
Interactive and Flexible Motion Transition
Jen-Yu Peng

Dept. of Computer Science,
National Chiao Tung University,

Taiwan.

I-Chen Lin
Dept. of Computer Science,

National Chiao Tung University,
Taiwan.

Jui-Shiang Chao
Institute Institute for Information

Industry, Taiwan

 Yan-Ju Chen
Dept. of Computer Science, National Chiao Tung

University, Taiwan.

Gwo-Hao Juang
Dept. of Computer Science, National Chiao Tung

University, Taiwan.

Figure 1: The synthesized frames with our approach

Abstract

In this paper, we present an example-based motion
synthesis technique. Users can interactively
control the virtual character to perform desired
actions in any order. The desired action can be not
only recorded or precomputed motion, but also
parametric synthesized one to attain the precise
control of avatars. Moreover, a user can change
their commands any time to switch to another
action according to the instant response of
opponents in fighting. The quality transition
motions between consecutive actions are rapidly
synthesized through traversing a simple graph
structure which represents the transition
relationships between different poses. The graph is
constructed according to clustering on frames in a
corpus of motion capture data. With the
precomputation of path finding, our approach can
also be applied to real-time applications. Besides,
this precomputed graph structure can be used to
transit those motions not included in the database.
Furthermore, our approach is automatic without
any human intervention. The final results
demonstrate the potential of our algorithm.

Keywords: motion synthesis, motion capture,
transition.

1 Introduction

In recent years, character animations widely
appeared in entertainment industry. Among the
production methods of computer animation,
motion capture is a popular and efficient way to
acquire the desired movements. The subtleties and
human styles of performances can also be well
preserved. Hence, the movements of virtual
avatars with motion capture data look more
realistic than keyframed ones by experienced
artists. However, reusing those captured data take
some efforts to rearrange or modify the motion
data for different conditions. It is usually difficult
when the configuration is obvious different from
the original one. For this reason, the related topics
with data-driven methods became the main stream
of motion synthesis techniques in the last decade.

In this paper, we propose an adaptable
framework for example-based motion synthesis.
The proposed approach exploits a structure called
“flexible transition graph” which represents the
transition relationships between different poses to
synthesize the reliable transition motions. Our goal
is to interactively control the avatars in real-time
applications. Therefore, we not only pre-compute
the candidate paths for each node-pair in the graph

but also combine with a parametric motion
synthesis technique to attain the controllable
avatars. The results demonstrate the potential of
our method. Unlike other motion synthesis
techniques, our approach animates the avatars
through specifying a sequence of desired actions
directly. Even with distinct dissimilarity between
consecutive actions, our algorithm could produce
smooth transitions. Besides, the pre-computed
graph can also be applied for any newly
synthesized motion not included in the database. In
the condition of data lack, we can still use the node
information of our graph to improve the
interpolation through an integrated novel Bezier
scheme.

The remainder of this paper is organized as
follows. Section 2 reviews related literatures about
the motion synthesis techniques with data-driven
methods. Section 3 gives an overview of our
approach, while Section 4 and Section 5 describe
the preprocess works and run-time works
respectively. Our results are shown in Section 6.
Finally, Section 7 makes the detailed discussions
and conclusions.

2 Related Works

Data-driven motion synthesis techniques can be
classified into several categories. Researchers
mainly focused on the techniques of blending and
transition in the last decade. Blending is a common
technique in early researches to synthesize a novel
motion by weighted combination of a set of
example motions [1][2][3][4]. Besides, blending is
also useful for synthesizing continuous
locomotions in real-time [5][6]. L. Kovar and M.
Gleicher further used the parameterization of
motions to obtain the precise control of avatars [7].

Motion transition is used to assemble two
different clips into a single continuous motion
sequence. The strategy of exploiting a graph
structure was frequently adopted in recent studies
for creating transitions and interactive controls of
avatars.

