
Chapter 2 Time-Domain Representations 

of LTI Systems 

 Introduction

 Impulse responses of LTI systems

 Linear constant-coefficients differential or difference 

equations of LTI systems

 Block diagram representations of LTI systems

 State-variable descriptions for LTI systems 

 Summary
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2. Convolution Sum

 An arbitrary signal is 

expressed as a weighted 

superposition of shifted 

impulses.

     
k

x n x k n k




 

LTI system

H

Input 

x[n]

Output 

y[n]
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2. Convolution Sum

 Convolution

H x n H x k n k x k H n k x k h n k
k k k

[ ( )] [ ( ) ( )] ( ) [ ( )] ( ) ( )     
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



   

Impulse Response

of the System

       
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x n h n x k h n k




  
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2. Convolution Sum
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2. Convolution Sum
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2. Convolution Sum
8

Example 2.1 Multipath Communication Channel: Direct Evaluation of the 

Convolution Sum

Consider the discrete-time LTI system model representing a two-path propagation 

channel described in Section 1.10. If the strength of the indirect path is a = ½ , then

     
1

1
2

y n x n x n  

Letting x[n] =  [n], we find that the impulse response is

 

1, 0

1
, 1

2

0, otherwise

n

h n n





 



 

2, 0

4, 1

2, 2

0, otherwise

n

n
x n

n


 

 
 
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2. Convolution Sum
9

<Sol.>

1. Input:        2 4 1 2 2x n n n n      

Input = 0 for n < 0 and n > 0

2. Since

 [n  k]

time-shifted impulse input

h [n  k]

time-shifted impulse response output

3. Output:

       2 4 1 2 2y n h n h n h n    

 

0, 0

2, 0

5, 1

0, 2

1, 3

0, 4

n

n

n
y n

n

n

n


 

 

 


 






3. Convolution Sum Evaluation 

Procedure

 Define intermediate signal 

 n is treated as a constant by writing n as a subscript on w.

 h [n  k] = h [ (k  n)] is a reflected (because of  k) and 

time-shifted (by  n) version of h [k].

 Since

 The time shift n determines the time at which we evaluate the 

output of the system.

     
k

y n x k h n k




 

n[k] x[k]h[n k]  

k = independent variable

n

k

y[n] [k]




 
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3. Convolution Sum Evaluation 

Procedure
11



3. Convolution Sum Evaluation 

Procedure

 Procedure (reflect and shift convolution sum evaluation) 

Step 1: Time-reverse (reflect): h[k] h[-k] 

Step 2: Choose an n value and shift h[.] by n: h[n-k]. 

Step 3: Compute wn[k] = x[k]h[n-k] 

Step 4: Summation over k: y[n]=Σk wn[k] 

Step 5: Choose another n value, go to Step 2. 

Step 6: Slide a window of h[k] over the input signal from  

left to right. 
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3. Convolution Sum Evaluation 

Procedure

 Check values in y[n]
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4. Convolution Integral 

 The output of a continuous-time (CT) LTI system may also 

be determined solely from knowledge of the input and 

the system’s impulse response. 

 Signal Integral

 Linear System 

 Shift-Invariance

         y t H x t H x t d   



  

-
x(t) x( ) (t - )d   




 

-
y(t) x( )H{ (t - )}d   




 

H{ (t - )} h(t - )  

-
y(t) x( )h(t )d  




 
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4. Convolution Integral 

 Convolution Operator
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5. Convolution Integral Evaluation 

Procedure

 Define the immediate signal

 Evaluate the output signal at 

a specific time t

     tw x h t   

 



  t

-
y(t) w ( )d
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6. Interconnection of LTI Systems

 Relationships between “the impulse response of an 

interconnection of LTI system” and “the impulse 

responses of the constituent systems”. 

1 2

1 2

( ) ( ) ( )

( ) ( ) ( ) ( )

y t y t y t

x t h t x t h t

 

   

1 2( ) ( ) ( ) ( ) ( )y t x h t d x h t d     
 

 
    

 1 2( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

y t x h t h t d

x h t d x t h t

   

  









   

   





1 2 1 2x(t) h (t) x(t) h (t) x(t) {h (t) h (t)}     

x[n] * h1[n] + x[n] * h2[n] = x[n] * {h1[n] + h2[n]} 
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6. Interconnection 

of LTI Systems

 Cascade

 y(t) = z(t) * h2(t) = {x(t) * h1(t)} * h2(t)
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6. Interconnection of LTI Systems

