Lab-2: Profiling m4v_dec on
GR-XC35-1500

National Chiao Tung University

% Chun-Jen Tsai

= 3/28/2011

Profiling with Real-time Timer .

e Goal: Profiling m4v_vdec on GR-XC3S-1500
using a real-time timer

e Tasks:
o Install a real-time timer ISR in the video decoder
o Use tftp protocol to read/write video data

o Use the timer to measure the performance of your
optimized video decoder from labl

e Give a demo to TAs and upload a report by the
end of 4/8

2/27

GR-XC3S-1500 Development Board | ¢

e The system core IC is a Xilinx Spartan |ll FPGA

e Features
o FPGA: XC3S-1500-FG456-4C FPGA

o On-board memory
v 8 MB Flash
v 64 MB SDRAM

o On-board I/O interfaces
v 10/100 Ethernet PHY
v 24-bit VGA Video DAC
USB 2.0 PHY
Two UART Transceivers
JTAG port

<

<

<

3/27

GRLIB IP Library :

e The board supports a reusable IP library, GRLIB
o Designed for system-on-chip (SoC) development
o Based on AMBA bus protocol

e Standard IPs in GRLIB:

o LEONS processor core ool e o
o BUS controllers — pows
o Memory controller] [e e R e
o Debug support unit ' ' 'Q
o Interrupt controller oz mpia | N w——e |
o Timer rrom [leomflE] L o e i s

o |/O controllers: UART, Ethernet, VGA, USB, ...

4/27

Debug Support Unit (DSU) -

e GRLIB has a DSU IP, which is an AHB slave

o Accessible by any AHB master (e.g. debug interfaces)
o A debug Interface can generate read or write transfers to
any address on the AHB bus through DSU
e DSU can also be used to access
o Processor registers | ‘
o Instruction trace buffer i
o AHB trace buffer =

AMBA AHB BUS

Figure 53. LEON3/DSU Connection

System Development FlowT :

Hardware Design
Entry (Configure
template design)

v

Software Design
Entry (Write C code
& Makefile)

Building
eCos
Library

Build FPGA bit file

v

Load bit file to FPGA

library

Build the application
and link with eCos

»
>

Debug the softwa
with gdb/grmon

1

re |4

Integrate with HW logic
(HW/SW co-design flow)

No

Modify the code

eCos is an open source
library that provides basic OS
kernel functions to your
applications;

In our case, we need eCos to
provide us tftp and timer
support

At this moment, the
HW IDCT logic is
substituted with a C
model function

T lllustration by Michael Wu, 2008

6/27

Setup Cygwin Environment :

e Installing the latest Cygwin under Win32 by
running

e In addition to the default Cygwin packages,
make sure the following packages are installed:
O automake, gcc, gdb, make, sharutils, tcltk, wget

o If you want to use GHDL under Cygwin, you may also need
the mpfr package

7/27

BCC Cross-Compiler Installation :

e Download the BCC package, sparc-elf-3.4.4-
1.0.29d-cygwin.tar.bz2, from:

e Under a Cygwin console, type
$ mkdir /opt
$ tar xjf sparc-elf-3.4.4-1.0.29d-cygwin.tar.bz2 —C /opt

e Modify the PATH variable by adding the
following line to .bashrc In your home directory:
O export PATH=/opt/sparc-elf-3.4.4/bin:$PATH

8/27

eCos Installation -

e An eCos port (ecos-rep-1.0.8.tar.gz) to GRLIB can
be downloaded from

e Under a Cygwin console, type each stdent create your own
$ mkdir /home/soc/std_id der the Systom sccount
$ tar xzf ecos-rep-1.0.8.tar.gz —C /home/soc/std_id

9/27

Installing eCos Configuration Tool |

e Download and install the eCos configuration tool,
configtool-2.11-setup.exe, for Windows from:

e Run eCos configuration tool

o Setup paths
v Tools — Paths — Build Tools = c:\cygwin\opt\sparc-elf-3.4.4\bin
v Tools — Paths — User Tools = c:\cygwin\bin
v Build — Repository = c:\cygwin\home\soc\std_id\ecos-rep-1.0.8