In graph-based transition techniques, A.
Sch”odl et al. [8] first introduced “Video textures”
which searches the coherence in frames of image
sequence. By reassembling images, they could
produce endless videos with a small database. L.
Kovar et al. [9] applied this concept to character
animation and built a motion graph which

concatenates small motion clips to generate a
continuous and controllable stream of frames.
Furthermore, J. Lee et al. [10] also adopted a two-
layer graph structure to control the avatars based
on the same idea. We utilize a similar graph
structure. However, while they use their graphs to
find possible actions in the following frames, we
exploit the proposed graph to find appropriate
transitions after users specify particular actions. O.
Arikan and D. Forsyth [11][12] also presented a
similar graph, but they collapsed the frames
belonging to the same motion sequence together.
Each node represents a motion in order to simplify
the original graph based on frames. Although it
can also create the transitions between different
actions, they can’t directly apply their method to
motions not included in the database due to the
unavoidable precomputation of graph. Later, T. H.
Kim et al. [13] constructed a movement transition
graph by finding the transitions among the
prototype movements representing the groups.
Each node in their graph indicates a group of
similar movements. Gelicher et al. [14] created the
transition motions around the common poses. The
common poses can be found automatically by their
system or manually selected by human
interventions. A user can control the avatars
through guiding the traverse order in their graph.
Notwithstanding, they can create the transition
between different poses and specify a path to
synthesis a stream of frames. The motion selection
through their interface is not intuitive; by contrast,
our system controls the avatars through motion
specification. P. S. A. Reitsma and N. S. Pollard
[15] applied the motion graph for the character
navigation. H. J. Shin and H. S. Oh [16] proposed
the Fat Graphs inspired by Snap-Together Motion
[14]. They blended the similar edges between a
node pair to interactively control the avatars in
continuous parameter spaces. Their example
motions for parameterization must be both similar
in the beginning and in the end. Furthermore, they
also inherited the limitation of Snap-Together
Motion. R. Heck and M. Gleicher [17] proposed a
parametric motion graph to synthesize the
transition between two parametric synthesized
motions. Therefore, they can interactively control
the avatars with some specified motions. For each
new type of actions, they must insert a node to
extend their graph even there is only one example.
For this reason, users’ choices will be bounded
while we can reach the same goal without this
limitation.

Ikemoto et al. [] blended multiple motion clips
to create compact transitions. We share the same

goal of synthesizing a frame-to-frame transition
and both applied the clustering on motion data.
But the significant difference is that their
clustering method is clip-based while ours is
frame-based. Besides, they cached the high-score
intermediary clip for each representative pair while
we precompute the transition paths.

Besides, there are some related approaches that
can be used to improve the visual quality of
motions synthesized by graph-based transition
techniques. J. Wang and B. Bodenheimer not only

tuned the cost evaluation for selecting transitions
[18] but also computed the optimal duration for
blending [19]. Moreover, the footskate cleaning
methods [20][21] can be used as a post-process to
avoid the artifacts caused by foot sliding. In order
to improve the physical correctness, A. Safonova
and J. K. Hodgins interpolated the position of
center of mass instead of the position of root joint
[22]. Furthermore, the naturalness of synthesized
moiton can be verified by the classification
method [23].

Preprocess Phase

Run-time Phase

Figure 2 : The framework of our approach

3 Overview

Our approach can be divided into two phases: the
preprocess phase and the run-time phase. Figure 2
shows the framework of our approach. In the
preprocess phase, given a corpus of motion data,
we apply a frame-based clustering first and extract
information hidden among those clusters such as
the consecution of frames to construct a transition
graph. Finally, we precompute candidate transition
paths for each node-pair in the graph. With this
precomputation, we can apply our approach
efficiently in real-time applications.

In the run-time phase, given a user command,

the system turns it into specified desired actions.
We first locate the last frame of the playback
buffer and the first frame of the desired action in
the graph. Then, we query the pre-computed data
with this located node-pair and select one
transition path from possible candidates. Finally,
the transition motion is synthesized according to
the order of visiting nodes in that path. Users can
get a continuous motion by assigning a sequence
of actions. The desired motion can be the
parameterized motion to attain the control of
avatar.