 Communicative

 Parallel Sum

 Cascade Form

y k h k i u i h k u k

h i u k i u k h k

i

i

[ ] [ ] [ ] [ ]* [ ]

[ ] [ ] [ ]* [ ]

  

  













x n h n h n

x n h n x n h n

[ ]*{ [ ] [ ]}

[ ]* [ ] [ ]* [ ]

1 2

1 2



 

][*]}[*][{

]}[*][{*][

21

21

nhnhnx

nhnhnx



h1[n]+h2[n]
x[n] y[n]

h1[n]
x[n] y[n]

h[n]
x[n] y[n]

x[n]
h[n] y[n]

h1[n]*h2[n]
x[n] y[n]

h1[n]
x[n] y[n]

h2[n]

+

h2[n]
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6. Interconnection of LTI Systems

1 2 2 1h (t) h (t) h (t) h (t)  

1 2 1 2{x[n] h [n]} h [n] x[n] {h [n] h [n]}    

1 2 2 1h [n] h [n] h [n] h [n]  

   1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ,x t h t h t x t h t h t    
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6. Interconnection of LTI Systems
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7. Relations between LTI System 

Properties and the Impulse Response

 Memoryless Systems

 Discrete-Time Systems

 Continuous-Time Systems

[ ] [ ]h k c k

( ) ( )h c  

[ ] [ ] [ ] [ ] [ ]
k

y n h n x n h k x n k




   
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7. Relations between LTI System 

Properties and the Impulse Response

 Causal Systems

[ ] 0 for 0h k k 

( ) 0 for 0h   
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7. Relations between LTI System 

Properties and the Impulse Response

 Stable LTI Systems

 DT

[ ] xx n M  [ ] yy n M Output:

[ ] [ ] [ ] [ ] [ ]
k

y n h n x n h k x n k




   

[ ] [ ] [ ]
k

y n h k x n k




  a b a b  

[ ] [ ] [ ]
k

y n h k x n k




 
ab a b

[ ] xx n M 
x

k

y[n] M h[k]




 

[ ] .
k

h k




  BIBO

The impulse response is 

“absolutely summable” is 

both sufficient and necessary 

condition. 
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7. Relations between LTI System 

Properties and the Impulse Response

 Stability of LTI Systems (BIBO, Bounded-Input-Bounded Output System)

 Linear time-invariant systems are stable if and only if the impulse 
response is absolutely summable, i.e., if

<pf>

Since that

 If x[n] is bounded so that

 then

S h k
k

  




 [ ]

















k

k

knxkh

knxkhny

][][

][][][

x n Bx[ ] 

y n B h kx
k

[ ] [ ]






If S=    then the bounded input

will generate



x n
h n

h n
h n

h n

[ ]

*[ ]

[ ]
, [ ]

, [ ]


















0

0 0

y x k h k
h k

h k
S

k k

[ ] [ ] [ ]
[ ]

[ ]
0

2

   








 
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7. Relations between LTI System 

Properties and the Impulse Response

 Similarly, a continuous-time LTI system is BIBO stable if 

and only if the impulse response is absolutely integrable

0
( ) .h d 



 
Example 2.12 Properties of the First-Order Recursive System

The first-order system is described by the difference equation

[ ] [ 1] [ ]y n y n x n  

and has the impulse response

[ ] [ ]nh n u n

Is this system causal, memoryless, and BIBO stable?
<Sol.>
1. The system is causal, since h[n] = 0 for n < 0.

2. The system is not memoryless, since h[n]  0 for n > 0.

3. Stability: Checking whether the impulse response is absolutely summable?
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7. Relations between LTI System 

Properties and the Impulse Response

 A system is invertible 

 If the input to the system can be recovered from the output 

except for a constant scale factor. 

 The existence of an inverse system that takes the output of 

the original system as its input and produces the input of the 

original system. 

x(t) * (h(t) * hinv(t))= x(t). 

h(t) * hinv(t) = δ(t) 
 Similarly,  h[n] * hinv[n] = δ[n] 
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7. Relations between LTI System 

Properties and the Impulse Response

Example 2.13 Multipath Communication Channels: Compensation by means of

an Inverse System

Consider designing a discrete-time inverse system to eliminate the distortion 

associated with multipath propagation in a data transmission problem. Assume 

that a discrete-time model for a two-path communication channel is

[ ] [ ] [ 1].y n x n ax n  

Find a causal inverse system that recovers x[n] from y[n]. Check whether this 

inverse system is stable.
<Sol.>

1. Impulse response:

1, 0

[ ] , 1

0, otherwise

n

h n a n




 



