Chapter 2 Time-Domain Representations
of LTl Systems

1 Intfroduction

o Impulse responses of LTl systems

1 Linear constant-coefficients differential or difference
equations of LTl systems

7 Block diagram representations of LTI systems
o State-variable descriptions for LTl systems

7 Summary
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2. Convolution Sum
e

Impulse Response
of the System
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2. Convolution Sum
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2. Convolution Sum
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2. Convolution Sum
ma

Example 2.1 Multipath Communication Channel: Direct Evaluation of the
Convolution Sum

Consider the discrete-time LTI system model representing a two-path propagation
channel described in Section 1.10. If the strength of the indirect path is a =%, then

y[n]=x[n]+-x[n-1]

Letting x[n] = d[n], we find that the impulse response is

(1, n=0 (2 n=0
1 4, n=1
—J= - X[n]=:
h[n] <2, n=1 [ ] 2 n—2
| 0, otherwise | 0, otherwise
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2. Convolution Sum

T
- Input=Oforn<Oandn>0
<Sol.> /—‘
1. Input:  X[n]=28[n]+48[n—-1]-256[n-2]
2.5ince  time-shifted impulse input time-shifted impulse response output
yé[n —K] n— yh [n —K]
3. Output: (0, n<O
y[n]=2h[n]+4h[n-1]-2h[n-2] 2, n=0
5, h=1
y[n]=< 0, n=2
-1, n=3
|0, n=4
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3. Convolution Sum Evaluation
Procedure

Define intermediate signal y[n]= i x[k]h[n—k]

k=—c0

k = independent variable
o [K] = X[K]h[n — K]
n is treated as a constant by writing n as a subscript on w.

h[n—k] = h[- (k — n)] is a reflected (because of — k) and
time-shifted (by — n) version of h [k].

P yinl= Y o

The time shift n determines the time at which we evaluate the
output of the system.
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3. Convolution Sum Evaluation

Procedure
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3. Convolution Sum Evaluation
Procedure

Procedure (reflect and shift convolution sum evaluation)
Step 1: Time-reverse (reflect): h[k]  h[-k]
Step 2: Choose an n value and shift h[.] by n: h[n-k].
Step 3: Compute wn[k] = x[k]h[n-k]
Step 4: Summation over k: y[n]=2k wn[k]
Step 5: Choose another n value, go to Step 2.
Step 6: Slide a window of h[k] over the input signal from
left to right.
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3. Convolution Sum Evaluation

Procedure
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4. Convolution Integral

The output of a continuous-time (CT) LTI system may also
be determined solely from knowledge of the input and
the system’s impulse response.
Signal Integral
X(t) = jz x(£)5(t - 7)d 7
Linear System
y(t)=H {x(t)} = H{jjox(f)(s(t_f)dr}
y(t) = [ x(z)H{S(t- 7)}d 7

Shift-Invariance H(t-2)=h(t-7)
y(t) = [ x(o)h(t-7)dz PSPL AR



4. Convolution Integral

1 Convolution Operator

=]

x(t) = h(t) = f | x{(Th(t — 71 dr
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5. Convolution Integral Evaluation

Procedure

- Define the immediate signal

W, (r) = X(T)h(t—T)

- Evaluate the output signal at

a specific time t

y(t) = [ w,(z)dz

x(1)

11

6" 1 4 3

| h(t=1)

-2 t
(a)

w,(t)

,

0 | t-2 3

0 1
(b)
y(t)
24
14 /\
t ‘ ;
0 I 2 3 4 5
(d)
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6. Interconnection of LTl Systems

Relationships between ‘““the impulse response of an
interconnection of LTl system” and “the impulse
responses of the constituent systems”.

y(t) — yl(t) +Y, (t) > hy(1)
— x(t) *h, (t) + x(t) . (t) v+

x(t) —>—ae —> V(1)

A+

yt) = [ x@ht-2)dr+[ x(@)h,(t-7)dz

> h,(1)
y(t) =j:x(r){hl(t—r)+hz(t—f)}dr
= [ x(z)h(t=)dz=x(t) *h(t) () —> @O +ho(t)  — y(1)

