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Abstract. Estimating poses of objects that interact with hands is a key
task for tangible user interface. It is highly challenging due to its inher-
ence of self- and mutual occlusion. Previous approaches often predict
2D object keypoints from features to establish 2D-3D correspondence
during object pose estimation. However, the features for the object and
hand are usually intermixed and lead to unreliable output keypoints and
inaccurate object pose estimation. To address this issue, we propose a
novel Boundary-guided Network (BG-Net). This network takes two co-
operative branches for the object and hand. It can e�ectively capture
the object region and utilizes the region as guidance to narrow down the
area for keypoint searching. Additionally, we introduce an e�cient and
e�ective loss function, min-max boundary distance (MMBD) loss, which
restricts the range of estimated keypoint locations. This further bene-
�ts the 2D-3D mapping. Experiments demonstrate that the proposed
model outperforms related state of the arts for object pose estimation in
multiple interactive hand-object benchmarks.

Keywords: Object 6D pose estimation · Hand posture · Region-aware
framework.

1 Introduction

The interplay between hands and objects is one of the most frequent actions con-
ducted by human beings, wherein the interactions are a�ected not only by the
hand postures but also by those of target objects. Hence, estimating hand-object
poses can help understanding human actions. For the emerging tangible inter-
face and augmented reality, accurately estimating poses of objects that interact
with hands is the key issue since such systems generate visual feedback accord-
ing to estimated 6D object poses (three dimensional rotations and translations,
respectively) [19, 21, 8].

To estimate 6D object posture from a single image, several approaches adopt
fusing features from a RGB-D image [2, 3]. Since it is easier to access RGB
images, recent work pays attention on object pose estimation from a RGB image,
and the 3D models of target objects are usually available. One strategy [20, 14]
is to directly regress object poses, for instance, to learn a prediction model that
can map an input image to the corresponding 6D poses. Although such methods
are quite e�ective, they do not fully leverage the projective geometry of known
3D object models.



2 S.-Y. Fu and I.-C. Lin

Fig. 1. Object and hand poses estimated by the proposed method from monocular
RGB images, respectively.

Another stragety [10, 17, 9, 15, 18] makes use of keypoints of objects. During
the inference time, these methods predict the object keypoint locations within
the input image. After the 2D keypoint locations are associated with 3D ones, a
Perspective-n-Point (PnP) algorithm can be employed to estimate the 6D object
pose from these 2D-to-3D correspondences. While recent keypoint-based meth-
ods moderately tolerate partial occlusion, their performance usually becomes
unstable when the target object is grabbed. When a user holds an object with
her (or his) hand, features in the occluded regions often deviate signi�cantly from
the object characteristics. Under such circumstances, it is challenging to deter-
mine the object boundary and geometric shape, and thereby the accuracy of the
output poses degrades. Several recent methods [13, 12] notice the challenge of
estimating hand-interacting object poses and take hand-object correlations into
account. We found that there is competition between hand and object features
when they utilize a single backbone to extract features and keep them in the
same space.

To address the aforementioned issues, we propose a novel Boundary-Guided
Network (BG-Net) to estimate 6D poses of an object that is interacting with a
human hand. BG-Net capitalizes on features of the object and hand and learns
their correlations. Our network is designed to comprise two branches: one fo-
cusing on the object and the other dedicated to the hand. This dual-stream
design can avoid feature competition and extract distinctive object and hand
features. To mitigate the uncertainties in prediction, we predict the object mask
as guidance and enable the network to regress object keypoints from promising
regions.
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Fig. 2. Overview of the proposed BG-Net.

By adopting attention mechanism [16] with the guided object region, our
model learns the correlation of interactions between each pixel of the hand and
object with less ambiguity. Even when object areas are partially occluded by
the hand during interaction, our framework can still gain additional cues from
joint features. Consequently, the posture of the hand can assist in inferring the
distribution of object keypoints during occlusion.

