
Lab-2: Profiling m4v_dec on
GR-XC3S-1500

National Chiao Tung University
Chun-Jen Tsai

3/28/2011

2/27

Profiling with Real-time Timer

 Goal: Profiling m4v_vdec on GR-XC3S-1500
using a real-time timer

 Tasks:
 Install a real-time timer ISR in the video decoder
 Use tftp protocol to read/write video data
 Use the timer to measure the performance of your

optimized video decoder from lab1

 Give a demo to TAs and upload a report by the
end of 4/8

3/27

GR-XC3S-1500 Development Board

 The system core IC is a Xilinx Spartan III FPGA
 Features

 FPGA: XC3S-1500-FG456-4C FPGA
 On-board memory

 8 MB Flash
 64 MB SDRAM

 On-board I/O interfaces
 10/100 Ethernet PHY
 24-bit VGA Video DAC
 USB 2.0 PHY
 Two UART Transceivers
 JTAG port

4/27

GRLIB IP Library
 The board supports a reusable IP library, GRLIB

 Designed for system-on-chip (SoC) development
 Based on AMBA bus protocol

 Standard IPs in GRLIB:
 LEON3 processor core
 BUS controllers
 Memory controller
 Debug support unit
 Interrupt controller
 Timer
 I/O controllers: UART, Ethernet, VGA, USB, …

VGA

AMBA AHB

AMBA APB

Timers IRQ
Controller

LEON3
Processor

DSU3

AHB
Controller

AHB/APB
Bridge

Ethernet
MAC

PROM SDRAM Memory
extension

Memory
Controller

8-bit/32-bit memory bus

Spartan3-1500 FPGA

Video DAC

PHY

To be added in future labs

mcomp idct

Serial
Debug Link

JTAG
Debug Link

JTAGRS-232

5/27

Debug Support Unit (DSU)
 GRLIB has a DSU IP, which is an AHB slave

 Accessible by any AHB master (e.g. debug interfaces)
 A debug Interface can generate read or write transfers to

any address on the AHB bus through DSU

 DSU can also be used to access
 Processor registers
 Instruction trace buffer
 AHB trace buffer

6/27

System Development Flow†

Software Design
Entry (Write C code

& Makefile)

Building
eCos

Library

Build the application
and link with eCos

library

Debug the software
with gdb/grmon

Perfect?

eCos is an open source
library that provides basic OS
kernel functions to your
applications;

In our case, we need eCos to
provide us tftp and timer
support

Hardware Design
Entry (Configure
template design)

Build FPGA bit file

Load bit file to FPGA

Modify the code

Integrate with HW logic
(HW/SW co-design flow)

No

At this moment, the
HW IDCT logic is
substituted with a C
model function

†Illustration by Michael Wu, 2008

7/27

Setup Cygwin Environment
 Installing the latest Cygwin under Win32 by

running http://www.cygwin.com/setup.exe
 In addition to the default Cygwin packages,

make sure the following packages are installed:
 automake, gcc, gdb, make, sharutils, tcltk, wget
 If you want to use GHDL under Cygwin, you may also need

the mpfr package

8/27

BCC Cross-Compiler Installation
 Download the BCC package, sparc-elf-3.4.4-

1.0.29d-cygwin.tar.bz2, from:
ftp://graisler.com/bcc/bcc/bin/windows/old

 Under a Cygwin console, type
$ mkdir /opt
$ tar xjf sparc-elf-3.4.4-1.0.29d-cygwin.tar.bz2 –C /opt

 Modify the PATH variable by adding the
following line to .bashrc in your home directory:
 export PATH=/opt/sparc-elf-3.4.4/bin:$PATH

9/27

eCos Installation
 An eCos port (ecos-rep-1.0.8.tar.gz) to GRLIB can

be downloaded from
ftp://gaisler.com/ecos/ecos/src

 Under a Cygwin console, type
$ mkdir /home/soc/std_id
$ tar xzf ecos-rep-1.0.8.tar.gz –C /home/soc/std_id

Each student create your own
subdirectory (use student ID)
under the system account

