
To realistically mimic facial animation, a
synthetic face’s behaviors must precisely

conform to those of a real one. However, facial surface
points, being nonlinear and without rigid body prop-

erties, have quite complex action
relations. During speaking and pro-
nunciation, facial motion trajecto-
ries between articulations, called
coarticulation effects, also prove
nonlinear and depend on preceding
and succeeding articulations.

Performance-driven facial ani-
mation provides a direct and con-
vincing approach to handling
delicate human facial variations.
This method animates a synthetic
face using motion data captured
from a performer. In modern com-
puter graphics-based movies such as
Final Fantasy, Shrek, and Toy Story,
character motion designers used
optical or magnetic motion trackers
to capture markers’ 3D motion tra-
jectories on a performer’s face. They
can track only a limited number of
markers without interference, how-

ever, and the dozen or so markers they can place on
facial feature points only sparsely cover the whole face
area. Therefore, to derive a vivid facial animation, ani-
mators must adjust for the uncovered areas. Other
approaches, discussed in the “Related Work” sidebar,
also present limitations in analyzing and synthesizing
facial motion.

To tackle this problem, we propose an accurate and
inexpensive procedure that estimates 3D facial motion
parameters from mirror-reflected multiview video clips.
We place two planar mirrors near a subject’s cheeks and
use a single camera to simultaneously capture markers’
front and side view images. We also propose a novel

closed-form linear algorithm to reconstruct 3D posi-
tions from real versus mirrored point correspondences
in an uncalibrated environment. Figure 1 shows such a
reconstruction.
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1 The 3D facial
motion trajecto-
ries estimated
with the pro-
posed algo-
rithm for
realistic facial
animation. The
red points in
the right col-
umn represent
the estimated
markers’ 3D
positions, and
the left side
depicts synthe-
sized facial
animation of
the pronuncia-
tion of “o-u.”



Our computer simulations reveal that exploiting mir-
rors’ various reflective properties yields a more robust,
more accurate, and simpler 3D position estimation
approach than general-purpose stereovision methods
that use a linear approach or maximum-likelihood opti-
mization. Our experiments showed a root mean square
(RMS) error of less than 2 mm in 3D space with only 20-
point correspondences. For semiautomatic 3D motion
tracking, we use an adaptive Kalman predictor and fil-
ter to improve stability and infer the occluded markers’
position. Our approach tracks more than 50 markers on
a subject’s face and lips from 30-frame-per-second video
clips. We’ve applied the facial motion parameters esti-
mated from the proposed method to our facial anima-
tion system.

3D motion tracking
Our face synthesis system separates a face into 11

regions. Assuming each region is a smoothly deformable
surface, we find 50 points on a face—10 for lip contours,
12 for lip surfaces, 10 for the mouth, 8 for cheeks, and
10 for the forehead—where the variations most closely
represent controlling surface deformation.

To use these 50 positions as feature points to drive 3D
facial animation, we adhere colorful dot markers to
them. The markers make tracking feature point move-
ment much easier and more accurate. We use thin
markers without protrusion to avoid interfering with
natural lip motion. Figure 2  (next page) shows a con-
ceptual diagram of our tracking equipment. We place
two planar mirrors next to a subject’s face and use only
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Related Work
Many methods proposed to approximate human facial

motion use physical dynamic systems or mathematical
formulations. Terzopoulos and Waters1 proposed a muscle-
based face model with three-layer tissues. Cohen and
Massaro suggested that the weights of transition between
visemes should be overlapping dominance functions with
bases of negative exponential functions.2 Even though
these hypotheses try to parameterize complicated facial
motion, they encounter critical problems. For example,
what are the parameters’ values? How much error will occur
when adopting certain parameter values? We can only
answer these questions by comparing simulations with
measured data from a real human face. However, existing
measurement devices such as the optoelectronical motion
trackers, though highly accurate, are also quite expensive
and pose limitations on marker number and placement.

In 3D facial motion tracking, an optoelectronic system
uses optoelectronic cameras to track infrared-emitting
photodiodes on a subject’s face. Such an instrument suffices
for research demanding high accuracy, such as facial
biomechanics analysis. However, wires must power each
diode, which may interfere with a subject’s facial motion.

Video-based systems that apply passive markers avoid this
problem. For example, the Vicon series
(http://www.vicon.com) uses six to 24 specially designed
cameras to capture high-reflectivity markers’ motion in a
specific spectrum. This costly motion capture system is
popular in the computer graphics industry for movies or
video games. The protruding spherical markers help with
shape analysis, but they don’t work well for lip surface
motion tracking because people sometimes tuck in or
otherwise obstruct lip surfaces.

