracted training data from
the LINEMOD data set [24]. To synthesize the training data
from the LINEMOD data set, we applied the cut-and-paste
method proposed in [60]. We segmented the target objects in
the training set of the LINEMOD data set with the provided
ground-truth poses and masks and pasted them onto the
random background sampled from the SUN397 data set [61].

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 7

These objects were pasted at random locations, orientations,
and scales in an arbitrary order to increase the diversity of
the data set, including that of the occlusion situations. We
generated the training data set only from 8 out of the 13
objects in the LINEMOD data set because only these 8 objects
appeared in the Occlusion LINEMOD data set [14]. Finally,
we generated 20000 samples for training.

To prevent overfitting, we applied online data augmentation
techniques that included random cropping, resizing, rotation,
blurring, and color jittering during training. To simulate oc-
clusion situations and improve the robustness of our frame-
work, we further applied the random erasing method proposed
in [62]. For all object instances in the synthetic images, a
proportion of their 2D bounding boxes were filled with random
noise.

Unlike most of its counterparts, the original HybridPose [55]
paper took a fraction of the Occlusion LineMOD data set as
the training data set, whereas the conventional setting was
adopted for the updated version of this method. Therefore, in
comparisons with HybridPose, we listed both sets of results.

B. Evaluation metrics

We evaluated our predicted 6DOF poses with ADD(-S) [24],
[43]. Given an estimated pose and the corresponding ground-
truth pose, ADD projects the 3D model of the target object
onto the camera space for each of the two poses and computes
the mean distance between the two projected point sets.
For symmetrical objects, we applied ADD-S to calculate the
mean distance on the basis of the closest point distance. The
estimated pose was considered correct if the ADD(-S) distance
between the point sets was less than 10% of the diameter of
the model (0.1d).

C. Ablation studies

1) Derived KL-divergence loss: To analyze the ef-
fectiveness of our derived KL divergence loss, we re-
implemented segmentation-driven 6D object pose estimation
(SegDriven) [12] and fine-tuned this network with our training
data set for comparison. For our system, we replaced our
inference module with the RANSAC EPnP algorithm [5],
which is the inference strategy used in SegDriven. With this
configuration, the only difference between the two frameworks
is the loss function used. In SegDriven, the regression loss is
an L1 distance without confidence-based reweighting and the
confidence loss is in a supervised form, where the ground-
truth confidence value is determined on the basis of the current
regression loss.

For a fair comparison, we selected completely identical
training settings. Table I presents the results of an ADD(-
S) comparison between our method with the RANSAC EPnP
inference module and the re-implemented version of Seg-
Driven. In this analysis, our model outperformed SegDriven
by 1.43%. The reason for this result is that we regarded the
predicted 2D coordinates as distributions to formulate our
loss function. With the confidence-based reweighting in our
regression loss function, the predictions with higher confidence
values contributed a larger proportion of the loss. Because

TABLE I
COMPARISON BETWEEN THE RE-IMPLEMENTED VERSION OF

SEGDRIVEN [12] AND OUR METHOD WITH RANSAC-BASED INFERENCE
MODULE (R.-INF.) IN TERMS OF ADD(-S)-0.1D ON THE OCCLUSION

LINEMOD DATASET.(*: SYMMETRIC OBJECTS)

Re-imp. SegDriven Ours with R.-inf.
Ape 19.32 15.30
Can 65.53 65.87
Cat 17.10 19.46
Driller 65.40 66.56
Duck 28.08 30.27
Eggbox* 25.70 33.62
Glue* 44.30 40.75
Holepuncher 50.00 55.04
Average 39.43 40.86

TABLE II
COMPARISON BETWEEN RANSAC EPNP INFERENCE [5] (R.-INF.) AND

CONFIDENCE-BASED VOTING WITH PNP (C.-INF.) WITH OUR MODEL
OUTPUT. THE EXPERIMENT WAS PERFORMED ON THE OCCLUSION

LINEMOD DATA SET IN TERMS OF ADD(-S)-0.1D . (*: SYMMETRICAL
OBJECTS)