10/27

Installing eCos Configuration Tool
 Download and install the eCos configuration tool,

configtool-2.11-setup.exe, for Windows from:
ftp://gaisler.com/ecos/ecos/bin/configtool/windows/

 Run eCos configuration tool
 Setup paths

 Tools → Paths → Build Tools = c:\cygwin\opt\sparc-elf-3.4.4\bin
 Tools → Paths → User Tools = c:\cygwin\bin
 Build → Repository = c:\cygwin\home\soc\std_id\ecos-rep-1.0.8

11/27

Building eCos Library
 We have to build an eCos with timer and tftp

support
 Inside eCos configuration tool†

 Select: Build → Templates
 Hardware: LEON3 processor with GRETH ethernet
 Packages: net

 Search for “CYGHWR_NET_DRIVER_ETH0_ADDRS”
 Edit addresses according to environment setup

 Select: File → Save
 Save the configuration as student_id/ecos_leon/leon.ecc

 Select: Build → Library

†See soc10_leon_tutorial.doc for detail settings

12/27

Building the Application
 Unzip the lab package under your work directory

 Simply type “make”in m4v_dec_ecos/, and you
will have an m4v_dec.elf executable

+-- ecos_leon/
|
+-- lab2_pkg/ +-- bitstream/

+-- leon_bit_files/
+-- m4v_dec_ecos/ +-- src/

+-- Makefile
+-- readme.txt
+-- timer_example.c

13/27

System Setup

192.168.1.x

192.168.0.1
(tftp server IP)192.168.0.2

(board IP)

USB JTAG cable

Host PC
To Internet

14/27

GRMON Debug Monitor
 GRMON is a general debug monitor for the

LEON processor, it supports
 Downloading and execution of LEON applications
 Breakpoint and watchpoint management
 USB, JTAG, RS232, PCI, and Ethernet debug links
 Remote connection to GNU debugger (gdb)
 Access to all system registers and memory
 Built-in disassembler and trace buffer management

15/27

Installation of GRMON
 Download the GRMON package, grmon-eval-

1.1.39.tar.gz, from: ftp://gaisler.com/grmon/grmon
 Under a Cygwin console, type
$ tar xzf grmon-eval-1.1.39.tar.gz –C /opt

 Modify the PATH variable by adding the
following line to .bashrc in your home directory:
 export PATH=/opt/grmon-eval/cygein/bin:$PATH

16/27

Uploading FPGA Bit File (1/2)
 Although we don’t have to synthesize HW logic

in this lab, you still need the HW EDA tool in
order to configure the FPGA

 Download and install ISE WebPACK 10.1 from
http://www.xilinx.com/tools/webpack.htm
 The latest version is 11.1, but 10.1 is used in this course

17/27

Uploading FPGA Bit File (2/2)
 Run iMPACT in the ISE suite

 Select: “Create a new project (.ipf)”→ “OK”
 Select: “Configure devices using Boundary-Scan (JTAG)”
 You will see a scan chain with 3 devices: xcf04s, xcf01s,

and xc3s1500
 Select “Bypass”for the first 2 devices
 For xc3s1500, open the bit file that comes with the lab

package (under leon_bit_files/)
 Right click on xc3s1500 and select “Program”
 Select “Verify”and click “OK”
 Wait for a blue “Program Succeeded”message to appear

18/27

Control the Board from GRMON
 Under Cygwin prompt, type $ grmon-eval –eth –u

 This tells GRMON to use the Ethernet debug interface
 The –u flag let application pipe the output to grmon console

GRMON LEON debug monitor v1.1.39 evaluation version
Copyright (C) 2004-2008 Aeroflex Gaisler - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to support@gaisler.com
This evaluation version will expire on 2/11/2010
ethernet startup.
GRLIB build version: 4075
initialising
detected frequency: 9 MHz
Component Vendor
LEON3 SPARC V8 Processor Gaisler Research

. . .
Modular Timer Unit Gaisler Research
General purpose I/O port Gaisler Research
Use command 'info sys' to print a detailed report of attached cores
grlib>