Most stereovision-based motion-tracking approaches
derive from epipolar constraints. This approach first uses
corresponding points in images of different viewpoints to
estimate the essential matrix. It then decomposes the
rotation R and translation t between cameras from the
essential matrix. Finally, it estimates each point’s 3D
position by intersecting projected vectors from the cameras.
Huang and Netravali3 discussed 3D motion and structure
estimation from image sequences.

In addition to capturing stereo videos with multiple
cameras, Patterson et al.4 proposed using mirrors to acquire

multiple views for facial motion recording. They simplified
the 3D reconstruction problem and assumed a plumb
camera and vertical mirrors. Basu et al.5 used a mirrored
view to capture lip motion. They regarded the mirrored view
as a flipped image of a virtual camera and applied a general-
purpose stereovision approach to estimate 3D lip motion.
Our algorithm proves simpler yet more accurate because it
conveniently uses mirrored objects’ symmetrical properties.

Gluckman and Nayar also researched mirrors and
configurations for stereo sensors and developed an
epipolar-constraint-based calibration approach.6,7 Guenter
et al.8 and Pighin et al.9 demonstrate impressive results of
research on performance-driven 3D facial animation.
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one digital video (DV) camera to
capture perfectly synchronized
images—one frontal view and two
mirrored. We measured the cam-
era’s focal length and lens center in
advance, during camera calibration.

The mirrors can be placed arbi-
trarily as long as they include the left
and right mirrored face images. We
can later estimate their positions
and orientations by the proposed
algorithm.

We use a semiautomatic approach
to track the markers’ 3D motion tra-
jectories and apply an adaptive
Kalman filter to reduce measure-
ment errors. The filter measures 3D
position data and bases predictions
on 3D positions and velocities.

Figure 3 shows a flow diagram of
the markers’ 3D motion tracking.

The proposed solution
Once the method assigns or esti-

mates real and mirrored markers’
projected positions, we can calculate
markers’ 3D positions by first evalu-
ating the mirror’s orientation and
location relative to the camera and
then estimating markers’ 3D posi-
tions as a minimization problem.

In the first step, we assume flat
mirrors and use only the image data
within the mirrors’ range. We can
represent a mirror’s location and
orientation using a plane equation:

ax + by + cz = d (1)

u = (a, b, c)t, ||u|| = 1, where u is
the plane’s unit normal and vector
u has two possible directions. With-
out loss of generality, we take the
direction of c < 0. In the following
discussion, we assume that I is the
camera film’s image plane and f is
the focal length. We assume cam-
era lens center O to be the origin in
the coordinate system, and the
camera’s line of vision is the posi-
tive z axis.

In Figure 4, mi is the actual 3D
position of marker i, mi = (xmi, ymi,
zmi)t, and m′i is the virtual 3D posi-
tion of marker i in the mirrored
space,

Pi is the projection of mi on I,

  
′ = ′ ′ ′
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2 (a) A concept
diagram of the
left and right
mirrored heads.
(b) The image
captured by a
digital video
camera in 720 ×
480-pixel reso-
lution.
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p′i is the projection of m′i on I, 

(xpi, ypi) and (x′pi, y′pi) are the estimated 2D marker
positions.

Mirror properties dictate that

(2)

where k is a scale value. Vectors mi, m′i, u are coplanar,
and thus

(3)

“ ” is the dot product and × is the cross product.
From Equation 3, we reformulate in terms of pi, p′i,

(4)

and simplify it as

(5)

We can then represent Equation 5 in terms of u as

(6)

By collecting Equation 6 for each marker correspon-
dence, we can form a matrix M, Mu = 0, where

(7)

The mirror might not be perfectly flat, however, and
we should also allow for noise in marker shape and posi-
tion on image plane I. We therefore apply the least
square method to estimate the vector u with the least
error. It’s well known that the solution of

(8)

is the eigenvector corresponding to the smallest eigen-
value of the matrix MtM.

Another mirror property is symmetry:

(9)

where Θ is an arbitrary point on the mirror plane Mirror;
Hu = (I3×3 − 2uut) is the Householder matrix, and I3×3

is the identity matrix. We choose  Θ=(0,0, d/c)t and
deduce the equation

(10)

From Equation 10, we see that once we’ve determined
vector u, zmi and z′mi are proportional to variable d. We
can determine the value d by comparing the scaled data
with a reference ruler in the real world. 

