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Figure 1: The synthesized frames with our approach 

 

Abstract 

In this paper, we present an example-based motion 
synthesis technique. Users can interactively 
control the virtual character to perform desired 
actions in any order. The desired action can be not 
only recorded or precomputed motion, but also 
parametric synthesized one to attain the precise 
control of avatars. Moreover, a user can change 
their commands any time to switch to another 
action according to the instant response of 
opponents in fighting. The quality transition 
motions between consecutive actions are rapidly 
synthesized through traversing a simple graph 
structure which represents the transition 
relationships between different poses. The graph is 
constructed according to clustering on frames in a 
corpus of motion capture data. With the 
precomputation of path finding, our approach can 
also be applied to real-time applications. Besides, 
this precomputed graph structure can be used to 
transit those motions not included in the database. 
Furthermore, our approach is automatic without 
any human intervention. The final results 
demonstrate the potential of our algorithm. 
 
Keywords: motion synthesis, motion capture, 
transition. 

1 Introduction 

In recent years, character animations widely 
appeared in entertainment industry. Among the 
production methods of computer animation, 
motion capture is a popular and efficient way to 
acquire the desired movements. The subtleties and 
human styles of performances can also be well 
preserved. Hence, the movements of virtual 
avatars with motion capture data look more 
realistic than keyframed ones by experienced 
artists. However, reusing those captured data take 
some efforts to rearrange or modify the motion 
data for different conditions. It is usually difficult 
when the configuration is obvious different from 
the original one. For this reason, the related topics 
with data-driven methods became the main stream 
of motion synthesis techniques in the last decade. 
 

In this paper, we propose an adaptable 
framework for example-based motion synthesis. 
The proposed approach exploits a structure called 
“flexible transition graph” which represents the 
transition relationships between different poses to 
synthesize the reliable transition motions. Our goal 
is to interactively control the avatars in real-time 
applications. Therefore, we not only pre-compute 
the candidate paths for each node-pair in the graph 



but also combine with a parametric motion 
synthesis technique to attain the controllable 
avatars. The results demonstrate the potential of 
our method. Unlike other motion synthesis 
techniques, our approach animates the avatars 
through specifying a sequence of desired actions 
directly. Even with distinct dissimilarity between 
consecutive actions, our algorithm could produce 
smooth transitions. Besides, the pre-computed 
graph can also be applied for any newly 
synthesized motion not included in the database. In 
the condition of data lack, we can still use the node 
information of our graph to improve the 
interpolation through an integrated novel Bezier 
scheme.  
 

The remainder of this paper is organized as 
follows. Section 2 reviews related literatures about 
the motion synthesis techniques with data-driven 
methods. Section 3 gives an overview of our 
approach, while Section 4 and Section 5 describe 
the preprocess works and run-time works 
respectively. Our results are shown in Section 6. 
Finally, Section 7 makes the detailed discussions 
and conclusions. 

2 Related Works 

Data-driven motion synthesis techniques can be 
classified into several categories. Researchers 
mainly focused on the techniques of blending and 
transition in the last decade. Blending is a common 
technique in early researches to synthesize a novel 
motion by weighted combination of a set of 
example motions [1][2][3][4]. Besides, blending is 
also useful for synthesizing continuous 
locomotions in real-time [5][6]. L. Kovar and M. 
Gleicher further used the parameterization of 
motions to obtain the precise control of avatars [7].  
 

Motion transition is used to assemble two 
different clips into a single continuous motion 
sequence. The strategy of exploiting a graph 
structure was frequently adopted in recent studies 
for creating transitions and interactive controls of 
avatars. 
 