X(1) *hy (1) + X(1) #h,(t) = (1) * {h,(t) + ", (1)}
X[n]* h1[n] + x[n] * h2[n] = x[n] *{h1[n] + h2[n]} rorL~A



6. Interconnection v —o %

(a)

of LTl Systems

1 Cascade

y(f) = z(f) * h2(f) = {x(1) * h1(f)} * h2(1)

y(t) = / f ()b (7 — v)by(t — 1) dvdr

sy = [ o) [ mmate v = m)dn s

bt = v) = / (st — » — m) dn

/ bh(t — v)dv

x b(1).
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6. Interconnection of LTl Systems

1 Communicative
y[k] = _Z h[k — iJu[i]= h[k]* u[K]

— i hliJu[k — i]= u[k]* h[K]

1 Parallel Sum
x[n]1*{h,[n]+ h,[n]}
= X[n]* h[n]+ X[n]* h,[n]

1 Cascade Form

X[n]*{h,[n]*h,[n]}
=WX[n1*h[n]}*h,[n]

x[n]

x[n] hin] y[n]
h[n] X[n] y[n]

x[n]

y[n]

—h1[n]+h2[n][—

xin] T y[?_)
> h2[n]
hi[n] h2[n] RN
x[n] y[n]

—_—

hi[n]*h2[n]—
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6. Interconnection of LTl Systems

X(t) % {hy (t) =, (t) | = x(t) * {h, (t) xh (1)},

h,(t) +h,(t) =h,(t) *h,(t) iyl = hy(n] + Ryl ia[in] ¥ yln]
{x[n] * hy[nl} % h,[n] = x[n] * {h[n]  h, [n]} +0——f '!i!

h,n] = h,[n] = h,[n] * h,[n] > hind

¥[n]




6. Interconnection of LTl Systems

Table 2.1 Interconnection Properties for LTI Systems

Property Continuous-time system Discrete-time system
Distribu x(f)* ()+T(f)"h1() x{n]=h[n]+x[n]*h,[n] =
istributive
x(t)={h (1) +hy(1)} x[n]#{h[n]+h,[n]}

Associative — {x(f)*h(1)}x hy(£) = x(t) = { Iy (t) ¥ by (1)} {x{n] b [n]} % Iy [m]) = x{n] s { Iy [n] % By ]

Commutative h(£)% hy(t) = h,(t)*h (1) h[n]%hy[n] = h[n]*h[n]

— N = AN



7. Relations between LTI System

. Properties and the Impulse Response

1 Memoryless Systems

Discrete-Time Systems

y[n]=h[n]*Xx[n] = i h{k]x[n—k]
h(z) =co(z)

Continuous-Time Systems

y(t) = le h{t)x(t — 1) dr

h[k] = co[K]

e od VAN



7. Relations between LTI System

. ProEeriies and the Imﬁulse Resaonse

1 Causal Systems

y[n] = >, blklx[n — k|
k=0

h[k]=0 for k<O

y(t) = f_m h(T)x(t — 7) d7

h(z)=0 for 7<0

PSPLAB



7. Relations between LTI System

. ProEeriies and the Imﬁulse Resaonse

0 Stable LTI Systems

o DT
X[n]| <M, <co uwmmsi Output: |y[n]|£Mygoo

|y[n] =|h[n]*x[n]|=

S hK]x[n —k]

yinl< Y |hKIXn - a+b)<[a|+]o

k=—c0

[ab| = aflb]

yinl< 3 K] X[n — k]

k=—c0

XN <M, <o wms  |yn] <M, i Ihik]|

Theimpulse response is

imss)  BIBO both sufficieParé-riecessary

condition.

Z |h[k]| < 0. absolutely summable” is
k=—o0




7. Relations between LTI System

Properties and the Impulse Response

] Stqbility Of LTI S)’STemS (BIBO, Bounded-Input-Bounded Output System)

Linear time-invariant systems are stable if and only if the impulse

response is absolutely summable, i.e., i

<pf>

S= D |alk]<oo
Ak =—c0

Since that

< >|hIKI|xin — ]

If x[n] is bounded so that |x[ #] < 5,

then

ylal=B, > |alk]
k=—o0

If S="° then the bounded input

{h*[_n],b[n]iO
xX[ln]= —

0, Al n]=0

will generate
IS
Atk

e ol AN

y[0]= Zx[ klalk]= Z



7. Relations between LTI System

L Properties and the Impulse Response

o Similarly, a continuous-time LTI system is BIBO stable if
and only if the impulse response is absolutely integrable

| Ih@)dr <oe.