Furthermore, given the potential interference from the image background, we
observed that when the object features lack clarity, object keypoints tended to
gather within the interior of the object and make the following PnP algorithm
di�cult to estimate adequate poses. Thus, we introduce a novel loss function,
min-max boundary distance (MMBD) loss. This loss function compels the out-
most 2D keypoints to align with the object bounding box, and therefore enhances
the reliability of 2D keypoints, even in scenarios where the object is seriously
occluded. To verify the e�ectiveness of our proposed method, we conducted mul-
tiple experiments on two popular hand-object interaction datasets: HO3D [4]
and Dex-YCB [1]. Experiments demonstrate that our proposed framework reach
state-of-the-art performance for pose estimation of hand-interacting objects.

In summary, our contributions include:

� A new framework BG-Net for hand-interacting object pose estimation is pro-
posed. It utilizes object amodal masks as guidance and directs the network
attention toward crucial regions. This approach enables better delineation of
the geometric shape of the object and leads to precise keypoint prediction.

� Our proposed MMBD loss, aligning the outermost keypoint 2D coordinates
to the projected object keypoint bounding box, can e�ectively reduce the
prediction errors caused by occlusions and enhance the accuracy of poses.
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Fig. 3. Visualization of the feature maps Fo, the object feature maps from our back-
bone, and Rdo, the intermediate feature maps within the object decoder. Rdo is the last
feature map before the 2D object keypoint regression. With amodal mask prediction
(right columns), our network improves its capability of extracting the boundary of the
object.

2 Methodology

As illustrated in Fig. 2, our BG-Net consists of two branches to predict hand
and object pose respectively. Each branch utilizes its own backbone to extract
features, and the object branch includes an additional mask predictor to learn
the object contour. Subsequently, the cross enhancement module leverages hand
information to provide more cues for occluded object regions. Afterward, the
object 2D keypoints K2D is estimated by 2D keypoint predictor, in which the
proposed MMBD loss and other loss functions bene�t the 2D keypoint alignment
during training. In parallel, the 2D joint locations J2D are estimated by the joint
regressor. Finally, the hand and object decoders output the 3D hand mesh V h

and the 6D object pose P o according to 2D joints and keypoints, respectively.
The following sections explain each component and the loss functions we used.
To ease the explanation, we use F to denote feature maps that contain the
same region as the input image, and the superscript h and o represents hand
and object, respectively. R denotes feature maps that are cropped and resized
after RoIAlign [6]. The �rst and second superscripts of R denote the source and
cropped region, respectively. For example, Rho denotes the feature map cropped
from hand feature map Fh and its cropped region is aligned with the predicted
object region.
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2.1 Backbone and Mask Predictor

As mentioned in the introduction, previous methods [13, 12] used a single-stream
backbone to extract both hand and object features. We found that they might
compete with each other during feature learning, and it lessens the distinction of
these features. As a result, given an RGB image I ∈ R256×256×3, we employ two
separate ResNet-50 models [7] to extract hand and object features. Two distinct
Feature Pyramid Networks (FPN) [11] are utilized to fuse the output features
from multiple levels within each branch individually. The extracted features for
hand and object are denoted as Fh ∈ R64×64×256 and Fo ∈ R64×64×256. With our
dual-branch design, when the hand and object are partially occluded by each
other, the respective network can still correctly acquire information from the
regions relevant to their estimation target.

As shown in the middle of Fig. 2, after FPN, we obtain Rhh ∈ R32×32×256

from Fh by RoIAlign according to the hand bounding box. We apply a similar
operation to obtain Roo and Rho from Fo and Fh according to the object bound-
ing box. Rho, hand-to-object feature, is used as auxiliary information for object
pose estimation in our cross enhancement module in Section 2.2.

Although we have obtained a rough region of the object by the object bound-
ing box, there is still a portion of area, between the object and the boundary
of the given bounding box, belongs to the background. This background area
can still disturb the pose prediction. Hence, we introduce a mask predictor that
not only outputs the visible part of the object but also predicts occluded areas
caused by interactions between hand and object.

Speci�cally, we utilize Roo as input for the mask predictor, which includes four
convolutional layers and a sigmoid function to output the object amodal mask
Mo. This mask serves a dual purpose: it aids the backbone in focusing on the
object and guides subsequent modules to prioritize the object. In other words,
such additional prediction compels the feature extractor to acquire adequate
features that bene�t the visible and occluded area estimation, and that helps
our system predict more accurate keypoints around the object boundary. We
illustrate how the amodal mask a�ects the learned features of the object branch
in Fig. 3.