In graph-based transition techniques, A. 
Sch”odl et al. [8] first introduced “Video textures” 
which searches the coherence in frames of image 
sequence. By reassembling images, they could 
produce endless videos with a small database. L. 
Kovar et al. [9] applied this concept to character 
animation and built a motion graph which 

concatenates small motion clips to generate a 
continuous and controllable stream of frames. 
Furthermore, J. Lee et al. [10] also adopted a two-
layer graph structure to control the avatars based 
on the same idea. We utilize a similar graph 
structure. However, while they use their graphs to 
find possible actions in the following frames, we 
exploit the proposed graph to find appropriate 
transitions after users specify particular actions. O. 
Arikan and D. Forsyth [11][12] also presented a 
similar graph, but they collapsed the frames 
belonging to the same motion sequence together. 
Each node represents a motion in order to simplify 
the original graph based on frames. Although it 
can also create the transitions between different 
actions, they can’t directly apply their method to 
motions not included in the database due to the 
unavoidable precomputation of graph. Later, T. H. 
Kim et al. [13] constructed a movement transition 
graph by finding the transitions among the 
prototype movements representing the groups. 
Each node in their graph indicates a group of 
similar movements. Gelicher et al. [14] created the 
transition motions around the common poses. The 
common poses can be found automatically by their 
system or manually selected by human 
interventions. A user can control the avatars 
through guiding the traverse order in their graph. 
Notwithstanding, they can create the transition 
between different poses and specify a path to 
synthesis a stream of frames. The motion selection 
through their interface is not intuitive; by contrast, 
our system controls the avatars through motion 
specification. P. S. A. Reitsma and N. S. Pollard 
[15] applied the motion graph for the character 
navigation. H. J. Shin and H. S. Oh [16] proposed 
the Fat Graphs inspired by Snap-Together Motion 
[14]. They blended the similar edges between a 
node pair to interactively control the avatars in 
continuous parameter spaces. Their example 
motions for parameterization must be both similar 
in the beginning and in the end. Furthermore, they 
also inherited the limitation of Snap-Together 
Motion. R. Heck and M. Gleicher [17] proposed a 
parametric motion graph to synthesize the 
transition between two parametric synthesized 
motions. Therefore, they can interactively control 
the avatars with some specified motions. For each 
new type of actions, they must insert a node to 
extend their graph even there is only one example. 
For this reason, users’ choices will be bounded 
while we can reach the same goal without this 
limitation. 

Ikemoto et al. [] blended multiple motion clips 
to create compact transitions. We share the same 



goal of synthesizing a frame-to-frame transition 
and both applied the clustering on motion data. 
But the significant difference is that their 
clustering method is clip-based while ours is 
frame-based. Besides, they cached the high-score 
intermediary clip for each representative pair while 
we precompute the transition paths. 
 

Besides, there are some related approaches that 
can be used to improve the visual quality of 
motions synthesized by graph-based transition 
techniques. J. Wang and B. Bodenheimer not only 

tuned the cost evaluation for selecting transitions 
[18] but also computed the optimal duration for 
blending [19]. Moreover, the footskate cleaning 
methods [20][21] can be used as a post-process to 
avoid the artifacts caused by foot sliding. In order 
to improve the physical correctness, A. Safonova 
and J. K. Hodgins interpolated the position of 
center of mass instead of the position of root joint 
[22]. Furthermore, the naturalness of synthesized 
moiton can be verified by the classification 
method [23]. 

 
Preprocess Phase

Run-time Phase

Figure 2 : The framework of our approach 
 

3 Overview 

Our approach can be divided into two phases: the 
preprocess phase and the run-time phase. Figure 2 
shows the framework of our approach. In the 
preprocess phase, given a corpus of motion data, 
we apply a frame-based clustering first and extract 
information hidden among those clusters such as 
the consecution of frames to construct a transition 
graph. Finally, we precompute candidate transition 
paths for each node-pair in the graph. With this 
precomputation, we can apply our approach 
efficiently in real-time applications.  

 
In the run-time phase, given a user command, 

the system turns it into specified desired actions. 
We first locate the last frame of the playback 
buffer and the first frame of the desired action in 
the graph. Then, we query the pre-computed data 
with this located node-pair and select one 
transition path from possible candidates. Finally, 
the transition motion is synthesized according to 
the order of visiting nodes in that path. Users can 
get a continuous motion by assigning a sequence 
of actions. The desired motion can be the 
parameterized motion to attain the control of 
avatar. 