Example 2.12 Properties of the First-Order Recursive System
Thefirst-order system is described by the difference equation

y[n]= pyln-1]+X[n]
and has the impulse response

h[n]= p"uln]
Is this system causal, memoryless, and BIBO stable?

<Sol.>
1. The system is causal, since h[n] =0 forn <0.
2. The system is not memoryless, since h[n] # 0 for n > 0. PPl AR

3. Stability: Checking whether the impulse response is absolutely summable?



7. Relations between LTI System
Properties and the Impulse Response

A system is invertible

If the input to the system can be recovered from the output
except for a constant scale factor.

The existence of an inverse system that takes the output of
the original system as its input and produces the input of the

original system.
x(t) * (h(t) * hinv(t))= x(t).
h(t) * hinv(t) = 6(1)
Similarly, h[n]* hinv[n] = 6[n]

x(t) = h(t) ﬁh h'™(t) —> x(1)



7. Relations between LTI System

. Properties and the Impulse Response

Example 2.13 Multipath Communication Channels: Compensation by means of
an Inverse System

Consider designing a discrete-time inverse system to eliminate the distortion

associated with multipath propagation in a data transmission problem. Assume

that a discrete-time model for a two-path communication channel is

y[n] = x[n]+ax[n-1].

Find a causal inverse system that recovers x[n] from y[n]. Check whether this
Inverse system is stable.

<Sol.>
1. Impulse response:
1, n=0
h[n] =1 a, n=1
0, otherwise

2. The inverse system hi"V[n] must satisfy h[n] * hi"v[n] = §[n].
h™[n]+ah™[n—1] = 5[n].

e —d VAN



7. Relations between LTI System

- Properties and the Impulse Response

1) Forn <0, we must have h""V[n] = 0 in order to obtain a causal inverse
system

2) Forn =0, 8[n] = 1, and eq. (2.32) implies that
h™[n]+ah™[n-1] =0,
h™[n]=-ah™[n-1 (2.33)

3. Since h'"v[0] = 1, Eq. (2.33) implies that h'"V[1] = - a, hi"v[2] = a2, hinV[3] = -
and so on.
Theinverse system has the impulse response

h"™[n]=(-a)"u[n]

4. To check for stability, we determine whether hi"V[n] is absolutely summable,
which will be the case if

Zh'w[k]\_ a* s finite.

=—00 =—00

e o B AN
& For |a| < 1, the system is stable.



7. Relations between LTI System

- Properties and the Impulse Response

Table 2.2 Properties of the Impulse Response Representation for LTI Systems

Property Continuous-time system Discrete-time system
Memoryless h(t)=cd(t) h[n]=cd[n]

Causal h(t)=0 for <0 hln]=0 for n<0

Stability [~ @ < oo > |in]<eo
Invertibility h(t)*h™ =8(1) h[n]*h" [n]=6[n]

e —d VAN



8. Step Response

Step response is the output due to a unit step input signal

Step input signals are often used to characterize the response of
an LTI system to sudden changes in the input

s[n] = h[n]*u[n] = i h[k]u[n —K].

Since uln — k] = 0 fork > nand u[n — k] = 1 for k < n, we have

stnl= > hik. A = s{n]—s[n—1]
k=—00
Similarly for CT system
! d
s(t) = [_h(z)dz h(t) =—-s(0) ot A



8. Step Response

Example 2.14 RC Circuit: Step Response
Theimpulse response of the RC circuit depicted in Fig. 2.12 is

h(t) = R—lc e Reu(t)

. t 1 = 1)
1. Step respose: s(t)=| ——e RCu(r)dr. X(
O)=[, =€ "u@)

0, t<0 l

S(t)=< 1 t --Z 09}

—— 1| e Ru(r)dr t=0 08/

\RC J‘—oo () 0.7

0, t<0 o oal

s(t) =+ T 041

L te RCdz t=>0 031

II‘ [RC 7o o2
(0, t<0 T 1 2 3 4 s 6 7 %

=< t (

e 120 PSPLA




9. Differential and Difference Equation
Representations of LTl Systems

Linear constant-coefficient difference and differential
equations provide another representation for the input-
output characteristics of LTl systems.