2. The inverse system hinv[n] must satisfy h[n]  hinv[n] = [n]. 

[ ] [ 1] [ ].inv invh n ah n n  

28



7. Relations between LTI System 

Properties and the Impulse Response

2) For n = 0, [n] = 1, and eq. (2.32) implies that

[ ] [ 1] 0,inv invh n ah n  

(2.33) 

3. Since hinv[0] = 1, Eq. (2.33) implies that hinv[1] =  a, hinv[2] = a2, hinv[3] =  a3, 

and so on.
The inverse system has the impulse response

[ ] ( ) [ ]inv nh n a u n 

inv invh [n] ah [n 1]  

4. To check for stability, we determine whether hinv[n] is absolutely summable,

which will be the case if 

[ ]
kinv

k k

h k a
 

 

  is finite.

 For a < 1, the system is stable.

1) For n < 0, we must have hinv[n] = 0 in order to obtain a causal  inverse

system

29



7. Relations between LTI System 

Properties and the Impulse Response
30



8. Step Response

 Step response is the output due to a unit step input signal 

 Step input signals are often used to characterize the response of 

an LTI system to sudden changes in the input 

 Since u[n  k] = 0 for k > n and u[n  k] = 1 for k ≤ n, we have

 Similarly for CT system

31

[ ] [ ]* [ ] [ ] [ ].
k

s n h n u n h k u n k




  

[ ] [ ].
n

k

s n h k


 

t

s(t) h( )d 


 

[ ] [ ] [ 1]h n s n s n  

( ) ( )
d

h t s t
dt





8. Step Response
32

Example 2.14 RC Circuit: Step Response

The impulse response of the RC circuit depicted in Fig. 2.12 is

1
( ) ( )

t

RCh t e u t
RC





1. Step respose:
1

( ) ( ) .
t

RCs t e u d
RC



 



 

0, 0

( ) 1
( ) 0

t
RC

t

s t
e u d t

RC



 







 


 

0

0, 0

( ) 1
0

0, 0

1 , 0

t
RC

t

RC

t

s t
e d t

RC

t

e t











 







 
  





9. Differential and Difference Equation 

Representations of LTI Systems

 Linear constant-coefficient difference and differential 

equations provide another representation for the input-

output characteristics of LTI systems.

 CT: Constant coefficient differential equation

 DT: Constant coefficient difference equation

The order of the differential or difference equation is (N,M), representing the 

number of energy storage devices in the system. Often, N>= M, and the order is 

described using only N.

33

k kN M

k kk k
k 0 k 0

d d
a y(t) b x(t)

dt dt 

 

N M

k k

k 0 k 0

a y[n k] b x[n k]
 

   



9. Differential and Difference Equation 

Representations of LTI Systems

 Example

 Summing the voltage loop

 Differentiating both sides

 The order is N = 2 and the circuit contains two energy storage 

devices: a capacitor and an inductor.
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9. Differential and Difference Equation 

Representations of LTI Systems

 Example of a Difference Equation

 Rearrange the equation

 Starting from n = 0, compute the current output from the input 

and the past outputs

 We must know two most recent past values of  the output, namely, y[-1] and y[-2]. 

These values are called initial conditions.

35

1
y[n] y[n 1] y[n 2] x[n] 2x[n 1]

4
      

      
1

y[n] x[n] 2x[n 1] y[n 1] y[n 2]
4



9. Differential and Difference Equation 

Representations of LTI Systems

 Initial Conditions

 Summarize all the information about the system’s past 

needed to determine future outputs.

 In general, the number of initial conditions required to determine 

the output is equal to the maximum memory of the system.

 DT: Nth-order difference eqn.  N values

 y[-N], y[-N+1], …, y[-1].

 CT: Nth-order differential eqn.  first N derivatives of the 

output; that is,

Note: The textbook says the first N derivatives, which include 

y(t)|t=0-, the 0th-order derivative.