Ours with R.-inf. Ours with C.-inf. (Proposed)
Ape 15.30 14.36
Can 65.87 68.35
Cat 19.46 18.20
Driller 66.56 66.89
Duck 30.27 31.50
Eggbox* 33.62 34.38
Glue* 40.75 40.64
Holepuncher 55.04 55.54
Average 40.86 41.23

the confidence values are learned in an unsupervised fashion,
our training process can focus more on improving predictions
according to the effective (high-confidence-value) regions;
in other words, the predictions have more opportunities to
converge.

2) Inference strategies: After performing the aforemen-
tioned experiment, we compared the effect of including
RANSAC EPnP [5] and the proposed confidence-based voting
with PnP in the inference module. The results are presented in
Table II in terms of ADD(-S). Our network with the proposed
confidence-based voting inference module exhibited improved
performance. Although the accuracy for estimating the poses
of the majority of object classes was improved, we observed
that the accuracy was lower for small objects (Ape, Cat, Glue).
We believe that this result is attributable to the insufficient
number of predictions. These small objects occupy fewer cells
(image patches) than their larger counterparts. With fewer
predictions, incorrect predictions with imperfect confidence
values are more likely to affect the fused results. Moreover,
when occluded by other objects, small target objects typically
lose a greater proportion of image patches than do larger
objects. These factors increased the error rate of our estimated
confidence values. Although RANSAC EPnP does not involve
the use of confidence values for fusion, thus avoiding this
problem, it does not possess the advantages of fusion from
multiple predictions.

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 8

TABLE III
COMPARISONS OF DIFFERENT THRESHOLD VALUES USED IN THE CONFIDENCE-VOTING STRATEGY IN TERMS OF ADD(-S)-0.1D ON THE OCCLUSION
LINEMOD VALIDATION DATASET. WE USED 10% OF THE OCCLUSION LINEMOD DATA AS THE VALIDATION DATASET. (*: SYMMETRIC OBJECTS)

Threshold thnorm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ape 6.90 6.90 6.90 6.90 6.03 6.03 6.03 6.03 6.03
Can 69.42 70.25 69.42 70.25 70.25 70.25 69.42 71.07 69.42
Cat 17.24 17.24 17.24 17.24 17.24 17.24 16.38 15.52 14.66
Driller 59.50 60.33 61.98 61.16 61.16 61.16 61.98 61.16 61.98
Duck 29.57 29.57 29.57 29.57 29.57 30.43 29.57 29.57 29.57
Eggbox* 39.32 40.17 40.17 40.17 39.32 39.32 40.17 37.61 36.75
Glue* 38.89 38.89 40.00 37.78 37.78 37.78 37.78 36.67 34.44
Holepuncher 59.17 60.00 60.00 60.00 60.83 60.83 60.83 60.83 60.00
Average 40.00 40.42 40.66 40.38 40.27 40.38 40.27 39.81 39.11

TABLE IV
COMPARISONS OF THE RESULTS OF USING DIFFERENT CANDIDATE NUMBERS USED IN THE CONFIDENCE-VOTING STRATEGY IN TERMS OF

ADD(-S)-0.1D ON THE OCCLUSION LINEMOD VALIDATION DATASET. WE USED 10% OF THE OCCLUSION LINEMOD DATA AS THE VALIDATION
DATASET. (*: SYMMETRIC OBJECTS)