These steps, then, first estimate unit vector u by Equa-
tion 8, then reconstruct the position of [xmi, ymi, zmi]t for
each marker and stationary point from the depth infor-
mation solved by the least square method in the form

(11)

based on singular value decomposition (SVD) or QR fac-
torization.4

Moreover, to reduce the influence of marker position
estimation errors in the front view image, we simply
mirror the virtual marker m′i back to the actual world,
set as m″i,

(12)
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and take m′″=(mi+m″i )/2 as the 3D position of marker i.
To more accurately estimate m′″, we can also apply

nonlinear maximum likelihood optimization that mini-
mizes the location variation on an image plane to
improve the estimated mirror normal u. However, a mir-
ror plane’s useful properties mean the vector u estimat-
ed by a linear algorithm is sufficiently accurate. In our
simulation, maximum likelihood optimization improved
less than 2 percent of the root mean square (RMS) 3D
position error under quite noisy circumstances.

The previous steps estimated markers’ 3D positions.
However, because test subjects may swing or nod their
heads when speaking and making facial expressions,
both facial and head motions cause 3D marker move-
ment. To capture precise facial motion, we must esti-
mate the head motion and remove it from 3D facial
expression data.

We fix four additional markers on the performer’s ears
and regard them as points on a rigid head. We then
apply a rigid-body motion estimation algorithm1 to
determine the head motion.

The sidebar “Mirror Configuration” describes the full
procedure for one mirror.

3D position estimation concepts
Intuitively, estimating 3D position from mirror-

reflected multiview images should prove more robust
than methods that estimate 3D position by calculating
rotation matrix R and translation vector t between two
cameras. Each of these values has three degrees of free-
dom. In our case, we evaluate the mirror plane normal
u and scale d, which has only four DOF. Fewer DOF
mean we can use much less information to reach accu-
racy of the same magnitude.

Also, when estimating R and t, we must first evalu-
ate the essential matrix, which has eight DOF, then esti-
mate an analogous rotation matrix W. However,
because W usually doesn’t have a rotation matrix’s prop-
erties, such as orthogonality, we must then further
adjust W to fit the properties. We can then evaluate the
vector t. Each step involves many numerical matrix com-
putations, and errors accumulate with each step. There-
fore, the two-view linear algorithm yields distorted R
and t estimations, necessitating successive nonlinear
optimizations such as maximum-likelihood evaluations.
Weng et al. discuss error analysis and 3D position esti-
mation and structure reconstruction from stereovision
approaches.2

Error estimation
To compare our approach’s accuracy and robustness

with general-purpose stereovision approaches, we con-
ducted computer simulation experiments using three
subject algorithms:

1. Our proposed linear algorithm reconstructs 3D posi-
tions via mirror-plane normal U evaluation.

2. A linear virtual camera approach estimates 3D posi-
tions by evaluating rotation R and translation t
between cameras.

3. A maximum-likelihood optimization improves the
linear virtual camera approach’s results.
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Mirror Configuration
Fully configuring one mirror entails the following steps.

1. Initialize parameters. A user must manually designate pi(1), the
projected position of actual marker i, and p′i (1), the projected
position of mirrored marker i, in the first video clip (t = 1), for i =
1 … N. N is the amount of markers the mirror covers. 

2. Estimate rough mirror positions and orientations relative to the
camera from physical-mirrored point correspondences assigned
in the first frame. Estimate mi(0), the actual 3D position of mark-
er i, for i = 1 … N.

3. Predict the 3D position at t + 1 as mi(t + 1|t) and generate mir-
rored position m′i (t+1|t)  for i = 1 … N. Update the time stamp, set
t = t + 1.

4. Project the actual and mirrored markers back to the camera’s
image plane I as pi(t|t − 1), p′i(t|t − 1). Within the searching area
centered by pi(t|t − 1), find the best r (for example, r = 6) 2D pro-
jected candidates pcij(t|t − 1) with minimum ColorCost, which is
L2-norm of  color differences  in block matching compared to
that of p(t − 1) and p(1). Repeat this process to find r candidates
pc′jk(t|t − 1) of the mirrored part.

5. For each j and k combination, generate 3D candidates mcijk(t|t −
1) from projected point correspondence of pcij(t|t − 1), pc′ik (t|t −
1) and calculate the cost function 

Costjk = αDistCostjk + β(ColorCostj + ColorCostk),
DistCostjk = f(|| mi(t|t − 1) − mcijk(t|t − 1) || )

where α and β are user-defined constant values and f is a user-
defined monotonically increasing function.

6. Find the best candidate with the minimum Costjk, and adjust the
measurement error variances according to ColorCostj + Color-
Costk. Set the best candidate to the measured 3D position and fil-
ter it as mi(t).