36

       
2 1

0 , 2 1
0 00

, , ...,
N

t N
t tt

d d d
y t y t y t y t

dt dt dt



  
    



10. Solving Differential and Difference 

Equations 

 Given x(t) (input), find y (t) (output)

 y = y(h) + y(p) = homogeneous solution + particular solution

 Homogeneous solution for Differential Equations

 The homogeneous solution is the solution the form

 ci are to be decided in the complete solution and ri are the N 

roots of the system’s characteristic equation

37

   
0

0
kN

h

k k
k

d
a y t

dt



i

N
rt(h)

i

i 0

y (t) c e




N
k

k

k 0

a r 0






10. Solving Differential and Difference 

Equations 

 Homogeneous solution for Difference Equation

 The homogeneous solution is the solution the form

 ci are to be decided in the complete solution and ri are the N 

roots of the system’s characteristic equation

38

   
0

0
N

h

k

k

a y n k


 

N
(h) n

i i

i 1

y [n] c r




N
N k

k

k 0

a r 0







10. Solving Differential and Difference 

Equations 

 If a root rj is repeated p times in characteristic eqs., the 

corresponding solutions are

 Example

39

1, , ...,j j jr r rt t p te te t e

1, , ...,n n p n

j j jr nr n r

Continuous-time case:

Discrete-time case:

     
d

y t RC y t x t
dt

 

1. Homogeneous Eq.:     0
d

y t RC y t
dt

 

2. Homo. Sol.:     1

1 V
h r ty t c e

3. Characteristic eq.: 11 0RCr  r1 =  1/RC

4. Homogeneous solution:
    1 V

t
h RCy t c e







10. Solving Differential and Difference 

Equations 

 Example

40

     1y n y n x n  

1. Homogeneous Eq.:    1 0y n y n  

2. Homo. Sol.:     1 1

h ny n c r

3. Characteristic eq.: 1 0r  

4. Homogeneous solution:     1

h ny n c 



10. Solving Differential and Difference 

Equations 

 Particular Solution

 The particular solution y(p) represents any solution of the 

differential or difference eqn. for the given input. 

 y(p) is not unique. A particular solution is usually obtained by 

assuming an output of the same general form as the input 

yet is independent of all terms in the homogenous solution. 

 Example

41

     1y n y n x n  

if the input is x[n] = (1/2)n.

1. Particular solution form:
   1

2
[ ]

n
p

py n c

2. Substituting y(p)[n] and x[n] into the given difference

     
1

1 1 1

2 2 2

n n n

p pc c


  pc (1 2 ) 1 
   

1 1

1 2 2

n

p
y n



 
  

  



10. Solving Differential and Difference 

Equations 

 Hypothesis for the Particular Solution

42



10. Solving Differential and Difference 

Equations 

 Procedure

43

Procedure 2.3: Solving a Differential or Difference equation

1. Find the form of the homogeneous solution y(h) from the roots of the 

characteristic equation.

2. Find a particular solution y(p) by assuming that it is of the same form as the

input, yet is independent of all terms in the homogeneous solution.

3. Determine the coefficients in the homogeneous solution so that the complete

solution y = y(h) + y(p) satisfies the initial conditions.



10. Solving Differential and Difference 

Equations 

 Example

44

First-Order Recursive System (Continued): Complete Solution

Find the complete solution for the first-order recursive system described by 

the difference equation 1
y[n] y[n 1] x[n]

4
  

if the input is x[n] = (1/2)n u[n] and the initial condition is y[  1] = 8.

<Sol.> 1. Homogeneous sol.:

     1
1 4

n
h

y n c

2. Particular solution:

   
1

2
2

n

p
y n


  

 

3. Complete solution:

n n

1

1 1
y[n] 2( ) c ( )

2 4
 

4. Coefficient c1 determined by I.C.:

     0 0 1 4 1y x y      0 0 (1 4) 8 3y x   

We substitute y[0] = 3 
0 0

1

1 1
3 2

2 4
c

   
    

   
c1 = 1

5. Final solution:

 
1 1

2
2 4

n n

y n
   

    
   

for n  0



10. Solving Differential and Difference 

Equations 
45

1. Homogeneous sol.:

2. Particular solution:

   
 

 
 

 2 2

1
cos sin V

1 1

p RC
y t t t

RC RC
 

 

4. Coefficient c1 determined by I.C.:

3. Complete solution:

 
1 1

cos sin V
2 2

ty t ce t t  

0 = 1

R = 1 , C = 1 F

y(0) = y(0+)

0 1 1 1
2 cos0 sin 0

2 2 2
ce c

       c = 3/2

5. Final solution:

 
3 1 1

cos sin V
2 2 2

ty t e t t  

R = 1  and C = 1 F 

y(0) = 2 V

x(t) = cos(t)u(t) 

    1

1 V
h r ty t c e



11. Characteristics of Systems Described 

by Differential and Difference Equations

 Natural Response 

 The system output for zero input. It is produced by the stored 

energy or memory of the past (non-zero initial conditions).