4 Preprocess Phase

4.1 Frame-based two-pass Clustering

In the first step, we apply clustering for all frames
in our motion database. A two-pass algorithm is
proposed to classify the frames into different
clusters. This algorithm is efficient due to its low
memory requirement and less computation time. In
the beginning of clustering, we just create one
typical cluster and take the first frame to be its
center frame. In practice, the center frame is not
only a frame in the center of a cluster but also
represents the cluster’s location in the pose space.
For each incoming frame later, we calculate the
distance between the new one and each center
frame of existing clusters. Our distance
calculations for two poses in text are all referred to
Lee’s cost metric. [10] In the first pass, if the
minimum distance is less than a user-specified
threshold, we will label the new frame with the ID
of that cluster. If the minimum distance is larger
than two times of the threshold, we will create a
new cluster and assign that frame to be its center
frame. Otherwise, this frame will be labeled as
“undefined”. Those undefined frames will be
assigned once again in the second pass, but we
only label them with the ID of the nearest cluster
in this time without creating any new cluster. After
the second pass, all frames in the database are
assigned with a cluster ID.

As shown in Figure 3, in the first pass, the first
frame is assigned as the center of 1st cluster. Frame
5 to frame 7 are all out of the radius of the first
cluster but not far enough to form a new cluster.
Therefore, we label them with “undefined”. Until
to 8th frame, the second cluster is created. After
that, frame 9 and 10 are also located in same
cluster while the frame 11 and 12 leave the cluster
again. In the second pass, we check the undefined
frames and find their nearest clusters. Frame 5 is
closer to first cluster than second cluster while
frame 6, 7, 11 and 12 are all closer to second
cluster.

Figure 3 : Frame-based two-pass clustering

Although this clustering method is simple, it is

useful enough to accomplish the task of dividing
the whole pose space into several smaller regions.
After the clustering, we observe that each cluster
covers a range of pose space and all of its member
frames are distributed over this region.
Furthermore, the contiguous frames in the same
motion are either in the same cluster or be
separated into neighboring clusters. With these
properties, we can construct a sparse transition
graph in the next step.

4.2 Build the Transition Graph

In this step, we will introduce how to build a
transition graph that represents the transition
relationships between different poses.

In the initial configuration, we represent each
cluster as one node in the graph. We then
concatenate the contiguous frames in the same
cluster to form a clip. Hence, each node will attach
a list of short clips instead of individual frames
now. After that, the edge connected any pair of
nodes which we called “node-pair” later will be
represented by the concatenation of contiguous
clips in the corresponding clusters. In general,
there always exist multiple edges between the
same node-pair.

As illustrated in Figure 3, the motion is
divided into two shorter clips after the clustering.
The first clip belong to cluster 1 contains frame 1
to frame 5 while the second clip belong to cluster 2
contains frame 6 to frame 12. Therefore, there is
one edge between the nodes of cluster 1 and
cluster 2 and it contains frame 1 to frame 12.

Instead of checking all possible edges, we
propose a more efficient way here to rapidly detect
edges in one pass. For each motion in our database,

we had labeled each frame with a cluster ID in
Section 3.2. With the above mentioned work, we
create an edge if there are two consecutive frames
in a motion belong to different clusters. The
created edge will connect these two corresponding
nodes.

As shown in figure 4, there are three different
motions. Each of them has been divided into small
clips belonged to different clusters. We can
construct the directed edges according to
consecutive frames belong to different clusters.
The right graph was built according to the left
information.

Figure 4: The graph building

Our transition graph can be either directed or

undirected. If we take the former assumption, the
node of the preceding clip will direct toward that
of the succeeding clip when creating an edge.
Therefore, the direction of an edge represents
smooth transition from one to another. On the
other hand, if we use a clip to create an undirected
edge, the node-pair can transit to each other only
when we permit the backward playing of that clip.
For example, if we want to create a transition from
node A to node B, we find those clips representing
this edge. Some of them may be the transition
motions from node B to node A, we can still use
them in a backward playback order.