Candidate Number 1 5 7 9 11 14 16
Ape 10.34 6.90 7.76 8.62 7.76 7.76 6.90
Can 69.42 70.25 69.42 67.77 68.60 67.77 67.77
Cat 12.93 14.66 14.66 15.52 15.52 16.38 16.38
Driller 63.64 64.46 63.64 62.81 63.64 63.64 62.81
Duck 26.96 26.09 27.83 27.83 27.83 27.83 27.83
Eggbox* 43.59 42.74 43.59 43.59 42.74 42.74 42.74
Glue* 38.89 41.11 38.89 41.11 41.11 40.00 40.00
Holepuncher 60.83 60.00 60.00 60.00 60.00 60.00 60.00
Average 40.83 40.77 40.72 40.91 40.90 40.76 40.55

3) Confidence threshold: As mentioned in Section III, we
set a threshold th for the predicted confidence values to better
integrate the predicted 2D keypoint locations. Any prediction
with a confidence value lower than th is discarded before
entering the inference module. For simplicity, we directly
applied the threshold to the normalized confidence value cnorm
instead of using the formal confidence value cj , which has a
range of [0,∞]. Such a range renders the threshold difficult
to define. The results of using different thnorm values are
presented in Table III. These results indicate that discarding
predictions with low confidence values improves the accuracy
of 6D pose estimation. We selected 0.3 as the confidence
threshold for our framework.

4) Candidate number: To further optimize the integration
of the predicted 2D locations, we analyzed the influence of
the candidate number N used in the inference module. When
N is set to 1, only the valid prediction with the highest
confidence value is selected for inference. Table IV presents
the results of applying different candidate numbers in terms
of ADD(-S). The results indicate that fusing a limited number
of top predictions can further improve the accuracy of pose
estimation. Moreover, aggregating fewer predictions reduces
the inference time. We selected nine as the candidate number
for our framework.

5) Keypoint location selection: The methods developed
in [11], [12], [51] employ the eight corners of the model
bounding box (BBox) as the 3D predefined keypoints, whereas
those developed in [13], [55] employ keypoints extracted with
the farthest point sampling (FPS) algorithm, which repeatedly
includes a new surface keypoint that is farthest from the

Fig. 4. Predicted 2D keypoint locations by our models (multi-class) for Cat,
Driller and symmetric objects Eggbox, Glue. (The upper row) results with
the BBox keypoint set; (the lower row) results with the FPS keypoint set.

current keypoint set. To investigate the influence of keypoint
sets, we applied BBox keypoints and FPS keypoints in our
model. For each keypoint set, we trained a single model
for multiple object classes. As indicated in the upper part
of Table V, the overall accuracy was higher when BBox
keypoints were used than when FPS keypoints were used.
However, the two models exhibited similar performance for
Eggbox, and the model with FPS keypoints outperformed the
model with BBox keypoints for Duck and Glue.

To avoid interclass interference during training, we further
trained one model for each of these three classes with each
of the two keypoint sets. As indicated in the lower part of
Table V, the models with each of the keypoint sets exhibited

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 9

TABLE V
COMPARISONS OF APPLYING BOUNDING BOX (BBOX) KEYPOINTS AND

FARTHEST POINT SAMPLING (FPS) KEYPOINTS IN OUR MODEL WITH
CONFIDENCE-VOTING WITH PNP. THE EXPERIMENT WAS TESTED ON THE

OCCLUSION LINEMOD DATASET IN TERMS OF ADD(-S)-0.1D . (*:
SYMMETRIC OBJECTS)

Our model BBox keypoints FPS keypoints(multi-class)
Ape 14.36 11.71
Can 68.35 60.98
Cat 18.20 16.85
Driller 66.89 63.18
Duck 31.50 33.42
Eggbox* 34.38 33.36
Glue* 40.64 43.19
Holepuncher 55.54 48.93
Average 41.23 38.95

Our model BBox keypoints FPS keypoints(ind.-class)
Duck 35.70 35.96
Eggbox* 35.83 41.70
Glue* 41.09 46.95

similar performance to that of Duck, and the models with the
FPS keypoint set outperformed the models with the BBox
keypoint set for symmetrical objects Eggbox and Glue.