4 Preprocess Phase 

4.1 Frame-based two-pass Clustering 

In the first step, we apply clustering for all frames 
in our motion database. A two-pass algorithm is 
proposed to classify the frames into different 
clusters. This algorithm is efficient due to its low 
memory requirement and less computation time. In 
the beginning of clustering, we just create one 
typical cluster and take the first frame to be its 
center frame. In practice, the center frame is not 
only a frame in the center of a cluster but also 
represents the cluster’s location in the pose space. 
For each incoming frame later, we calculate the 
distance between the new one and each center 
frame of existing clusters. Our distance 
calculations for two poses in text are all referred to 
Lee’s cost metric. [10] In the first pass, if the 
minimum distance is less than a user-specified 
threshold, we will label the new frame with the ID 
of that cluster. If the minimum distance is larger 
than two times of the threshold, we will create a 
new cluster and assign that frame to be its center 
frame. Otherwise, this frame will be labeled as 
“undefined”. Those undefined frames will be 
assigned once again in the second pass, but we 
only label them with the ID of the nearest cluster 
in this time without creating any new cluster. After 
the second pass, all frames in the database are 
assigned with a cluster ID. 
 

As shown in Figure 3, in the first pass, the first 
frame is assigned as the center of 1st cluster. Frame 
5 to frame 7 are all out of the radius of the first 
cluster but not far enough to form a new cluster. 
Therefore, we label them with “undefined”. Until 
to 8th frame, the second cluster is created. After 
that, frame 9 and 10 are also located in same 
cluster while the frame 11 and 12 leave the cluster 
again. In the second pass, we check the undefined 
frames and find their nearest clusters. Frame 5 is 
closer to first cluster than second cluster while 
frame 6, 7, 11 and 12 are all closer to second 
cluster.  
 

 
Figure 3 : Frame-based two-pass clustering 

 
Although this clustering method is simple, it is 

useful enough to accomplish the task of dividing 
the whole pose space into several smaller regions. 
After the clustering, we observe that each cluster 
covers a range of pose space and all of its member 
frames are distributed over this region. 
Furthermore, the contiguous frames in the same 
motion are either in the same cluster or be 
separated into neighboring clusters. With these 
properties, we can construct a sparse transition 
graph in the next step. 

4.2 Build the Transition Graph 

In this step, we will introduce how to build a 
transition graph that represents the transition 
relationships between different poses. 
 

In the initial configuration, we represent each 
cluster as one node in the graph. We then 
concatenate the contiguous frames in the same 
cluster to form a clip. Hence, each node will attach 
a list of short clips instead of individual frames 
now. After that, the edge connected any pair of 
nodes which we called “node-pair” later will be 
represented by the concatenation of contiguous 
clips in the corresponding clusters. In general, 
there always exist multiple edges between the 
same node-pair. 
 

As illustrated in Figure 3, the motion is 
divided into two shorter clips after the clustering. 
The first clip belong to cluster 1 contains frame 1 
to frame 5 while the second clip belong to cluster 2 
contains frame 6 to frame 12. Therefore, there is 
one edge between the nodes of cluster 1 and 
cluster 2 and it contains frame 1 to frame 12. 
 

Instead of checking all possible edges, we 
propose a more efficient way here to rapidly detect 
edges in one pass. For each motion in our database, 



we had labeled each frame with a cluster ID in 
Section 3.2. With the above mentioned work, we 
create an edge if there are two consecutive frames 
in a motion belong to different clusters. The 
created edge will connect these two corresponding 
nodes. 
 

As shown in figure 4, there are three different 
motions. Each of them has been divided into small 
clips belonged to different clusters. We can 
construct the directed edges according to 
consecutive frames belong to different clusters. 
The right graph was built according to the left 
information.  
 