2.2 Cross Enhancement

The interaction between hands and objects is highly correlated, allowing vis-
ible parts within the image to contribute information to analysis of occluded
regions. Previous research [13, 12], has yielded promising results by applying at-
tention mechanisms to enhance object features. However, they employed features
extracted from the object bounding box(blue box in Fig. 5.a) as query and in-
tersecting areas between the hand and object(green box in Fig. 5.a) as key and
value for the attention module.

Such a design has two limitations. Firstly, when hands and objects do not
overlap, this module fails to produce meaningful learning outcomes. Secondly,
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Fig. 4. The structure of our cross enhancement module. This module utilizes the object
features Roo (query) to identify its correlation with hand features over the object region
Rho (key and value) and outputs the enhanced features Reo accordingly.

due to the permutation-invariance property of Transformer [16], typical ap-
proaches often incorporate positional embeddings to retain spatial information.
Nonetheless, the aforementioned methods [13, 12] treated the overlapped regions
as key and value(Fig. 5.f), which mostly do not align with the query(Fig. 5.d)
size generated by the object bounding box. Such spatial misalignment hindered
the use of positional embeddings.

In our paper, according to an identical object bounding box, we extract
and align features regarding objects, Rho(Fig. 5.e) and Roo(Fig. 5.d) from hand
Fh(Fig. 5.b) and object Fo(Fig. 5.c) features, respectively. This enables our mod-
ule to persistently serve as a self-attention module even when there are no in-
teractions between hands and objects. Additionally, our query, key, and value
are situated in the same spatial domain by this strategy, and it allows us to
add positional embeddings and ensures that the process of computing attention
scores maintains spatial relationships. The illustration of cross enhancement is
shown in Fig. 4.

Speci�cally, we add learnable positional embeddings to Rho and Roo and
employ three separate 1×1 convolutions to derive query q, key k, and value
v from Roo and Rho. They are then fed into a multi-head attention module
following a feed-forward network, and �nally we can output the enhanced object
features Reo ∈ R32×32×256.

2.3 Min-Max Boundary Distance Loss

Based on the cross-enhanced features, our object decoder then predicts projected
2D keypoints of an object. Afterward, the 6D object pose can be estimated from
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Fig. 5. Illustration of features. (a) Bounding boxes for the hand, hand-object overlap
and object are in red, green, and blue , respectively. (b) and (c) Feature maps for hand
and object branches after FPN. (d) Features from Fo after RoIAlign according to the
blue box in (a). (e) and (f) Features from Fh after RoIAlign according to the blue and
green boxes in (a).

2D keypoints by a PnP algorithm. Fig. 6 show the de�ned keypoints on the 3D
bounding box of an object (object keypoint amount, No = 21 in our case).

During early trials, we observed that the estimated locations of prominent,
especially outermost, keypoints tend to shrink toward the object center, as shown
in Fig. 7(c). Even with L2 keypoint distance loss, the model took an conservative
way to �t in with various cases, including occlusion. Based on these gathered
keypoints, the following PnP method then predicts a farther 3D location for the
object. If we directly take object depth as a depth loss, we have to incorporate
PnP computation into the network and lose the �exiblity of our framework.

Hence, we propose a Min-Max Boundary Distance (MMBD) loss based on
projected keypoints to e�ectively correct the shrunk keypoint problem. This
novel loss compares the bounding boxes of projected keypoints. The objective of
this loss function is to encourage the outermost predicted 2D keypoints to align
with the ground-truth bounding box of projected keypoints. The MMBD loss
LMMBD is formulated as:

LMMBD =
∑
s∈S

(min
k∈K

∥kx − sx∥1 +min
k∈K

∥ky − sy∥1), (1)

where S includes the coordinate of the top-left corner and bottom-right corner
of the 2D object bounding box, K indicated the No keypoints. The subscript x
and y denote the x coordinate and y coordinate respectively. The loss sums the
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Fig. 6. Visualization of keypoints of an object, including eight corners, twelve midpoint
on edges, and one central point of the 3D object bounding box.

distances between the four edges of the ground-truth bounding box projection
and their closest predicted 2D keypoints.