 Homogeneous solution by choosing the coefficients ci so that 

the initial conditions are satisfied. It does not involve the 

particular solution. 

 The natural response is determined without translating 

initial conditions forward in time.
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11. Characteristics of Systems Described 

by Differential and Difference Equations

 Forced response: the system output due to the input 

signal assuming zero initial conditions.

 It has the same form as the complete sol.

 A system with zero initial conditions is said to be “at rest”. The at-

rest (zero state) initial conditions must be translated forward 

before solving for the undetermined coefficients.

 DT: y[-N] = y[-N+1] = … = y[-1] = 0  y[0], y[1], …, y[N -1]

 CT: Initial conditions at t = 0- t = 0+

 We shall only solve the differential eqns. of which 

initial conditions at t = 0+ are equal to the zero initial 

conditions at t = 0-.
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11. Characteristics of Systems Described 

by Differential and Difference Equations

 Find the natural response of the this system, assuming that y(0) = 2 

V, R = 1  and C = 1 F.

48

     
d

y t RC y t x t
dt

 

1. Homogeneous sol.:     1 V
h ty t c e

2. I.C.: y(0) = 2 V

y (n) (0) = 2 V c1 = 2

3. Natural Response:

    2 V
n ty t e



11. Characteristics of Systems Described 

by Differential and Difference Equations

 Impulse response

1. We do not know the form of particular sol. for impulse 

input (why?).

 In general, we can find the step response assuming that the 

system is at rest. Then, the impulse response is obtained by 

taking differentiation (CT) or difference (DT) on the step 

response.

 Step response is the output due to a unit step input signal

2. Impulse response is obtained under the assumption that 

the systems are initially at rest or the input is known for all 

time.

49



11. Characteristics of Systems Described 

by Differential and Difference Equations

 Linearity

 The forced response of an LTI system described by a 

differential or difference eqn. is linear with respect to 

theinput (zero I.C.).

 The natural response of an LTI system described by a 

differential or difference eqn. is linear with respect to the 

initial conditions (zero input).

50



11. Characteristics of Systems Described 

by Differential and Difference Equations

 Time invariance

 The forced response of an LTI system described by a 

differential or difference eqn. is time-invariant.

 In general, the output (complete sol.) of an LTI system 

described by a differential or difference eqn. is not timeinvariant

because the initial conditions do not shift in time.

 Causality

 The forced response (zero I.C.) is causal

51



11. Characteristics of Systems Described 

by Differential and Difference Equations

 Stability

 The natural response (zero input) must be bounded for any 

set of initial conditions. Hence, each term in the natural 

response must be bounded.

 DT: is bounded  for all i. (When , the natural response does not 

decay, and the system is on the verge of instability.)

 A DT LTI system is stable iff all roots have magnitude less than unity.

 CT: is bounded  for all i. (When , the natural response does not 

decay, and the system is on the verge of instability.)

 A CT LTI system is stable iff the real parts of all roots are negative.
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11. Characteristics of Systems Described 

by Differential and Difference Equations

 Response time (to an input)

 The time it takes an LTI system to respond a (input) transient.

 When the natural response decays to zero, the system behavior is 

governed only by the particular solution, which is the same as 

the input. Thus, the response time depends on the roots of 

characteristic eqn. (It must be a stable system.)

 DT:  slowest decay term   the largest magnitude of  the 

characteristic roots

 CT:  slowest decay term   the smallest (magnitude) 

negative real-part of the characteristic roots

53



12. Block Diagram Representations

 Block Diagram Representation

 A block diagram is an interconnection of elementary operations that act on the 

input signal. It describes the system’s internal computations or operations are 

ordered.

 (More detailed representation than impulse response or diff. eqns.)

 The same system may have different block diagram representations. (Not 

unique!)

 Elementary operations:

 Scalar multiplication

 Addition

 CT: Integration

 DT: time shift

54

(a)

(b)

( ) ( )
t

y t x d 


 

(c)



12. Block Diagram Representations

 Direct Form I

55

         1 2 0 1 2y[n] a y[n 1] a y[n 2] b x[n] b x[n 1] b x[n 2]

1 2y[n] w[n] a y[n 1] a y[n 2]    

0 1 2w[n] b x[n] b x[n 1] b x[n 2]    



12. Block Diagram Representations

 Direct Form II

 Interchange their order without changing the input-output 

behavior of the cascade. We then can merge the two sets of 

shifts into one.