 
Figure 4: The graph building 

 
Our transition graph can be either directed or 

undirected. If we take the former assumption, the 
node of the preceding clip will direct toward that 
of the succeeding clip when creating an edge. 
Therefore, the direction of an edge represents 
smooth transition from one to another. On the 
other hand, if we use a clip to create an undirected 
edge, the node-pair can transit to each other only 
when we permit the backward playing of that clip. 
For example, if we want to create a transition from 
node A to node B, we find those clips representing 
this edge. Some of them may be the transition 
motions from node B to node A, we can still use 
them in a backward playback order. 

4.3 Pre-computed Paths 

After constructing the graph, we compute several 
candidate paths for each node-pair in the graph 
with the dynamic programming. The cost of each 
edge is the number of frames of its shortest clip 
multiplied by the distance between the two center 
frames of the corresponding clusters.  We summed 
up the total cost of all passed edges in that path 
and termed it as “transition cost” in text. 
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where m is the number of visiting node in that path, 
Ek is the k-th edge in the path. The function Min 

return the minimum frame numbers of candidate 
clips in Ek while the Distance answer the pose 
difference between the two end nodes of Ek. 
 

In order to balance the storage space and the 
flexibility, for each node-pair, we only keep a 
maximum number of five paths whose transition 
costs are less than a threshold. These preserved 
paths called “candidate paths” and paths with high 
costs called “invalid path”. Since these invalid 
paths usually cause noticeable artifacts in our 
experiences, we discard them even when there is 
no option. 
 

Even though, all motions in the database are 
used for edge connection, the graph is usually not 
strongly connected and there are still node-pairs 
without path connection in practice. We will 
discuss how to perform motion transition under 
such condition in the run-time phase. 
 

We also recorded the transition cost for each 
candidate path in order to provide some references 
for later choices. 

5 Run-time Phase 

In our system, we provide users with various 
character actions. They can be input by keying the 
action ID or associated with any button of 
keyboard or joystick.  The user requests can be 
responded interactively either by choreographing 
the performances in any order or change the 
current action on the half way. The middle 
transitions will be automatically synthesized by 
our approach. 

5.1 Locate the Node-pair 

In the run-time applications, if we want to create 
the transition from a source clip to a destination 
clip which may be the action specified by users, 
we pick the last frame of source clip and the first 
frame of destination clip. In the following, we find 
their nearest clusters respectively by comparing 
those distances between them and the center frame 
of each cluster. Therefore, these frames may not 
belong to any cluster but can still find a closest one. 
Although there will appear more and more 
artifacts with the increasing distance from center 
frame, the strategy of trying to find the nearest 
cluster instead of the exact one can help us to 
handle some conditions we never concerned about 
in the database. 
 



For example in figure 5, the last frame of 
source clip is located in the cluster Ns and the first 
frame of destination is located in the cluster Nt. 
 

 
Figure 5: The location of node-pair 

 
Now, we have one cluster ID for the last frame 

of source clip and the other for the first frame of 
destination clip. We will use this information in 
the next step. 

5.2 Select One Path 

Given a node-pair, we can query the pre-computed 
data to get some candidate paths instead of finding 
the shortest path in the run time. Between these 
candidate paths, we randomly select one in order 
to provide the flexibility. However, the selection is 
accorded to a probability which is estimated in an 
inverse proportion to the transition cost. In the 
example of figure 5, we select one path that passes 
through from N0 to Nk in an increasing order.  

5.3 Synthesize the Transition 

Once the optimal transition path is selected, we 
can synthesize the transition motion according to 
the order of visiting nodes in that path. In our 
approach, we adopt a greedy scheme to synthesize 
the transition. 
 

 
Figure 6 : The best match selection 

 
For each node-pair in the path, such as Ns-N0, 

N0-N1 or N1-N2 in the figure 5, we find a clip that 
can best match the synthesized motion while its 
length is also less than a threshold. Here, the best 
match means that the distance between the first 
frame of that clip and the last frame of the 
synthesize motion is the minimum. As shown in 

Figure 6, we will select Edge1 from the three 
candidate edges between the node-pair Ni-Ni+1. 
 