CT: Constant coefficient differential equation
N d M dk
Sa, Sy =3b,

k=0

DT: Constant coefficient difference equation

> ayln-K =Y b,x{n -k

— X(t)

The order of the differential or difference equationis (N,M), representing the

number of energy storage devices in the system. Often, N>= M, and._the order is
e S =N TANY 9

described using only N.



9. Differential and Difference Equation

- Representations of LTl Systems

1 Example A —Y

Summing the voltage loop

\|
/1
)

@
&

y(t)

d 1 /[ ,
Ry(t) + LE}J(:} + E [ y{r)dr = x(2)

Differentiating both sides

1 d_ .o d
C {f} T R{ff}r( } LF}"{ﬂ filf { }

1 The order is N = 2 and the circuit contains two energy storage
devices: a capacitor and an inductor.

e od VAN



9. Differential and Difference Equation
Representations of LTl Systems
- Example of a Difference Equation
y[n]+y[n—1]+%y[n—2]:x[n]+2x[n—1]
Rearrange the equation
yin] = x{n] + 244 -4 - yIn- 4 - yin-2]

Starting from n = 0, compute the current output from the input
1

and the past outputs  y[0] = (0] + 2x[~1] = »[~1] = ;2(-2],

(3] = x[3] + 222 - ¥(2] - ol1],
1 We must know two most recent pdsf values of the output, namely, y[-1] and y[-2].

These values are called initial conditions. PDebPI AR



9. Differential and Difference Equation
Representations of LTl Systems

Initial Conditions

Summarize all the information about the system’s past
needed to determine future outputs.
In general, the number of initial conditions required to determine

the output is equal to the maximum memory of the system.

DT: Nth-order difference egn. N values
Y[-N]I Y['N+ 1 ]I ceey Y['] ]
CT: Nth-order differential egn. first N derivatives of the

d d?

output; the
t —y(t — y(t

ST (t)
t=0-

Note: The textbook says the first N derivatives, whii_gl‘n\iﬂcllug\e._(
y(t)|+=0-, the Oth-order derivative.



10. Solving Differential and Difference
Equations

Given x(t) (input), find y (t) (output)
y = y" + y(P) = homogeneous solution + particular solution

Homogeneous solution for Differential Equations
N dk ()
a—Yy ' (t)=0
The homogeneous solution is the solution the form
N

y(h) (t) _ Z cie“t
i=0

¢ are to be decided in the complete solution and ri are the N
roots of the system’s characteristic equation

ZN:akr" =0
k=0

— N = AN



10. Solving Differential and Difference

Equations

7 Homogeneous solution for Difference Equation

N

>a y"[n-k]=0

k=0

The homogeneous solution is the solution the form

N
y*[n] =2 cff
i=1

¢ are to be decided in the complete solution and ri are the N
roots of the system’s characteristic equation

N
Y art =0
k=0

B S =¥ R N =



10. Solving Differential and Difference

Equations
4 D)

1 If a root r; is repeated p times in characteristic eqs., the

corresponding solutions are

it Nt p-14tjt
Continuous-time case:; e, te’, .., "’
\_  Discrete-time case: AN | AR L y
R
1 Example d
P y(t)+RCay(t):x(t) ——VWVv—

2

il

I+
/

/i(:)) C== y@®

1. Homogeneous Eq.: y(t)+ RC%y(t)zo

2. Homo. Sol.: y(h)(t)zclerlt \V/

3. Characteristic eq.: 1+RCr =0 r,=—1/RC

4. Homogeneous solution: ) -t
y"(t)=cer V

B S =¥ R N =



10. Solving Differential and Difference

Equations
—

0 Example
y[n]=py[n-1]=x[n]

1. Homogeneous Eq.:  y[n]—py[n—-1]=0
2. Homo. Sol.: y" [n]=cr

3. Characteristiceq.: L —p=0
4. Homogeneous solution:  y"[n]=cp"

PSPLAB



10. Solving Differential and Difference
Equations

Particular Solution

The particular solution yP) represents any solution of the
differential or difference eqn. for the given input.

y/Plis not unique. A particular solution is usually obtained by
assuming an output of the same general form as the input
yet is independent of all terms in the homogenous solution.

