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1. Introduction

 Structures <==>  Implementation

 Interconnection of additions, multiplications, delay.

 Approaches

 A combination of algebraic manipulations and manipulations 
of block diagram representations.

 Derive equivalent equivalent structures.

 Pondering Questions

 Finite Impulse Response

 Infinite Impulse Response

 Numerical Problems in Implementation



2. Block Diagram Representation of 

LCCDE

 Notations

 Addition

Multiplication

 Delay

 Example

 y[n] = a1y[n-1] + a2y[n-2] +bx[n]
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2. Block Diagram Representation of 

LCCDE (c.1)

 Block Diagram 1

 Difference Equations

 Transfer Function
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2. Block Diagram Representation of 

LCCDE (c.2)

 Block Diagram 2

 Transfer Function

 Equations
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3. Signal Flow Graph of LCCDE

 Signal Flow Graph

 A network of directed branches that connect 

at nodes.

 Source nodes

 Sink nodes

 branch gains
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4. Basic Structures for IIR Systems

Signal Flow Graphs
 Direct Form I

 Direct Form II
Direct Form I Direct Form II



4. Basic Structures for IIR Systems (c.1)

 Cascade Form

 Parallel Form 
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5. Transposed Forms

 Flow Graph Reversal ==> Equivalent I/O Relation



5. Transposed Forms (c.1)

 Transposed of Direct Form I  Transposed of Direct Form II



6. Basic Network Structures for FIR Systems

 Direct Form

 Derived from the direct form I and II.

 Cascade Form
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6. Basic Network Structures for FIR Systems

 Linear Phase FIR Structure

M even for Type I and III 

systems

or

 Consider the following form
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6. Basic Network Structures for FIR Systems (c.1)

 Type I Systems (M is even)

 Type III Systems (M is even)

 Type II Systems (M is odd)

 Type IV Systems (M is odd)
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6. Basic Network Structures for FIR Systems (c.2)

 The zeros of a linear phase system

 Zeros occurs in mirror-image pairs.

 Ex.  z0 is a zero and 1/z0 also a zero.

 Real zeros not on the unit circle occur in reciprocal pairs. 

Grouped into a pair of two

 Complex zeros occurs in group of four

 Ex.

where
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7. Lattice Structures

 FIR Lattice

 An alternative of the filter structures

 The difference equations
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7. Lattice Structures (c.1)

 Relation with the impulse reponse

 Define the impulse response

 Define

h n

for n

a for n N

otherwise
n[ ]

,

, , ,..., .

,





 









1 0

1 2

0

A z
E z

E z
a z and A z

E z

E z
i

i
m
i m

m

i

i
i( )

( )

( )

~
( )

~
( )
~
( )

( )  

















0 1 0

1

A z A z X z E z E z A z A zN0 0 0 01( )
~
( ) ; ( ) ( )

~
( ); ( ) ( )    

E z E z X z

E z E z k z E z i N

E z k E z z E z i N

Y z E z

i i i i

i i i i

N

0 0

1
1

1

1
1

1

1 2

1 2

( )
~
( ) ( )

( ) ( )
~
( ), , ,...,

~
( ) ( )

~
( ), , ,...,

( ) ( )

 

  

   















7. Lattice Structures (c.2)

 Recurrence Formula

 The coefficient of z-m is

 The final set of coefficients is 

 The recursion is repeated for I=1, 2, ..., N, and the final set 

of coefficients for A(z)=AN(z) is 
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7. Lattice Structures (c.3)

 Example 
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7. Lattice Structures-- All-Pole Lattice

 A Lattice System

 H(z) = 1/A(z)

 Example
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7. Lattice Structures-- Normalized Lattice

Equations of a Cell 
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7. Lattice Structures-- Lattice Systems with 

Poles and Zeros

 Equations
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7. Effects of Coefficient Quantization

 Specification



7. Effects of Coefficient Quantization

 Analysis from Poles and Zeros

 The denominator

 The error of ith pole

 Since that

 It follows that
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• Narrow bandwidth Filters

• Implementation through 

modular structures like 

cascade or parallel forms



7. Effects of Coefficient Quantization

4-bit

7-bit

4-bit 7-bit



8. Effects of Round-off Noise in Digital Filters
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 IIR Structure

 (B+1) bit fixed point

 Assumption on Noise

 e[n] is wide-sense stationary white-noise.

 A uniform distribution of amplitude.

 Noise is uncorrelated with the input.
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Quantization



8. Effects of Round-off Noise in Digital Filters (c.1)

 Quantization Errors 

 For (B+1)-bit quantization

 For 2’s complement

 Autocorrelation sequence

 Total noise
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8. Effects of Round-off Noise in Digital Filters (c.2)

 General Form
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8. Effects of Round-off Noise in Digital Filters (c.3)

 Noise Variance
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8. Effects of Round-off Noise in Digital Filters – Scaling in 

Fixed-Point Implementation

 The overflow concerns

 Sufficient condition for

 Hence 



9. Zero-Input Limit Cycles in Fixed-Point

 Due to Round-off and Truncation



9. Zero-Input Limit Cycles in Fixed-Point



Homeworks

 6.23, 6.24d, 6.25, 6.40, 

6.42, 6.45

 2.82, 2.85, 2.90