The examples presented in Fig. 4 may offer an explanation
for the experimental results listed in Table V. For common
(asymmetrical) objects, such as Cat and Driller in Fig. 4, the
BBox keypoint predicted locations were more concentrated
than the FPS keypoint predicted locations. Moreover, the spans
between BBox keypoints were greater and more orthogonal.
Such circumstances are beneficial for the application of the
PnP algorithm. However, for symmetrical objects, Eggbox and
Glue, the use of BBox keypoint sets sometimes resulted in
symmetrical ambiguity when objects were seriously occluded;
using FPS keypoint sets might alleviate such ambiguity during
training.

Therefore, our strategy to select keypoints is as follows:
• When a single prediction model is applied to multiple

classes, the object BBox should be adopted as the key-
points.

• When a prediction model is applied to an individual class,
BBox keypoints should be adopted for common objects
and FPS keypoints should be adopted for symmetrical
objects.

D. Comparison with modern approaches

We compared our approach with state-of-the-art methods
in which a single RGB image is used as the input, in-
cluding SingleStage(+SegDriven) [12], [56], Pix2Pose [53],
SingleStage(+PVNet) [13], [56], and HybridPose [55]. Seg-
Driven [12] and PVNet [13] perform pose estimation by inte-
grating predictions from valid patches and the pixels of each
visible target object, respectively. SingleStage [56] employs a
small network for the evaluation of 6D poses according to the
2D-to-3D correspondences obtained from the aforementioned
two methods. Pix2Pose [53] estimates the 3D coordinates and
expected errors of valid pixels for input into an RANSAC PnP

algorithm. HybridPose [55] predicts keypoints, edge vectors,
and symmetrical correspondences for pose estimation.

Table VI summarizes the results of comparing the proposed
method with the methods developed in [53], [55], [56], tested
on the Occlusion LINEMOD data set. For each class, the
highest accuracy value is presented in bold and the second
highest accuracy value is underlined. When a single model was
trained for multiple classes, the proposed Ours(multi-class)
model outperformed Pix2Pose and SingleStage(+Segdriven) in
terms of the overall ADD(-S), but its accuracy was slightly
lower than that of SingleStage(+PVNet) and HybridPose. To
our knowledge, PVNet involves training an individual model
for every class. This configuration can help the training
process focus on the visible characteristics in each object class
and avoid interclass interference. Therefore, we also trained
the proposed framework with such a configuration, named
Ours(ind.-class). When preparing the models for individual
classes, we followed the keypoint selection strategy detailed
in the V-C5 subsection. BBox corners were used as the 3D
keypoints of common objects, and FPS keypoints were used
for symmetrical objects.

Regarding the individual classes in Table VI, the accuracy of
our model was lower than that of Pix2Pose [53] for the small
object Ape, SingleStage(+PVNet) [56] and HybridPose [55]
for the symmetrical objects Eggbox and Glue. We believe
that this result may be attributable to the grid structure of
our network output. The grid structure efficiently provides
sparse predictions, but the number of ambiguous cases may
be higher when the the visible regions are small. Nevertheless,
our method trained for multiple classes, Ours(multi-class), is
capable of estimating the 6D poses of multiple objects at
simultaneously, and the average accuracy of this model is
comparable to that of other models. Moreover, our model
trained for individual classes, Ours(ind.-class), achieved state-
of-the-art accuracy.

Table VII summarizes the results of comparing the compu-
tational performance of the proposed method with that of other
methods [12], [53], [55], [56] in terms of speed in frames per
second. Although the reported speeds of SingeStage(+PVNet)
and HybridPose are sufficient for real-time pose estimation,
as far as we know, they were measured under single-class
circumstances.

The proposed method can estimate object poses for multiple
classes simultaneously while retaining reasonable accuracy.
On a computer with an Intel i7-5930k CPU, Nvidia RTX 2080
Ti graphics card, and 32 GB of memory, our system requires
approximately 27 ms for forward propagation and 7 ms for
the inference module. This means that the proposed method is
suitable for modern multimedia applications. The performance
could be further improved through the use of more advanced
backbone networks, such as [37]. Fig. 5 illustrates the pose
prediction results obtained with our method.