4.3 Pre-computed Paths

After constructing the graph, we compute several
candidate paths for each node-pair in the graph
with the dynamic programming. The cost of each
edge is the number of frames of its shortest clip
multiplied by the distance between the two center
frames of the corresponding clusters. We summed
up the total cost of all passed edges in that path
and termed it as “transition cost” in text.

∑
=

=
m

k
kk EceDisEMinCost

1
)(tan*)((1)

where m is the number of visiting node in that path,
Ek is the k-th edge in the path. The function Min

return the minimum frame numbers of candidate
clips in Ek while the Distance answer the pose
difference between the two end nodes of Ek.

In order to balance the storage space and the
flexibility, for each node-pair, we only keep a
maximum number of five paths whose transition
costs are less than a threshold. These preserved
paths called “candidate paths” and paths with high
costs called “invalid path”. Since these invalid
paths usually cause noticeable artifacts in our
experiences, we discard them even when there is
no option.

Even though, all motions in the database are
used for edge connection, the graph is usually not
strongly connected and there are still node-pairs
without path connection in practice. We will
discuss how to perform motion transition under
such condition in the run-time phase.

We also recorded the transition cost for each
candidate path in order to provide some references
for later choices.

5 Run-time Phase

In our system, we provide users with various
character actions. They can be input by keying the
action ID or associated with any button of
keyboard or joystick. The user requests can be
responded interactively either by choreographing
the performances in any order or change the
current action on the half way. The middle
transitions will be automatically synthesized by
our approach.

5.1 Locate the Node-pair

In the run-time applications, if we want to create
the transition from a source clip to a destination
clip which may be the action specified by users,
we pick the last frame of source clip and the first
frame of destination clip. In the following, we find
their nearest clusters respectively by comparing
those distances between them and the center frame
of each cluster. Therefore, these frames may not
belong to any cluster but can still find a closest one.
Although there will appear more and more
artifacts with the increasing distance from center
frame, the strategy of trying to find the nearest
cluster instead of the exact one can help us to
handle some conditions we never concerned about
in the database.

For example in figure 5, the last frame of
source clip is located in the cluster Ns and the first
frame of destination is located in the cluster Nt.

Figure 5: The location of node-pair

Now, we have one cluster ID for the last frame

of source clip and the other for the first frame of
destination clip. We will use this information in
the next step.

5.2 Select One Path

Given a node-pair, we can query the pre-computed
data to get some candidate paths instead of finding
the shortest path in the run time. Between these
candidate paths, we randomly select one in order
to provide the flexibility. However, the selection is
accorded to a probability which is estimated in an
inverse proportion to the transition cost. In the
example of figure 5, we select one path that passes
through from N0 to Nk in an increasing order.

5.3 Synthesize the Transition

Once the optimal transition path is selected, we
can synthesize the transition motion according to
the order of visiting nodes in that path. In our
approach, we adopt a greedy scheme to synthesize
the transition.

Figure 6 : The best match selection

For each node-pair in the path, such as Ns-N0,

N0-N1 or N1-N2 in the figure 5, we find a clip that
can best match the synthesized motion while its
length is also less than a threshold. Here, the best
match means that the distance between the first
frame of that clip and the last frame of the
synthesize motion is the minimum. As shown in

Figure 6, we will select Edge1 from the three
candidate edges between the node-pair Ni-Ni+1.

Figure 7: The optimal transition point selection

This solution is not optimal but efficient for
real-time applications. We then compute the
distance grid of the back end of synthesized
motion and the front end of that clip to find an
optimal transition point. The optimal transition
point [17] is a point with the minimum distance in
this grid. In our experiment, we take 10 frames for
the synthesized motion and 25 frames for the
incoming clip. As illustrated in Figure 7, the
distance grid is normalized and represented by the
color of gray level.