56















13. State-Variable Descriptions of LTI 

Systems.
57

Matrix form of output equation:

1

1 1 2 2

2

q [n]
y[n] [b a b a ] [1]x[n]

q [n]

 
    

 

Define state vector as the column vector

 
  
 

1

2

q [n]
[n]

q [n]
q

So

[n 1] [n] x[n]  q Aq b

y[n] [n] Dx[n] cq

1 2

1 0
A

a a  
 
 

1

0
b

 
  
 

 1 1 2 2c b a b a   1D 



13. State-Variable Descriptions of LTI 

Systems

 State-variables are not unique.

 Different state-variable descriptions may be obtained 

by transforming the state variables.

 The new state-variables are a weighted sum of the original 

ones.

 This changes the form of A,b,c, and D, but does not change 

the I/O characteristics of the system.
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13. State-Variable Descriptions of LTI 

Systems

 The original state-variable description

59

1. State equation:

     1 1 11q n q n x n   

       2 1 2 21q n q n q n x n     

2. Output equation:

     1 1 2 2y n q n q n  

3. Define state vector as

 
 
 

1

2

q
q n

n
q n

 
  
 

In standard form of dynamic equation:

  [n 1] [n] x[n]q Aq b

 y[n] [n] Dx[n]cq

0
A



 

 
  
 

1

2

b




 
  
 

 1 2c    2D 



13. State-Variable Descriptions of LTI 

Systems

 Continuous-Time 

60

d
(t) (t) x(t)

dt
 q Aq b

y(t) (t) Dx(t) cq

1. State variables: The voltage across

each capacitor. 

2. KVL Eq. for the loop involving x(t), R1, and C1:

     1 1x t y t R q t 

1

1 1

1 1
y(t) q (t) x(t)

R R
  

Output equation

3. KVL Eq. for the loop involving C1, R2, and C2:

 1 2 2 2( ) ( )q t R i t q t 



13. State-Variable Descriptions of LTI 

Systems
61

2 1 2

2 2

1 1
i (t) q (t) q (t)

R R
 

4. The current i2(t) through R2:

 2 2 2( )
d

i t C q t
dt

  2 1 2

2 2 2 2

1 1
( ) ( )

d
q t q t q t

dt C R C R
 

eliminate i2(t)

5. KCL Eq. between R1 and R2:

     1 2y t i t i t  Current through C1 = i1(t) 

where

   1 1 1

d
i t C q t

dt


 1 1 2

1 1 2 2 1 2 1 1

1 1 1 1
( ) ( ) ( )

d
q t q t q t x t

dt C R C R C R C R


    

 

1 1 1 2 1 2

2 2 2 2

1 1 1

,
1 1

A
C R C R C R

C R C R

 
  
  

 
 

 

1 1

1

0

b C R

 
 
 
  

1

1
0 ,c

R

 
  
  1

1
D

R
and



13. State-Variable Descriptions of LTI 

Systems
62

 

1. State equation:

       1 1 22
d

q t q t q t x t
dt

  

   2 1

d
q t q t

dt


2. Output equation:

     1 23y t q t q t 

3. State-variable description:

2 1
,

1 0
A

 
  
 

1
,

0
b

 
  
 

 3 1 ,c   0D 



Transformations of the State

 State-variables are not unique.

 Different state-variable descriptions may be obtained 

by transforming the state variables.

 The new state-variables are a weighted sum of the original 

ones.

 This changes the form of A,b,c, and D, but does not change 

the I/O characteristics of the system.
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Transformations of the State
64

1. Original state-variable description:

q Aq bx 

cqy Dx 

2. Transformation: q’ = Tq

T = state-transformation matrix

q = T1 q’ 

3. New state-variable description:

.q TAq Tbx  1) State equation:
q Tq 

1 .q TAT q Tbx   q = T1 q’ 

2) Output 

equation:
1 .cT qy Dx 

3) If we set 

1 1, , , andA TAT b Tb c cT D D       

then 

q A q b x    and c qy D x  



Remarks

 Introduction

 Convolution Sum

 Convolution Sum Evaluation Procedure

 Convolution Integral

 Convolution Integral Evaluation Procedure

 Interconnection of LTI Systemss

 Relations between LTI System Properties and the Impulse 

Response

 Step Response
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