7. If t < Tlimit, return to step 3 or refer to the user manual for fine-
tuning.

8. Calculate Ufine, the mirror’s fine positions and orientations, from
user-tuned projected point correspondences. Reestimate accu-
rate 3D markers’ motion trajectories by Ufine and tuned project-
ed point correspondences.

The process for another mirror is similar. Adjusting measurement-
error variances in step 6 accords with image similarity. When a
marker image is occluded or interfered with by interlace effect or
intense specular-lighting noise, the cost function value will be
dramatically high, and the measurement error variances will be
large. This decreases the Kalman gain. In other words, the impact
weights of contaminated measurement data are diminished and the
effects of noise or occlusion can be alleviated. Details on Kalman
filter use and adaptation are available elsewhere.1,2
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We adapted methods 2 and 32 by flipping projected
mirrored-reflected images to form a virtual camera view.
Figures 5, 6, and 7 show the results of our simulations,
all performed using Mathwork’s MatLab numerical com-
putation software.

For testing, we used sets of randomly generated 3D
points within a 9,000 × 18,000 × 9,000 pixel cube and
40,000 pixels away from the lens center. For the second
and third tests, we applied 60 randomly generated 3D
points as a 3D object. The simulated camera has a 720

× 720 pixel charge-coupled device (CCD) array and a
1,500-pixel focal length. Assuming the object is 2 meters
away, one pixel length equals 0.05 mm.

For the first test, we applied normally distributed
noise with constant standard deviation to simulate the
sum of various noise types and then truncated the con-
taminated projection point data to fit pixel grids on a
simulated CCD array. The noise was random and had a
mean of zero. We can therefore better diminish the
effects of disturbance in an overdetermined system.
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5 Error estimation of three
approaches with different numbers
of point correspondences. The y
axis is the scale of RMS 3D position
error (in pixels). We applied Gauss-
ian distributed noise (mean = 0,
standard deviation = 1 pixel in both
x and y axes) to disturb the projec-
tion on the image plane before
digitizing the charge-coupled
device (CCD) array.

6 Error estimation of three
approaches under Gaussian distrib-
uted noise. We applied Gaussian
distributed noise (mean = 0) of
different standard deviations (in
both x and y axes) to disturb the
projection on the image plane
before digitizing the CCD array.

7 Error estimation of three
approaches under conditions of
different pixel widths in both x and
y axes. The simulated camera has a
focal length of 1,500 pixels and has
a fixed image plane size but vari-
able pixel widths. At pixel width
1.0, the CCD array is 720 × 720
pixels; at pixel width 0.333, the
CCD array is about 2,160 × 2,160
pixels.



Because the unknown parameters in the U evaluation
have fewer DOF than the R, t ones, our method can
reach the same accuracy with fewer point correspon-
dences than the general-purpose stereovision one.

In the second test, we fixed the number of point cor-
respondences at 60, and the standard deviation of noise
varied from 0 to 3 in both x and y axes. As in the previ-
ous test, the fewer DOF in unknown parameters made
our method more robust that the other two under noisy
conditions. The third test demonstrated that our method
reaches the same accuracy with lower resolution than
linear or nonlinear virtual camera approaches.

We also developed an experiment to evaluate accu-
racy. We attached 20 markers, each 3 mm in diameter,
to the right side of a plastic dummy’s face, which was 2
meters away from the camera, and placed a planar mir-
ror next to the right cheek. To mimic reality, the front
and side views of the face’s right side only occupied the
full image’s left half. Because a 3D laser scanner has a
measurement error range of less than 0.2 mm, we
assumed that it provided exact data. Comparing posi-
tions estimated using our method with the 3D scanned
data, we found our method’s RMS 3D position error to
be 1.95 mm. The maximal error of 2.94 mm occurs at a
marker position beneath the lower lip.

Advantages
Compared to the commonly used stereovision

approach that adopts two-view images, estimating 3D
positions and motions via mirror plane evaluation from
mirror-reflected multiview images has many advantages.

Simplicity and computational efficiency. In
our algorithm, evaluating the mirror plane normal U
requires solving only one equation by the linear least
square evaluation, as shown in Equation 8, where the
corresponding matrix M is n × 3. With the general-pur-
pose two-view algorithm, however, estimating rotation
matrix R and unit translation vector T0 requires pro-
cessing three linear least square evaluations, and their
associated matrices are n × 9, 3 × 3, and 3 × 3. Further-
more, to obtain reasonable results, maximum-likelihood
evaluation must be used. Because this optimization
process is a kind of nonlinear iterative improvement,
more computation results than with the linear
approach. For depth evaluation, both the proposed
method and the two-view approach require another
least square evaluation for each point correspondence.