10/27

Building eCos Library :

e \We have to build an eCos with timer and tftp
support

e Inside eCos configuration tool™

o Select: Build — Templates
v Hardware: LEON3 processor with GRETH ethernet
v Packages: net

o Search for “CYGHWR_NET _DRIVER_ETHO ADDRS’

v Edit addresses according to environment setup

o Select: File — Save
v Save the configuration as student_id/ecos_leon/leon.ecc

o Select: Build — Library

T See socl0 _leon_tutorial.doc for detail settings e

Building the Application :

e Unzip the lab package under your work directory

+-- ecos_| eon/
|
+-- | ab2 _pkg/ +-- bitstream
+-- leon_bit files/
+-- miv_dec_ecos/ +-- src/
+-- Makefile
+-- readne. t xt
+-- tinmer_exanple.c

e Simply type "make” in m4v_dec_ecos/, and you
will have an m4v_dec.elf executable

12/27

System Setup :

Host PC
To Internet

192.168.1.x

192.168.0.1

192.168.0.2 (tftp server IP)

(board IP)

13/27

GRMON Debug Monitor :

e GRMON is a general debug monitor for the
LEON processor, it supports

Downloading and execution of LEON applications

Breakpoint and watchpoint management

USB, JTAG, RS232, PCI, and Ethernet debug links

Remote connection to GNU debugger (gdb)

Access to all system registers and memory

Built-in disassembler and trace buffer management

©c 0 0 O 0O O

14/27

Installation of GRMON :

e Download the GRMON package, grmon-eval-
1.1.39.tar.gz, from:

e Under a Cygwin console, type
$ tar xzf grmon-eval-1.1.39.tar.gz —C /opt

e Modify the PATH variable by adding the
following line to .bashrc In your home directory:

O export PATH=/opt/grmon-eval/cygein/bin:$PATH

15/27

Uploading FPGA Bit File (1/2) -

e Although we don’t have to synthesize HW logic
In this lab, you still need the HW EDA tool In
order to configure the FPGA

e Download and install ISE WebPACK 10.1 from

o The latest version is 11.1, but 10.1 is used in this course

16/27

Uploading FPGA Bit File (2/2) -

e Run IMPACT In the ISE suite

Q
Q
Q

Select: “Create a new project (.ipf)” — “OK”
Select: “Configure devices using Boundary-Scan (JTAG)”

You will see a scan chain with 3 devices: xcf04s, xcfO1ls,
and xc3s1500

Select "Bypass” for the first 2 devices

For xc3s1500, open the bit file that comes with the lab
package (under leon_bit_files/)

Right click on xc3s1500 and select “Program”
Select “Verify” and click “OK”
Wait for a blue “Program Succeeded” message to appear

17/27

Control the Board from GRMON

e Under Cygwin prompt, type § grmon-eval —eth —u

o This tells GRMON to use the Ethernet debug interface

o The —u flag let application pipe the output to grmon console

GRMON LEON debug nonitor vl1.1.39 eval uation version

Copyright (C) 2004-2008 Aeroflex Gaisler - all rights reserved.
For | atest updates, go to http://ww.gaisler.com

Comments or bug-reports to support @ai sl er.com

This evaluation version will expire on 2/11/2010

et hernet startup.

GRLI B build version: 4075

initialising

detected frequency: 9 Mtz

Conponent Vendor

LEON3 SPARC V8 Processor Gai sl er Research
Modul ar Timer Unit Gai sl er Research
Ceneral purpose I/0O port Gai sl er Research

grlib>

Use command 'info sys' to print a detailed report of attached cores

Run a tftp Server on Host PC :

e \We must run a tftp server on the host PC in
order to send/receive data to/from the board

e It Is recommended that you use the tftp32 server
(http://tftpd32.jounin.net/):

" Tftpd32 by Ph. Jounin

Current Directary ID:'\m_l,l_u:Iassncutes'\.su:u:[lB'\Ial:us"\lal:uE_pkg'\bitsl

Server interfaces IIQZ.IEE.D.I j o i
Titp Server | Thp Client | DHCP server Syslon server |

Clear | Copy I Current Action IListening ar port 53

About | Settings I Help

19/27

Decoder Execution s

e Under Cygwin console, type the commands:
~/$ cd <your working directory>
~/$ grmon-eval —eth —u

orlib > load m4v_dec.elf
orlib > run

20/27

Sample Execution Result

Readi ng bitstreamusing tftp...
bitstream size = 83860, err =0
Initializing decoder ...

Decoding franes: 0...16...32...48...

(02}

4...80...96...112...128...144. ..

| DCT Conput ati on: 9118.00 ns (46.61% of total decoding tine)

| nverse Quanti zati on: 1009.00 ns (5.16% of total decoding tine)
Mot i on Conpensati on: 4152.00 s (21.22% of total decoding tine)
Boundary Extensi on: 559.00 ns (2.86% of total decoding tine)
Boundary Renoval : 646. 00 nms (3.30% of total decoding tine)
Bl ock Data Transfer: 1724.00 ns (8.81% of total decoding tine)
DC/ AC Prediction: 160.00 nms (0.82% of total decoding tine)
VLC Decodi ng: 349.00 ns (1.78% of total decoding tine)
Total decoding tine: 19564. 00 ns, we neasured 17717.00 ns (90.56%
Witing decoded YCbCr franmes using tftp

Fi ni shed decodi ng.