VI. CONCLUSION

This paper presents a confidence-based distributional frame-
work that can efficiently estimate the 6DOF poses of multiple
objects from a single RGB image in real time or accurately es-
timate objects in individual classes. By regarding 2D keypoint

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 10

TABLE VI
COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART METHODS IN TERMS OF ADD(-S)-0.1D, TESTED ON THE OCCLUSION LINEMOD

DATASET. FOR OURS(IND.-CLASS), WE TRAINED AN INDIVIDUAL MODEL FOR EACH OF THE EIGHT OBJECTS. (*: SYMMETRIC OBJECTS)

Trained on LINEMOD Trained on Occlusion LINEMOD

SingleStage Pix2Pose SingleStage HybridPose Ours Ours HybridPose Ours(+SegDriven) (+PVNet) (update) (multi-class) (ind.-class)
[56] [53] [56] [55] [55]

Ape 14.80 22.00 19.20 20.9 14.36 18.03 53.30 70.09
Can 45.50 44.70 65.10 75.3 68.35 86.41 86.50 94.21
Cat 12.10 22.70 18.90 24.9 18.20 27.38 73.40 68.64
Driller 54.60 44.70 69.00 70.2 66.89 77.27 92.80 97.94
Duck 18.30 15.00 25.30 27.9 31.50 35.70 62.80 72.25
Eggbox* 30.20 25.20 52.00 52.4 34.38 41.70 95.30 92.74
Glue* 45.80 32.40 51.40 53.8 40.64 46.95 92.50 90.16
Holepuncher 37.40 49.50 45.60 54.2 55.54 58.26 76.70 90.95
Average 32.30 32.00 43.31 47.5 41.23 48.96 79.20 84.62

Fig. 5. Qualitative results of our method on the Occlusion LINEMOD dataset. White bounding boxes depict ground-truth poses and the bounding boxes in
other colors depict our predicted poses of different classes.

TABLE VII
COMPARISON OF THE PROPOSED METHOD WITH STATE-OF-THE-ART
METHODS IN TERMS OF FRAMES PER SECOND (FPS). THE OBJECTS

COLUMN INDICATES THAT THE REPORTED FPS IS FOR A MODEL TRAINED
FOR A SINGLE OBJECT OR FOR MULTIPLE OBJECTS (MULTIPLE CLASSES

CONCURRENTLY).

FPS Objects
SegDriven [12] 22 multiple
Pix2Pose [53] 8-10 single
SingleStage(+PVNet) [56] 45 single
HybridPose [55] 30 single
Ours 29 multiple

locations as probabilistic distributions, we formulated a novel
loss function that includes the regression loss and unsupervised
confidence loss. The competitive losses facilitate training
and improve the performance of our method. Furthermore,
our inference module can properly aggregate 2D coordinate
predictions based on the predicted confidence values. We
evaluated the performance of our method on the Occlusion
LINEMOD data set, and it achieved state-of-the-art accuracy.

The results demonstrate that our method is robust to partial
occlusion and suitable for modern multimedia applications.

ACKNOWLEDGMENT

The authors would like to thank Yu-Lun Wang and other
CAIG lab members for their assistance in experiments. This
work was partially supported by the Ministry of Science and
Technology, Taiwan under grant no. MOST 109-2221-E-009-
122-MY3.

REFERENCES

[1] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 3343–3352.

[2] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2637–2646.

[3] C. Wang, R. Martin-Martin, D. Xu, J. Lv, C. Lu, L. Fei-Fei, S. Savarese,
and Y. Zhu, “6-pack: Category-level 6d pose tracker with anchor-based
keypoints,” arXiv preprint arXiv:1910.10750, 2019.