As shown in Fig. 7, in the images without using MMBD loss, the outermost
keypoints are not aligned with the bounding box and the error of estimated
depth is large. By contrast, with the MMBD loss, it can be observed that the
outermost keypoints are pulled toward the bounding box. This, in turn, enhances
our object pose estimation and reduces the error of the output object depth.

2.4 Decoder and Overall Loss functions

Our hand and object decoder share the same architecture as previous works [13,
12], except that we employ three residual blocks instead of six convolutional
blocks in the object decoder to better retain features learned from preceding
boundary-guided processes and preserve the contours of the object as shown in
Fig. 3.

Besides the MMBD loss mentioned above, multiple loss functions are applied
in our framework during training. We apply the binary cross entropy loss LBCE

for our object mask Mo:

Lmask = LBCE(M
o, M̂o), (2)

where M̂o is the corresponding ground-truth amodal mask. We brie�y describe
the remaining loss used for hand and object supervision since they are the same
as [13, 12]. The overall hand and object loss are as below:

Lhand =αmanoLmano + αJ2DLJ2D+

αJ3DLJ3D + αV hLV h ,
(3)

Lobj =αMMBDLMMBD + αp2dLp2d+

αconfLconf + αmaskLmask,
(4)

where Lmano denotes the L2 loss for MANO parameters θ and β. LJ2D is the
L2 loss for 2D joint predictions. LJ3D and LV h are the L2 loss for 3D joints and
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Fig. 7. Visualization of the e�ect of MMBD loss. (a)(c) are outputs without MMBD;
(b)(d) are the corresponding outputs with MMBD loss. Red dots and green circles
indicate the predicted object keypoints and the outermost ones. Our MMBD loss sig-
ni�cantly assists in aligning the outermost keypoints along the boundaries.

3D hand mesh. Lp2d and Lconf are the L1 loss for 2D object keypoints and their
con�dence scores.

αmano, αJ2D , αJ3D , αV h , αMMBD, αp2d, αconf and αmask are hyper-parameters
for balancing each loss. (In our case, two terms of weights for MANO pose and
shape are 10 and 10−1. The others are 102, 104, 104, 20, 500, 102, 102, respec-
tively.) Finally, our total loss function is de�ned as :

Ltotal = Lhand + Lobj . (5)

3 Experiments

3.1 Datasets and Evaluation Metrics

We adopted two popularly used hand-object datasets, HO3D [4] and DexYCB [1]
for our experiments. HO3D consists of 66,000 training images and 11,000 testing
images, covering 10 di�erent objects. DexYCB is a more challenging dataset, en-
compassing 582,000 images and featuring interactions with 21 distinct objects.
This dataset presents a greater diversity of interactions between hands and ob-
jects. We employed the o�cial s0 split to partition the dataset into training and
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Fig. 8. Qualitative comparison of the proposed BG-Net and state-of-the-art hand-
object pose estimation methods [13, 12] on HO3D [4] dataset.

testing sets. We followed the evaluation metrics applied in HFL-Net [12] for fair
comparisons. For our primary task, 6D object pose estimation, we apply the pop-
ular ADD-0.1D. It evaluates the percentage of object 3D vertices error within
10% of the object diameter of the dataset. For the hand pose estimation, besides
evaluating the average joint error, joint error with procrustes alignment (PA) is
another popular metric. It �rst aligns the centroids, scales and orientations of
two shapes and evaluates the di�erences.

3.2 Implementation Details

We cropped and resized the input images from the dataset to 256×256 pixels,
centered around the midpoint of the hand and object. During training on the
HO3D dataset, we employed the Adam optimizer with an initial learning rate of
1e-4 and a weight decay rate of 0.7 every 10 epochs. We set the batch size as 32
and trained the model with 60 epochs on a single NVIDIA RTX4090 GPU. To
augment the data, we utilized techniques such as color jittering, random rotation,
translation, and scaling. Please refer to the supplementary document for other
details. The codes will be available from the project page of the authors.
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ADD-0.1D↑
Methods cleanser bottle can avg

Liu et al. [13] 88.1 61.9 53.0 67.7
HFL-Net [12] 81.4 87.5 52.2 73.3

Ours 94.7 80.2 65.8 80.2

Table 1. Comparison with state-of-the-art methods on object pose estimation on
HO3D [4] dataset. "avg" denotes the average among all object categories. Our method
achieves the best performance on average.