Example y[n]-py[n-1]=x|n]
if the inputis x[n] = (1/2)".
1. Particular solution form: y®[n]= C, (%)n

2. Substituting y®)n] and x[n] into the given difference

Cp (%)” ~ PGy (%)n_l N (%)” c,(1-2p)=1 y* [n]= ﬁ(%}’\“' AD



10. Solving Differential and Difference

Equations

7 Hypothesis for the Particular Solution

Table 2.3 Form of Particular Solutions Corresponding to Commonly Used Inputs

Continuous Time Discrete Time
Input Particular Solution Input Particular Solution
1 c | C
{ cf +¢, n c,n+c,
e ce ™ o co”
cos(wt + @) ¢, cos(wt )+ ¢, sin(@f) cos(Qn + @) ¢, cos(L2n) + ¢, sin(Q2n)

B S =¥ R N =



10. Solving Differential and Difference

Equations

Procedure

Procedure 2.3: Solving a Differential or Difference equation

1. Find the form of the homogeneous solution y from the roots of the
characteristic equation.

2. Find a particular solution y® by assuming that it is of the same form as the
input, yet is independent of all terms in the homogeneous solution.

3. Determine the coefficients in the homogeneous solution so that the complete
solution y = y" + y(P) satisfies the initial conditions.

= S =1 2N b=



10. Solving Differential and Difference
Equations

Example

First-Order Recursive System (Continued): Complete Solution

Find the complete solution for the first-order recursive system described by
. . 1
the difference equation y{n] _Zy[n _1] = x[n]

if the inputis x[n] = (1/2)" u[n] and the initial conditionis y[ — 1] = 8.
<Sol.> 1. Homogeneous sol.: 4. Coefficient ¢, determined by I.C.:
y(“)[n]zcl(%)n y[0]=x[0]+1/4 y[-1] y[0]=x[0]+(1/4)x8=3

We substitute y[0] = 3
2. Particular solution:

n 1 0 1 0
I T -
3. Complete solution: 5. Final solution:

y[n] = 2(%)n + Cl(%)n y[n]= z(ljn +(ljn formsol AR



10. Solving Differential and Difference

Equations

1. Homogeneous sol.: y(h)(t)zclerlt \V/

2. Particular solution: 0y=1
) (t) = cos(t)+ RC sin(t) V
v 1+(RC) (1) 1+(RC) (1)

3. Complete solution: _~— R=10Q,C=1F
1 1.
y(t):ce‘t+zcost+gsmt V

4. Coefficient ¢, determined by I.C.: y(0) = y(0%)

+ . R ) =
2=ce” +EcosO++lsmO+:c+E c=3/2 y(0)=2V
2 2 2
5. Final solution: x(f) -
3 ., 1 1.
y(t):Ee +§cost+§smt V X(t) = cos(t)u(t)

R=1Qkpd s 1A R



11. Characteristics of Systems Described

L by Differential and Difference Equations

7 Natural Response

The system output for zero input. It is produced by the stored
energy or memory of the past (non-zero initial conditions).

Homogeneous solution by choosing the coefficients ci so that
the initial conditions are satisfied. It does not involve the
particular solution.

- The natural response is determined without translating
initial conditions forward in time.

B S =¥ R N =



11. Characteristics of Systems Described
by Differential and Difference Equations

Forced response: the system output due to the input
sighal assuming zero initial conditions.

It has the same form as the complete sol.

A system with zero initial conditions is said to be “at rest”. The at-
rest (zero state) initial conditions must be translated forward
before solving for the undetermined coefficients.

DT: y[-N] = y[-N+1] = ... =y[-1] =0 y[O], y[1], ..., y[N -1]

CT: Initial conditions at t = 0- = 0+
We shall only solve the differential eqns. of which
initial conditions at = O+ are equal to the zero initial
conditions at f = O-.