 
Figure 7: The optimal transition point selection 
 

This solution is not optimal but efficient for 
real-time applications. We then compute the 
distance grid of the back end of synthesized 
motion and the front end of that clip to find an 
optimal transition point. The optimal transition 
point [17] is a point with the minimum distance in 
this grid. In our experiment, we take 10 frames for 
the synthesized motion and 25 frames for the 
incoming clip. As illustrated in Figure 7, the 
distance grid is normalized and represented by the 
color of gray level. 
 

We repeat this process until all selected clips 
of node-pairs have been merged. Now, the 
synthesize transition motion is a continuous 
motion. 

5.4 Bezier Interpolation 

For those node-pairs which can’t find any path in 
the graph, which indicates their transitions doesn’t 
exist in the database, we propose a novel scheme 
of Bezier interpolation to overcome this difficult 
challenge. This scheme not only efficiently 
exploits the cluster information in the pose space 
but also creates more smooth transitions. However, 
the traditional linear interpolation is superior only 
when the difference is subtle.  In the condition of 
no path, we assume that the pose difference 
between the node-pair is obvious. Therefore, we 
prefer using the Bezier scheme instead of applying 
the linear one. 
 



 
Figure 8: Path Selection 

 
In order to get the control points of Bezier 

function, we execute a simple traverse process 
with all cluster medoids. Starting from the source 
node such as node A in Figure 8, we first filter out 
the nodes whose distance from the target node is 
larger than the distance between the current node 
and target node. For example, we never consider 
node C even it is the closest one. Then, we select 
the nearest node in the remaining nodes to be the 
next visiting node. Instead of choosing node B 
nearer to target node, we select node D nearer to 
the current node. This traverse process will be 
repeated until reaching the target node. In Figure 8, 
the visited order is A, D, E, G and H. After that, 
we divide these nodes into two half and compute 
their center nodes which are virtual nodes 
computed by averaging the visited nodes. The 
center nodes such as the dotted nodes C1 and C2 
in Figure 9 are used to be the control points in a 
quadratic Bezier interpolation. Therefore, the 
interpolated results are not only smooth but 
contain the clues of posture distributions in the 
same time.  
 

 
Figure 9: The quadratic Bezier interpolation 

 
The number of frames produced by an 

interpolation is decided by the distance between 
the source pose and the target pose. This criterion 
can avoid the jerky effects and its detailed 
equation is listed below. 
 

σ/),( arg ettsource PosePoseDT =               (2) 
where T means the suitable duration of the 
interpolation, D is the cost function referred to [10] 

and δis a user specified parameter that controls 
the average length of interpolated motion. 

6 Experimental Results 

6.1 Platform 

Our experiments perform on a laptop with a 
1.73GHz Pentium-M processor, 1 GB main 
memory with Windows XP operating system. 
Besides, the graphics card we used is ATI 
Mobility Radeon X700. 

6.2 Database 

Our database includes 73 motions with a 30 fps 
sampling rate. In order to control the avatar by 
specifying actions, each motion only contains a 
simple action of martial art or locomotion. These 
short motion sequences were separately captured 
or manually segmented while it can also use the 
automatic schemes to divide the long sequences 
into shorter sequences. For parametric motion 
synthesis, we captured nine motions of different 
directions for any type of actions. The skeleton we 
adopted contains 19 joints and 60 degrees of 
freedom (DOFs) and the total number of frames in 
our database is only 3648. Even with such a small 
database, we can still produce the quality results. 

6.3 Examples 

All the examples in this section can be found 
in our accompanying video. In the first example, 
we will demonstrate a sequence of actions of 
martial art. The synthesized frames are shown in 
Figure 1. We arrange the six arbitrary actions in 
martial art with a specific order and perform them 
once at a time to show the audience their original 
movement first. Finally, our approach 
automatically synthesizes the continuous, high-
fidelity streams of motion. 
 