We repeat this process until all selected clips
of node-pairs have been merged. Now, the
synthesize transition motion is a continuous
motion.

5.4 Bezier Interpolation

For those node-pairs which can’t find any path in
the graph, which indicates their transitions doesn’t
exist in the database, we propose a novel scheme
of Bezier interpolation to overcome this difficult
challenge. This scheme not only efficiently
exploits the cluster information in the pose space
but also creates more smooth transitions. However,
the traditional linear interpolation is superior only
when the difference is subtle. In the condition of
no path, we assume that the pose difference
between the node-pair is obvious. Therefore, we
prefer using the Bezier scheme instead of applying
the linear one.

Figure 8: Path Selection

In order to get the control points of Bezier

function, we execute a simple traverse process
with all cluster medoids. Starting from the source
node such as node A in Figure 8, we first filter out
the nodes whose distance from the target node is
larger than the distance between the current node
and target node. For example, we never consider
node C even it is the closest one. Then, we select
the nearest node in the remaining nodes to be the
next visiting node. Instead of choosing node B
nearer to target node, we select node D nearer to
the current node. This traverse process will be
repeated until reaching the target node. In Figure 8,
the visited order is A, D, E, G and H. After that,
we divide these nodes into two half and compute
their center nodes which are virtual nodes
computed by averaging the visited nodes. The
center nodes such as the dotted nodes C1 and C2
in Figure 9 are used to be the control points in a
quadratic Bezier interpolation. Therefore, the
interpolated results are not only smooth but
contain the clues of posture distributions in the
same time.

Figure 9: The quadratic Bezier interpolation

The number of frames produced by an

interpolation is decided by the distance between
the source pose and the target pose. This criterion
can avoid the jerky effects and its detailed
equation is listed below.

σ/),(arg ettsource PosePoseDT = (2)
where T means the suitable duration of the
interpolation, D is the cost function referred to [10]

and δis a user specified parameter that controls
the average length of interpolated motion.

6 Experimental Results

6.1 Platform

Our experiments perform on a laptop with a
1.73GHz Pentium-M processor, 1 GB main
memory with Windows XP operating system.
Besides, the graphics card we used is ATI
Mobility Radeon X700.

6.2 Database

Our database includes 73 motions with a 30 fps
sampling rate. In order to control the avatar by
specifying actions, each motion only contains a
simple action of martial art or locomotion. These
short motion sequences were separately captured
or manually segmented while it can also use the
automatic schemes to divide the long sequences
into shorter sequences. For parametric motion
synthesis, we captured nine motions of different
directions for any type of actions. The skeleton we
adopted contains 19 joints and 60 degrees of
freedom (DOFs) and the total number of frames in
our database is only 3648. Even with such a small
database, we can still produce the quality results.

6.3 Examples

All the examples in this section can be found
in our accompanying video. In the first example,
we will demonstrate a sequence of actions of
martial art. The synthesized frames are shown in
Figure 1. We arrange the six arbitrary actions in
martial art with a specific order and perform them
once at a time to show the audience their original
movement first. Finally, our approach
automatically synthesizes the continuous, high-
fidelity streams of motion.

In addition to make the transition between
different clips, we also combine the parametric
motion synthesis technique to attain the precise
control of avatars. In this example, the avatar
successfully hit the target point after performing
various actions, as shown in Figure 10. Here, our
parametric motion synthesis technique is referred
to [7]. In order to save the huge storage space for
the parametric parameters, we divided the
parameterized space into discrete voxels. This
scheme is similar to that of Lee’s [24] but they
used the space segmentation for the captured
motions.