Accuracy and robustness. Our method has four
unknown parameters rather than the six of general-pur-
pose two-view approaches. We demand less informa-
tion, such as fewer point correspondences to reach the
same accuracy as with stereovision. Our method also
has a larger error tolerance.

Perfect synchronization and low cost. Multi-
ple-camera approaches face the critical problem of cam-
era synchronization. In facial motion capture, the tip of
a subject’s lower lip moves down more than 1 cm with-
in 30 ms when pronouncing “pa,” for example. When
using only video-based synchronization, imperfect syn-

chronization can make the expected value of measure-
ment error of the lip’s tip more than 0.5 cm. Therefore,
accurate data capture by multiple cameras demands spe-
cial synchronization devices. In our approach, one cam-
era and two mirrors can simultaneously capture three
images of different viewpoints. Perfect synchronization
among multiple views is inherent in our system.

Disadvantages
Our method has two main disadvantages.

Restricted measurement range. Because our
method uses a single camera to capture three different
views simultaneously, measured targets’ motion range
must be within the volume of space between two mir-
rors. The mirrors’ orientation and size therefore limit
the method’s applications.

Limited image area for each view. Because our
method includes three view images in a snapshot, each
view can take up just one-third of the total image area.

However, our third computer simulation (Figure 7)
demonstrates that our method offers similar or even bet-
ter accuracy than the maximum-likelihood optimized
two-view approach: it provides identical point corre-
spondence but four times the image resolution (two
times both pixel width and height).

Applications
For motion tracking without limited action space, stere-

ovision approaches employing multiple cameras remain
irreplaceable. Synchronization hardware and camera cal-
ibration with many point correspondences can probably
overcome the disadvantages of difficult synchronization
and higher noise sensitivity when using multiple cameras.

Nevertheless, our method provides a good and inex-
pensive solution in applications where motion ranges
are restricted, such as 3D facial animation parameters,
or finger or 3D hand gesture tracking. Because our
method uses only a single camera and mirrors can reach
high accuracy with few point correspondences, it does-
n’t require heavy calibration. This makes the proposed
algorithm adequate also for applications requiring fast
or even real-time dynamic calibration.

Realistic facial animation
We applied the estimated facial motion parameters

to our facial animation system, which can synthesize
realistic facial expressions at more than 30 frames per
second on a Pentium III 1-GHz PC with an Nvidia
GeForce 2MX OpenGL acceleration card. For head mod-
eling, we applied a generic model to fit depth range
images acquired by a 3D laser scanner. We adopted the
radial basis3 scatter data interpolation deformation
method, a smooth interpolation function that can dis-
tribute the effects of feature points to nonfeature points.

We separated our generic face into 11 regions. Control
points in a region can only affect vertices within that
region. We also applied interpolation to smooth the jit-
ter effects at region boundaries. The control points con-
sist of motion-captured feature points and
supplementary hypothetical points, that is, points diffi-
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cult to capture (such as the jaw near the ear) due to
video viewpoint limitations. We use hypotheses to drive
these points according to related feature points.

The inner lips represent another important and diffi-
cult-to-track facial region. A lip’s inner surface, hidden
behind the outer part in a neutral face, partially appears
when the mouth is open. The lower inner lip is especial-
ly important when a mouth is puckering or rounding, as
it does when pronouncing “u” or “o.” At that time, almost
half of the lower inner lip protrudes, forming the lower
lip’s inner contour. We therefore used a supplementary
inner lip model, shown in Figure 8. Light green repre-
sents the lower outer lip, driven by six feature points in
motion captured data, and dark green depicts the sup-
plementary inner lip model, a modified Hermite surface
controlled by outer lip and jaw surface tangent vectors.

When we deform the synthetic head according to
motion-tracked data frame by frame, we can generate
realistic facial animation. Figure 9 shows that subtle
asymmetric facial expressions such as twisting the
mouth can be synthesized because two mirrors capture
the whole face’s motion.

We could also use our method to collect 3D facial
motion data sets for coarticulation analysis and syn-
thesis of a speech-driven talking head. You’ll find a
demonstration video at http://www.cmlab.csie.ntu.
edu.tw/~ichen/RFAP/RFAP_Intro.htm.

Correct and complete lip modeling is a significant fac-
tor in realistic face synthesis because lip silhouettes
determine the mouth’s inner contours. In our future
work, we’ll further estimate motion of the inner lip sur-
faces. We’ll also use lighting and high-reflectivity mark-
ers in a specific light spectrum, such as infrared rays or
ultraviolet, to improve tracking accuracy. �
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