Error(PA)↓ F-score↑
Methods Joint Mesh F@5 F@15

Liu et al. [13] 10.1 9.7 53.2 95.2
ArtiBoost [22] 11.4 10.9 48.8 94.4

Keypoint Trans. [5] 10.8 - - -
HFL-Net [12] 8.9 8.7 57.5 96.5

Ours 9.7 9.7 53.1 95.3
Table 2. Comparison with state-of-the-art methods on hand pose estimation on
HO3D [4] dataset. Even though our goal is object pose estimation, our estimated hand
poses are comparable to those of related methods.

3.3 Comparisons with State-of-the-art Methods

HO3D Our work emphasizes 6D object pose estimation in an interactive sce-
nario, and the comparison with state of the arts is shown in Table 1. Our results
achieved 80.2% accuracy on ADD-0.1D, surpassing the second-best method by
6.9%. It demonstrates the e�ectiveness of object pose estimation through our
boundary-guided network. Qualitative comparisons are shown in Figure 8. Even
in cases where a large portion of hands or objects are occluded, or when ob-
ject features are ambiguous, our model generates a more precise object pose
compared to that of [13, 12].

Even though the proposed work focuses on hand-interacting object pose esti-
mation, our BG-Net can still estimate accurate hand poses comparable to recent
methods as shown in Table 2. Although our approach did not achieve the best
performance on hand posture, our method still outperforms Liu et al. [13], which
has a similar hand pose estimation structure to ours.

Methods ADD-0.1D(s)↑ Joint↓ Joint(PA)↓
Liu et al. [13] 29.8 15.27 6.58
HFL-Net [12] 30.2 12.56 5.47

Ours 46.2 12.7 5.53

Table 3. Comparison with state-of-the-art methods on Dex-YCB [1] dataset. Our
method achieves competitive results with the best approach [12] on hand pose estima-
tion and outperforms the others on object pose estimation by a large margin.
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Fig. 9. Qualitative comparison of the proposed BG-Net and state-of-the-art hand-
object pose estimation methods [13, 12] on DexYCB [1] dataset.

Dex-YCB Table 3 summarize results of object and hand pose estimation on
Dex-YCB dataset. The errors of joint estimation by our method with and with-
out Procrustes Alignment are 12.7mm and 5.53mm, respectively. They are on
a par with state-of-the-art approaches. For object pose estimation, our results
reach 46.2% on ADD-0.1D(s), substantially outperforming HFL-Net [12] by 16%.
We attribute this advance to our double-stream architecture and amodal mask
in tackling the challenges of learning from such a diverse object dataset, where
twenty one objects are included. Our approach allows the object backbone to
concentrate solely on extracting object-speci�c features, while the mask aids in
learning object boundaries, and our MMBD loss helps correct improperly esti-
mated depth of an object. Qualitative comparisons are shown in Fig. 9.

Our framework has shown its advantage of estimating hand-interacting object
poses and it employs 59,073,760 trainable parameters, while there are 46,080,659
and 34,480,019 trainable parameters in HFL-Net [12] and Liu et al. [13], respec-
tively.

3.4 Ablation Study

To verify the e�ectiveness of our proposed methods, we conducted ablation study
on the HO3D [4] dataset.
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ADD-0.1D↑
Methods cleanser bottle can avg

w/o mask 93.3 80.7 59.7 77.6
w/o cross enhance. 93.6 77.0 57.9 76.3
w/o residual blocks 93.2 73.3 60.4 75.7
w/o MMBD loss 92.6 72.9 60.2 75.2

Ours 94.7 80.2 65.8 80.2

Table 4. Ablation study on the major components and MMBD loss.

E�ectiveness of the Major Components and MMBD Loss As our de-
signed approach mainly focuses on enhancing object pose estimation, we report
the ADD-0.1D in Table 4. In the �rst experiment, we removed the mask pre-
dictor. The result indicates that the absence of the mask decreases the accuracy
in pose estimation. The visualization in Fig. 3 shows that prediction with the
amodal mask accentuates the object boundaries in feature maps. In the second
experiment, we removed the cross enhancement module, and no additional in-
formation from hand features is provided. It results in a 2.6% performance drop.
It manifests that the hand poses can provide useful features for hand-interacting
object pose estimation.