Figure 10: Parametric motion synthesis

The third example shows the comparison

between the traditional linear interpolation scheme
and our scheme. We create an interpolation
between a kick posture and a punch posture. The
traditional scheme moves the right hand and right
leg in the same time causing the unbalanced
artifact while our scheme knows to shrink the leg
first before punching. The results are illustrated in
Figure 11. Besides, we can preserve the C1
continuity through the Bezier interpolation while
linear interpolation only provides C0 continuity

Linear

Bezier

Figure 11: Different interpolation scheme

Finally, we demonstrate the flexibility of our
approach. The user commands one character to
walk forward, but there is another sneaker which
wants to attack him. The player was aware of the
approaching punch and squat immediately to
dodge this attack. We just cleaned up the end of
playback buffer and locate the new end of
playback buffer and the first frame of desired
action.

Figure 12: Dodge example

6.4 Statistics

The clustering divided the frames into 164 clusters
with 785 short clips attaching to these nodes. The
transition graph includes 660 edges.

Example Time(sec) Frames
Consecutive Attacks 0.157 150
Parametric Synthesis 0.561 233
Bezier Interpolation 0.029 20

Dodge 0.155 121
Table 1 : The synthesis time for examples

The computation time for synthesizing each
example is shown in Table 1. All examples use the
same transition graph where the clustering needs
about 0.76 seconds and the precomputation of path
candidates spends about 463.46 seconds. We

observed that the maximum average time for each
frame is less than 0.0024 second. Therefore, we
claim that the proposed approach is adequate for
run-time applications on regular PCs or laptops
with multi-threaded programming.

7 Discussion

In this paper, we present a novel motion synthesis
approach for producing continuous, controllable
sequences of motion with motion capture data.

Our two pass clustering method is simple but
reliable. Other more complicated clustering
techniques such as k-means or mean-shift may
provide more delicate clusters but will cost much
more pre-computation time. For example, the k-
means clustering spends 8211.88 second for 100
iterations when k is 150 while ours is less than 1
second.

The user specified threshold for our clustering
indicates the covering radius of each cluster.
Therefore, the bigger the value, the less clusters.
Although the size of the preprocess data can be
reduced substantially with a small radius, the
artificial errors obviously increase on the contrary.
The necessary space for storing preprocess data
are huge with the storage complexity of O(n2).
Therefore, how to balance the accuracy and
necessary space is critical in our approach.

As shown in the final examples of our video,
our approach can permit the avatar to change his
action extemporarily. This technique is especially
useful in fighting games. In traditional video
games, they usually use the technique of move tree
where the avatar must return to the ready pose first
before performing the next action. However, we
can overcome this limitation with the proposed
approach. The player can interactively control
their character according to the reaction of
opponents.

The transition motions from poses to poses are
usually short because a long transition motion will
substantially destroy the timing of motion. Due to
the short duration property of transition, we
assume that the transition can still keep the
naturalness even in backward playing.

The future works includes the reduction of the
preprocess data and speed up the computation of
synthesis. For example, we will adopt a

hierarchical clustering scheme to reduce the
location time. The time complexity will decrease
to O(logn) from O(n) where n is the number of
existent clusters.

Acknowledgements

This research was supported by the III Innovative
and Prospective Technologies Project of Institute
for Information Industry and sponsored by MOEA,
Taiwan. This research is also partially supported
by National Science Council, Taiwan, with grant
no. NSC-95-2221-E-009-164-MY3.

Reference

[1] M. Unuma, K. Anjyo and R. Takeuchi. Fourier
principles for emotion-based human figure
animation. In Proceedings of ACM
SIGGRAPH, pages 91-96, 1995.

[2] D. Wiley and J. Hahn. Interpolation synthesis
of articulated figure motion. IEEE Computer
Graphics & Applications 17(6):39-45, 1997.

[3] C. Rose, M. F. Cohen and B. Bodenheimer.
Verbs and adverbs: Multidimensional motion
interpolation. IEEE Computer Graphics &
Applications 18(5):32-40, 1998.

[4] M. Brand and A. Hertzmann. Style machines.
In Proceedings of ACM SIGGRAPH, pages
183-192, 2000.

[5] S. I. Park, H. J. Shin, and S. Y. Shin. On-line
motion blending for real-time locomotion
generation. Computer Animation and Virtual
Worlds, 15(3):125-138, 2004.