In addition to make the transition between 
different clips, we also combine the parametric 
motion synthesis technique to attain the precise 
control of avatars. In this example, the avatar 
successfully hit the target point after performing 
various actions, as shown in Figure 10. Here, our 
parametric motion synthesis technique is referred 
to [7]. In order to save the huge storage space for 
the parametric parameters, we divided the 
parameterized space into discrete voxels. This 
scheme is similar to that of Lee’s [24] but they 
used the space segmentation for the captured 
motions. 



 
Figure 10: Parametric motion synthesis 

 
The third example shows the comparison 

between the traditional linear interpolation scheme 
and our scheme. We create an interpolation 
between a kick posture and a punch posture. The 
traditional scheme moves the right hand and right 
leg in the same time causing the unbalanced 
artifact while our scheme knows to shrink the leg 
first before punching. The results are illustrated in 
Figure 11. Besides, we can preserve the C1 
continuity through the Bezier interpolation while 
linear interpolation only provides C0 continuity 
 

 

Linear

 

Bezier

 

Figure 11: Different interpolation scheme 
 

Finally, we demonstrate the flexibility of our 
approach. The user commands one character to 
walk forward, but there is another sneaker which 
wants to attack him. The player was aware of the 
approaching punch and squat immediately to 
dodge this attack. We just cleaned up the end of 
playback buffer and locate the new end of 
playback buffer and the first frame of desired 
action. 
 

 
Figure 12: Dodge example 

 

6.4 Statistics 

The clustering divided the frames into 164 clusters 
with 785 short clips attaching to these nodes. The 
transition graph includes 660 edges. 
 

Example Time(sec) Frames
Consecutive Attacks 0.157 150 
Parametric Synthesis 0.561 233 
Bezier Interpolation 0.029 20 

Dodge 0.155 121 
Table 1 : The synthesis time for examples 
 

The computation time for synthesizing each 
example is shown in Table 1. All examples use the 
same transition graph where the clustering needs 
about 0.76 seconds and the precomputation of path 
candidates spends about 463.46 seconds. We 



observed that the maximum average time for each 
frame is less than 0.0024 second. Therefore, we 
claim that the proposed approach is adequate for 
run-time applications on regular PCs or laptops 
with multi-threaded programming. 

7 Discussion 

In this paper, we present a novel motion synthesis 
approach for producing continuous, controllable 
sequences of motion with motion capture data. 
 

Our two pass clustering method is simple but 
reliable. Other more complicated clustering 
techniques such as k-means or mean-shift may 
provide more delicate clusters but will cost much 
more pre-computation time. For example, the k-
means clustering spends 8211.88 second for 100 
iterations when k is 150 while ours is less than 1 
second. 
 

The user specified threshold for our clustering 
indicates the covering radius of each cluster. 
Therefore, the bigger the value, the less clusters. 
Although the size of the preprocess data can be 
reduced substantially with a small radius, the 
artificial errors obviously increase on the contrary. 
The necessary space for storing preprocess data 
are huge with the storage complexity of O(n2). 
Therefore, how to balance the accuracy and 
necessary space is critical in our approach. 
 

As shown in the final examples of our video, 
our approach can permit the avatar to change his 
action extemporarily. This technique is especially 
useful in fighting games. In traditional video 
games, they usually use the technique of move tree 
where the avatar must return to the ready pose first 
before performing the next action. However, we 
can overcome this limitation with the proposed 
approach. The player can interactively control 
their character according to the reaction of 
opponents. 
 

The transition motions from poses to poses are 
usually short because a long transition motion will 
substantially destroy the timing of motion. Due to 
the short duration property of transition, we 
assume that the transition can still keep the 
naturalness even in backward playing. 
 

The future works includes the reduction of the 
preprocess data and speed up the computation of 
synthesis. For example, we will adopt a 

hierarchical clustering scheme to reduce the 
location time. The time complexity will decrease 
to O(logn) from O(n) where n is the number of 
existent clusters. 
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