21/27

General Purpose Timer in GRLIB

e The Leon platform contains GPTIMER IPT which

you can use for profiling purposes

e By default, there will be two hardware timers

o The first one is used by eCos
o The second one is free for you to use

e To use the timer, you need its interrupt ID,

grlib>info sys

irg 8
apb: 80000300 - 80000400

03. 01: 011 Gai sl er Research WModular Tinmer Unit (ver 0xO0)

8-bit scaler, 2 * 32-bit timers, divisor 10

T See GRLIB IP Core User’s Manual, Chapter 35 GPTIMER - General Purpose Timer Unit

22/27

Installing of Timer ISR in eCos (1/3)

e Timer register definitions

#i ncl ude <cyg/ kernel / kapi . h>
#i ncl ude <cyg/ hal/hal _io.h>

#define TICKS PER Ms 40000 /* 40 MHz per second/ 1000 */

/* The IRQ value '8" displayed in '"info sys' is for */
/[* the first timer, which is used by eCos. W w || */
/* use the 2nd tinmer. Therefore, the IRQ value is 9. */
#defi ne CYGNUM HAL | NTERRUPT _TI MER2 (8+1)

/* The base address of tinmer registers is again */
/* obtained by 'info sys'. */
#defi ne TI MER BASE 0x80000300

#defi ne SCALER RELOAD VALUE TI MER BASE + 0x04
#define TI MER2_RELOAD VALUE TI MER BASE + 0x24
#define TI MER2_CTRL_REQ STER Tl MER BASE + 0x28

23/27

Installing of Timer ISR in eCos (2/3)

e Timer ISR installation:

cyg interrupt creat e(CYGNUM HAL | NTERRUPT Tl MERZ2,
0, data, ny isr, NULL, &handle, & sr_struct);

cyg _interrupt _attach(handl e);

cyg_interrupt _unmask(CYGNUM HAL | NTERRUPT TI MER2) ;

/* initialize the tinmer to 1 ns per tick. For a 40MHz */
/* cl ock, 40000/ prescal er _val ue equals 1 ns. */
HAL READ Ul NT32(SCALER RELOAD VALUE, prescal er _val ue);
HAL WVRI TE Ul NT32(TI MER2_RELOAD VALUE,

TI CKS_PER M5/ prescal er _val ue);
/* set the control register */
HAL READ Ul NT32(TI MER2 _CTRL_REGQ STER, ctrl _regq);
ctrl reg | = OxA; /* enable the interrupt */
ctrl reg |= 0Ox1; /* start ticking */
HAL WRI TE Ul NT32(TI MER2_CTRL_REGQ STER, ctrl _reg);

24/27

Installing of Timer ISR in eCos (3/3) | ::
e Timer ISR

my isr(cyg vector t vector, cyg addrword t data)

{
| ong *counter = (long *) data;
(*count er) ++;
cyg_interrupt _acknow edge(vector);
return CYG | SR HANDLED;

e Uninstallation

cyg_interrupt _nmask(CYGNUM HAL | NTERRUPT TI MER2) ;
cyg_i nterrupt _detach(handl e);
cyg_interrupt del et e(handl e);

25/27

Using tftp Protocol in Your Code

{

#i ncl ude <networ k. h>
#i nclude <tftp support. h>

int main(int argc, char**argv)

struct sockaddr in host;
int err, size, max_size, yuv_size;
char *ifnane, *ofnanme, *bit _buf, yuv buf;

/* initialize network interface */

init_all _network interfaces();

menset ((char *) &host, 0, sizeof(host));

host.sin | en = sizeof (host);

host.sin _famly = AF_| NET;

host. sin_addr = ethO_boot p_dat a. bp_si addr;

host.sin_port = O;

/* retrieve video bitstream */

size = tftp_get(ifnanme, &host, bit_ buf,
max_si ze, TFTP_OCTET, &err);

/* out put decoded YChCr franes */
tftp_put(of nane, &host, yuv_buf, yuv_size, TFTP_OCTET

&err);

26/27

Final Remark :

When it comes to system design,
the completeness of your solution
depends on
the effort you putinto it

and it shows!

27127