[6] P. Glardon, R. Boulic and D. Thalmann. A
Coherent Locomotion Engine Extrapolating
Beyond Experimental Data. In Computer
Animation and Social Agents (CASA), pages
73-84, 2004.

[7] L. Kovar and M. Gleicher. Automated
Extraction and Parameterization of Motions in
Large Data Sets. ACM Transactions on
Graphics, 23(3):559-568 , 2004.

[8] A. Sch”odl , R. Szeliski, D. Salesin and I. Essa.
Video textures. In Proceedings of ACM
SIGGRAPH 2000, Annual Conference Series,
ACM SIGGRAPH, pages 489-498, 2000.

[9] L. Kovar, M. Gleicher and F. Pighin. Motion
graphs. ACM Transactions on Graphics,
21(3):473-482, July 2002.

[10] J. Lee, J. Chai, P. S. A. Reitsma, J. K.
Hodgins and N. S. Pollard. Interactive control
of avatars animated with human motion data.

ACM Transactions on Graphics, 21(3):491-
500, July 2002.

[11] O. Arikan and D. Forsyth. Interactive
motion generation from examples. ACM
Transactions on Graphics, 21(3):483-490,
2002.

[12] O. Arikan, D. Forsyth and J. O’Brien.
Motion Synthesis from Annotations. ACM
Transactions on Graphics, 22(3): 402-408,
2003.

[13] T.H. Kim, S. I. Park, and S. Y. Shin.
Rhythmic-Motion Synthesis Based on Motion-
Beat Analysis. ACM Transactions on Graphics,
22(3):392-401, 2003.

[14] M. Gleicher , H. J. Shin , L. Kovar and A.
Jepsen. Snap-together Motion: Assembling
Run-time Animation. In ACM SIGGRAPH
Symposium on Interactive 3D Graphics, pages
181-188, 2003.

[15] P. S. A. Reitsma and N. S. Pollard.
Evaluating Motion Graphs for Character
Navigation. In Proceedings of Symposium on
Computer Animation, pages 89-98, 2004.

[16] H. J. Shin and H. S. Oh. Fat Graphs:
Constructing an interactive character with
continuous controls. In Proceedings of
Symposium on Computer Animation, pages
291-298, 2006.

[17] R. Heck and M. Gleicher. Parametric
Motion Graphs. In Proceedings of Symposium
on Interactive 3D Graphics and Games 2007,
April 2007.

[18] J. Wang and B. Bodenheimer. An Evalua-
tion of a Cost Metric for Selecting Transi-tions
between Motion Segments. In Proceedings of
Symposium on Computer Animation, pages
234-238, 2003.

[19] J. Wang and B. Bodenheimer. Computing
the Duration of Motion Transitions: An
Empirical Approach. In Proceedings of
Symposium on Computer Animation, pages
337-346, 2004.

[20] L. Kovar, J. Schreiner and M. Gleicher.
Footskate Cleanup for Motion Capture Editing,
In Proceedings of the Symposium on
Computer Animation, pages 97–104, 2002.

[21] L. Ikemoto, O. Arikan and D. Forsyth.
Knowing when to put your foot down. In
ACM SIGGRAPH Symposium on Interactive
3D Graphics, pages 49-53, 2006.

[22] A. Safonova and J. K. Hodgins. Analyzing
the Physical Correctness of Interpolated
Human Motion. In Proceedings of Symposium
on Computer Animation, pages 171-180, 2005.

[23] L. Ren, A. Patrick, A. Efros, J. Hodgins,

and J. M. Rehg. A Data-Driven Approach to
Quantifying Natural Human Motion. ACM
Transactions on Graphics, 24(3): pages 1090-
1097, 2005.

[24] J. Lee and K. H. Lee. Precomputing ava-
tar behavior from human motion data. In
Proceedings of Symposium on Computer
Animation, pages 79-87, 2004.