— N = AN



11. Characteristics of Systems Described

. bx Differential and Difference Eﬂuations

71 Find the natural response of the this system, assuming that y(0) = 2
VVR=1Qaoand C=1F

y(t)+RC%y(t):x(t)

1. Homogeneous sol.: y(h)(t)zce—t vV
1
2.1.C..y(0)=2V
e yM(Q)=2V  mmem» ¢, =2

3. Natural Response:

y(" (t)=2e" V

PSPLAB



11. Characteristics of Systems Described
by Differential and Difference Equations

Impulse response

1. We do not know the form of particular sol. for impulse
input (why?).
In general, we can find the step response assuming that the
system is at rest. Then, the impulse response is obtained by
taking differentiation (CT) or difference (DT) on the step
response.
Step response is the output due to a unit step input signal
2. Impulse response is obtained under the assumption that
the systems are initially at rest or the input is known for all

time.

— S =N TAN o3



11. Characteristics of Systems Described

- by Differential and Difference Equations

o Linearity

The forced response of an LTI system described by a

differential or difference eqn. is linear with respect to
theinput (zero I.C.).

The natural response of an LTI system described by a

differential or difference eqn. is linear with respect to the
initial conditions (zero input).

e ol AN



11. Characteristics of Systems Described

- by Differential and Difference Equations

1 Time invariance

The forced response of an LTI system described by a
differential or difference eqn. is time-invariant.

u In general, the output (complete sol.) of an LTI system
described by a differential or difference eqn. is not timeinvariant
because the initial conditions do not shift in time.

7 Causality

The forced response (zero I.C.) is causal

B S =¥ R N =



11. Characteristics of Systems Described
by Differential and Difference Equations

Stability

The natural response (zero input) must be bounded for any
set of initial conditions. Hence, each term in the natural
response must be bounded.

DT: is bounded for all i. (When , the natural response does not
decay, and the system is on the verge of instability.)

A DT LTI system is stable iff all roots have magnitude less than unity.

CT: is bounded for all i. (When , the natural response does not
decay, and the system is on the verge of instability.)

A CT LTI system is stable iff the real parts of all roots are negative.

— S =N TAN o3



11. Characteristics of Systems Described
by Differential and Difference Equations

Response time (to an input)

The time it takes an LTl system to respond a (input) transient.

When the natural response decays to zero, the system behavior is
governed only by the particular solution, which is the same as
the input. Thus, the response time depends on the roots of
characteristic eqn. (It must be a stable system.)

DT: slowest decay term = the largest magnitude of the
characteristic roots

CT: slowest decay term = the smallest (magnitude)
negative real-part of the characteristic roots

— N = AN



12. Block Diagram Representations

Block Diagram Representation

A block diagram is an interconnection of elementary operations that act on the
input signal. It describes the system’s infernal computations or operations are
ordered.

(More detailed representation than impulse response or diff. eqns.)

The same system may have different block diagram representations. (Not

1 |
UanUe-) x(1) : :;[[j:c,x{j'] o 2 (t) . X( )d
X - - =
Elementary operations: X[n] yin] =cx[n] YO =] x)dr
Scalar multiplication (@) stn] — oo ] s
Addition "“}_._ 5 _h_}'(11=x{r}+ w(1)
. x(n] yln] = x[n) + w(n) (c)
CT: Integration
DT: time shift “"41”

v (b)

— N = AN



12. Block Diagram Representations
B

1 Direct Form |

yln] = —ayy[n—1 - a,y[n - 2]+ byx[n] + bx[n—1] + b,x[n— 2]
w[n] = b x[n] +b,x[n—1] +b,x[n — 2]
y[n] =w[n] -ay[n -1 -a,y[n-2] x[n]

T T T T e e e e e e e e — oy

| win]

» »H > y[n]
|
|

?« . yn-1]

— yin - 2)

I
I
I
I
I
I
|
|
| b &
I
I
|
|
|
I
I
I

PSPLAB



12. Block Diagram Representations

Direct Form |l

Interchange their order without changing the input-output
behavior of the cascade. We then can merge the two sets of
shifts into one.