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 11

[4] G. Zhou, Y. Yan, D. Wang, and Q. Chen, “A novel depth and color fea-
ture fusion framework for 6d object pose estimation,” IEEE Transactions
on Multimedia, vol. 23, pp. 1630–1639, 2020.

[5] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International Journal of Computer Vision,
vol. 81, no. 2, p. 155, 2009.

[6] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[7] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” European Conference on Computer Vision, vol. 3951, pp. 404–
417, 2006.

[8] K. Fu, Q. Zhao, and I. Y.-H. Gu, “Refinet: A deep segmentation assisted
refinement network for salient object detection,” IEEE Transactions on
Multimedia, vol. 21, no. 2, pp. 457–469, 2019.

[9] Y. Liu, L. Zhou, H. Zong, X. Gong, Q. Wu, L. Liang, and J. Wang,
“Regression-based three-dimensional pose estimation for texture-less
objects,” IEEE Transactions on Multimedia, vol. 21, no. 11, pp. 2776–
2789, 2019.

[10] O. H. Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann, and
C. Rother, “ipose: instance-aware 6d pose estimation of partly occluded
objects,” in Asian Conference on Computer Vision. Springer, 2018, pp.
477–492.

[11] M. Oberweger, M. Rad, and V. Lepetit, “Making deep heatmaps robust
to partial occlusions for 3d object pose estimation,” in European
Conference on Computer Vision, 2018, pp. 119–134.

[12] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6d
object pose estimation,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 3385–3394.

[13] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-
wise voting network for 6dof pose estimation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4561–4570.

[14] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object coordi-
nates,” in European Conference on Computer Vision. Springer, 2014,
pp. 536–551.

[15] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg,
“Pose tracking from natural features on mobile phones,” in IEEE/ACM
International Symposium on Mixed and Augmented Reality. IEEE
Computer Society, 2008, pp. 125–134.

[16] V. Lepetit, P. Fua et al., “Monocular model-based 3d tracking of rigid
objects: A survey,” Foundations and Trends R© in Computer Graphics
and Vision, vol. 1, no. 1, pp. 1–89, 2005.

[17] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3d object
modeling and recognition using local affine-invariant image descriptors
and multi-view spatial constraints,” International Journal of Computer
Vision, vol. 66, no. 3, pp. 231–259, 2006.

[18] M. Stark, M. Goesele, and B. Schiele, “Back to the future: Learning
shape models from 3d cad data,” in British Machine Vision Conference,
2010, pp. 1–11.

[19] J. Liebelt and C. Schmid, “Multi-view object class detection with a 3d
geometric model,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2010, pp. 1688–1695.

[20] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab, “Dominant
orientation templates for real-time detection of texture-less objects,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2010,
pp. 2257–2264.

[21] N. Payet and S. Todorovic, “From contours to 3d object detection and
pose estimation,” in International Conference on Computer Vision, 2011,
pp. 983–990.

[22] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit, “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes,” in International Conference on
Computer Vision. IEEE, 2011, pp. 858–865.

[23] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection of
textureless objects,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 5, pp. 876–888, 2012.

[24] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Asian Conference
on Computer Vision. Springer, 2012, pp. 548–562.

[25] L.-C. Wu, I.-C. Lin, and M.-H. Tsai, “Augmented reality instruction for
object assembly based on markerless tracking,” in ACM Symposium on
Interactive 3D Graphics and Games, Febuary 2016, pp. 95–102.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 580–587.

[27] R. Girshick, “Fast r-cnn,” in IEEE International Conference on Com-
puter Vision, 2015, pp. 1440–1448.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[31] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in IEEE
International Conference on Computer Vision, 2017, pp. 2961–2969.

[32] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 779–788.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European Conference on
Computer Vision. Springer, 2016, pp. 21–37.

[34] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
7263–7271.

[35] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
Deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659,
2017.