For the third experiment, we replaced the three residual blocks in the object
decoder with six convolutional layers, similar to [13, 12]. The result reveals that
residual blocks play a signi�cant role in preserving previously learned features.
They prevent losing the cues provided by the contours of the object mask and
clues from hand features. The fourth experiment and Fig. 7 validate the proposed
MMBD loss. They show that without MMBD loss, the performance substantially
degrades. These experiments demonstrate that the employed components and
MMBD loss indeed bene�t the pose estimation performance for objects that are
partially occluded by a hand.

E�ectiveness of Double-Stream Backbone Wile related methods [13, 12]
took a single-stream backbone, we adapted a double-stream backbone. To verify
the e�ectiveness of our double-stream backbone, we replaced the architecture
of our model with a shared ResNet-50 with FPN for both hand branch and
object branch while keeping other components unchanged. Table 5 shows that
applying our double-stream backbone, combined with the proposed modules and
loss functions, provides a 7.8% improvement in object pose estimation compared
to a framework adopting the single-stream backbone.

Additionally, there is a 0.3mm enhancement in average hand joint and mesh
errors. This outcome demonstrates that using two separate backbones to learn
hand and object features enables an easier learning process for respective targets
without interference. The mask predictor also better guides the object backbone
in learning object boundaries.
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Methods ADD-0.1D↑ Joint↓ Mesh↓
Single-stream 72.4 10.0 10.0

Ours 80.2 9.7 9.7

Table 5. Ablation study on single-stream and double-stream architectures.

ADD-0.1D↑
Methods cleanser bottle can avg

intersect. 93.8 74.3 56.5 74.9
intersect. + pos. 93.3 71.0 62.3 75.5
object bbox. 91.8 75.2 62.3 76.4

Ours 94.7 80.2 65.8 80.2

Table 6. Ablation study on di�erent settings for Rho in cross enhancement. "Intersect."
and "object bbox." denote that we use the hand-object overlapped region(green box in
Figure 5.a) or the object bounding box(blue box in Figure 5.a) to produce Rho. "Pos."
indicates that positional embeddings are appended.

Di�erent Settings for Rho in Cross Enhancement Table 6 compares the
results of using di�erent bounding boxes to produce Rho(Fig. 5.e & Fig. 5.f) in
cross enhancement, along with the incorporation of positional embeddings. In
the �rst and second settings, Rho is extracted from the overlapping region of the
hand and the object(green box in Fig. 5.a), while the second setting additionally
integrates positional embeddings. It can be observed that the incorporation of
positional embeddings in such settings merely gains 0.6% improvement on ADD-
0.1D. It is worth noting that the performance of the �rst and second settings
is not as good as when we do not employ cross enhancement in our model (the
second row in Table 4). This suggests that when there is a spatial inconsistency
among the key, value, and query in transformer, attention mechanism does not
successfully bene�t the model.

By contrast, in the third and fourth settings, Rho is extracted based on the
object bounding box(blue box in Fig. 5.a). Compared to the third setting, the
fourth setting includes positional embeddings and exhibits a 3.8% enhancement
on ADD-0.1D. This underscores the signi�cance of positional embeddings for
preserving spatial information, when the key, value, and query share identical
space on feature maps.

4 Conclusion

This paper presents the Boundary-Guided Network (BG-Net) for 6D post es-
timation of objects interacting with a hand. This framework adapts a double-
stream framework to enhance the object and hand feature distinction respec-
tively. In this framework, we estimate and utilize the object amodal mask to
guide the object branch in learning object-speci�c features and identifying object
boundaries for accurate prediction of 2D object keypoints. Moreover, we propose
a novel min-max boundary distance (MMBD) loss. It tackles the gathering is-
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sue of predicted keypoints and therefore reduces the depth error of the output
object pose. Experiments demonstrate that our method surpasses state-of-the-
art methods on hand-interacting object pose estimation, and it also achieves
comparable performance in hand pose estimation.
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