b, x(t) = I

x(1) I » T —p T l > y(1) | Y
‘ =
X A
A

f(n) b,
> - > Y — y(1)

b ", 4 >
- i f o -
x(r) L > ' ¥ ) ) 1
A
| b —dy | —_aILo—Eﬂ—
I{ﬂ[ 1) > - },12}{1} ftz)(F}



13. State-Variable Descriptions of LTI
Systems.

Matrix form of output equation:

a.[n] xX[n] —~(Z (2 — y[n]
y[n]=[b,-a, b, —az]{ ' }+ [1]x[N] A lqln +1] .
d,[n] ‘
Define state vector as the column vector
—d b,
0[] 3 —— —(3
nj= q,[n]
q[n] le[n]} A : A
So
aln+1] = Aq[n] + bx(n] w | e
gs[n]

y[n] = cq[n] + Dx[n]

1 0 0

e ol AN



13. State-Variable Descriptions of LTI
Systems

State-variables are not unique.

Different state-variable descriptions may be obtained
by transforming the state variables.

The new state-variables are a weighted sum of the original
ones.

This changes the form of A,b,¢, and D, but does not change
the | /O characteristics of the system.

— N = AN



13. State-Variable Descriptions of LTI
Systems

The original state-variable description

1. State equation:
g, [n+1]=eaq,[n]+dx[n] i)

> S

q,[n+1]=yq,[n]+ Ba,[n]+ &,x|n]

gq,[n]

2. Output equation:
Y[”]=771q1[n]+772q2[n]
3. Define state vector as
ql[n]}
qn)=
i {qz[n]
In standard form of dynamic equation: A:{a O} b= o,
d[n+1] = Ag[n] + bx[n]
y[n] = cq[n] +Dx[n]

c=[m mPsPip=[2]



13. State-Variable Descriptions of LTI

Systems
_ & |
1 Continuous-Time Yo
- AW AN
aq(t):Aq(t)+bx(t) 0 () : ¢, .—.:q.(nR2 R

y(t) = cq(t) + Dx(t)

1. State variables: The voltage across
each capacitor.
2. KVL Eq. for theloop involving x(t), R;, and C;:

x(t)=y(t)R +0,(t) /—| Output equation

1 1
y(t) = R Sl ==

1

3. KVL Eq. for theloop involving C4, R,, and C.:
Ch (t): R,1,(t) +0,(t)

B S =¥ R N =



13. State-Variable Descriptions of LTI

Systems
—

4. The current i,(t) through R,:

5. KCL Eg. between R; and R,:

d
1, (t) qz(t) n— an( ) C,R, ql( CR, (t)
where .
L()-C%q () d 1
de " dt<11() ( CR Cqul() 1R2q2(t)+C1R1X(t)
__( 1,1 j 1 - -
CR CR,) CR,
A= Ril B : b=| CR, C:{_é O:|, aﬁSDzéXB
C2R2 C2R2_ | |




13. State-Variable Descriptions of LTI

Systems
Y

1. State equation: 3. State-variable description:
g - -
—0,(1) =20, ()=, () + (1) A{Z 1}, b{l,

1 0 0]
d -
g (H)=a(t) c=[3 1] D =[0]

2. Output equation:
y(t)=3q,(t)+a,(t) PSPPI AR



Transformations of the State

State-variables are not unique.

Different state-variable descriptions may be obtained
by transforming the state variables.

The new state-variables are a weighted sum of the original
ones.

This changes the form of A,b,¢, and D, but does not change
the | /O characteristics of the system.
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Transformations of the State

1. Original state-variable description:
g =Aqg+ bx

y = cd-+ Dx - T=stateransformation matrix

2. Transformation:  gq’=Tq n— q=T1q

3. New state-variable description: /—‘ -
1) State equation: ¢ =TAqg+ Tbx.
q= T'

e g =TAT ‘g + Thx.

2) Output

equation: y=ct~q+Dx.

3) If we set
A =TAT?, b'=Tb, ¢’=cT?, and D'=D
then

q=AQg+bx and y=c'g+DX PSPLAR



Remarks

Introduction
Convolution Sum
Convolution Sum Evaluation Procedure

Convolution Integral

Convolution Integral Evaluation Procedure
Interconnection of LTI Systemss

Relations between LTI System Properties and the Impulse
Response

Step Response
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