[36] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[37] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[38] L. Zhang, Y. Gao, Y. Xia, K. Lu, J. Shen, and R. Ji, “Representative
discovery of structure cues for weakly-supervised image segmentation,”
IEEE Transactions on Multimedia, vol. 16, no. 2, pp. 470–479, 2014.

[39] Y. Li, Y. Guo, J. Guo, Z. Ma, X. Kong, and Q. Liu, “Joint crf and
locality-consistent dictionary learning for semantic segmentation,” IEEE
Transactions on Multimedia, vol. 21, no. 4, pp. 875–886, 2019.

[40] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in IEEE International Conference on Computer
Vision, 2017, pp. 2980–2988.

[41] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” pp. 770–778, 2016.

[43] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
arXiv preprint arXiv:1711.00199, 2017.

[44] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp. 1510–1519.

[45] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views,”
in IEEE International Conference on Computer Vision, 2015, pp. 2686–
2694.

[46] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3d orientation learning for 6d object detection from rgb
images,” in European Conference on Computer Vision, 2018, pp. 699–
715.

[47] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again,”
in IEEE International Conference on Computer Vision, 2017, pp. 1521–
1529.

[48] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative
matching for 6d pose estimation,” in European Conference on Computer
Vision, 2018, pp. 683–698.

[49] F. Manhardt, W. Kehl, N. Navab, and F. Tombari, “Deep model-based 6d
pose refinement in rgb,” in European Conference on Computer Vision,
2018, pp. 800–815.

[50] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth,” in IEEE International Conference on Computer
Vision, 2017, pp. 3828–3836.

[51] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6d
object pose prediction,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 292–301.

IEEE TRANSACTIONS ON MULTIMEDIA (AUTHORS’ PREPRINT) 12

[52] S. Zakharov, I. Shugurov, and S. Ilic, “Dpod: 6d pose object detector and
refiner,” in IEEE Conference on Computer Vision, 2019, pp. 1941–1950.

[53] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation,” in IEEE Conference on
Computer Vision, 2019, pp. 7668–7677.

[54] Z. Li, G. Wang, and X. Ji, “Cdpn: Coordinates-based disentangled pose
network for real-time rgb-based 6-dof object pose estimation,” in IEEE
Conference on Computer Vision, 2019, pp. 7678–7687.

[55] C. Song, J. Song, and Q. Huang, “Hybridpose: 6d object pose estimation
under hybrid representations,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2020, pp. 431–440.

[56] Y. Hu, P. Fua, W. Wang, and M. Salzmann, “Single-stage 6d object
pose estimation,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2930–2939.

[57] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in IEEE
International Conference on Computer Vision, 2015, pp. 2650–2658.

[58] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding box
regression with uncertainty for accurate object detection,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2888–2897.

[59] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision. Springer, 2014,
pp. 740–755.

[60] D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly
easy synthesis for instance detection,” in IEEE International Conference
on Computer Vision, 2017, pp. 1301–1310.

[61] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2010,
pp. 3485–3492.

[62] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” arXiv preprint arXiv:1708.04896, 2017.

Wei-Lun Huang received B.S. and M.S. degrees
in computer science and multimedia engineering
from National Chiao Tung University in 2017 and
2019, respectively. His research interests include
multimedia content analysis, deep neural networks
and computer vision.

Chun-Yi Hung received B.S. and M.S. degrees in
computer science and multimedia engineering from
National Chiao Tung University in 2018 and 2020,
respectively. His research interests include computer
vision, machine learning, and object pose estimation.

I-Chen Lin received B.S. and Ph.D. degrees in
computer science from National Taiwan University,
in 1998 and 2003, respectively. In 2005, he joined
Dept. of Computer Science and Inst. of Multimedia
Engineering, National Chiao Tung University. He is
currently an associate professor in National Yang
Ming Chiao Tung University. His research interests
include computer graphics, computer vision, and
interactive multimedia systems. He is a member of
IEEE.