19/27

Run a tftp Server on Host PC
 We must run a tftp server on the host PC in

order to send/receive data to/from the board
 It is recommended that you use the tftp32 server

(http://tftpd32.jounin.net/):

20/27

Decoder Execution
 Under Cygwin console, type the commands:

~/$ cd <your working directory>
~/$ grmon-eval –eth –u

……. some GRMON startup messages ……..

grlib > load m4v_dec.elf
grlib > run

21/27

Sample Execution Result
Reading bitstream using tftp...
bitstream_size = 83860, err = 0
Initializing decoder ...
Decoding frames: 0...16...32...48...64...80...96...112...128...144...

IDCT Computation: 9118.00 ms (46.61% of total decoding time)
Inverse Quantization: 1009.00 ms (5.16% of total decoding time)
Motion Compensation: 4152.00 ms (21.22% of total decoding time)
Boundary Extension: 559.00 ms (2.86% of total decoding time)
Boundary Removal: 646.00 ms (3.30% of total decoding time)
Block Data Transfer: 1724.00 ms (8.81% of total decoding time)
DC/AC Prediction: 160.00 ms (0.82% of total decoding time)
VLC Decoding: 349.00 ms (1.78% of total decoding time)
Total decoding time: 19564.00 ms, we measured 17717.00 ms (90.56%)

Writing decoded YCbCr frames using tftp...
Finished decoding.

22/27

General Purpose Timer in GRLIB
 The Leon platform contains GPTIMER IP†which

you can use for profiling purposes
 By default, there will be two hardware timers

 The first one is used by eCos
 The second one is free for you to use

 To use the timer, you need its interrupt ID,

†See GRLIB IP Core User’s Manual, Chapter 35 GPTIMER - General Purpose Timer Unit

grlib> info sys

03.01:011 Gaisler Research Modular Timer Unit (ver 0x0)
irq 8
apb: 80000300 - 80000400
8-bit scaler, 2 * 32-bit timers, divisor 10

23/27

Installing of Timer ISR in eCos (1/3)
 Timer register definitions

#include <cyg/kernel/kapi.h>
#include <cyg/hal/hal_io.h>

#define TICKS_PER_MS 40000 /* 40 MHz per second/1000 */

/* The IRQ value '8' displayed in 'info sys' is for */
/* the first timer, which is used by eCos. We will */
/* use the 2nd timer. Therefore, the IRQ value is 9. */
#define CYGNUM_HAL_INTERRUPT_TIMER2 (8+1)

/* The base address of timer registers is again */
/* obtained by 'info sys'. */
#define TIMER_BASE 0x80000300
#define SCALER_RELOAD_VALUE TIMER_BASE + 0x04
#define TIMER2_RELOAD_VALUE TIMER_BASE + 0x24
#define TIMER2_CTRL_REGISTER TIMER_BASE + 0x28

24/27

Installing of Timer ISR in eCos (2/3)
 Timer ISR installation:

cyg_interrupt_create(CYGNUM_HAL_INTERRUPT_TIMER2,
0, data, my_isr, NULL, &handle, &isr_struct);

cyg_interrupt_attach(handle);
cyg_interrupt_unmask(CYGNUM_HAL_INTERRUPT_TIMER2);

/* initialize the timer to 1 ms per tick. For a 40MHz */
/* clock, 40000/prescaler_value equals 1 ms. */
HAL_READ_UINT32(SCALER_RELOAD_VALUE, prescaler_value);
HAL_WRITE_UINT32(TIMER2_RELOAD_VALUE,

TICKS_PER_MS/prescaler_value);
/* set the control register */
HAL_READ_UINT32(TIMER2_CTRL_REGISTER, ctrl_reg);
ctrl_reg |= 0xA; /* enable the interrupt */
ctrl_reg |= 0x1; /* start ticking */
HAL_WRITE_UINT32(TIMER2_CTRL_REGISTER, ctrl_reg);

25/27

Installing of Timer ISR in eCos (3/3)
 Timer ISR

 Uninstallation

cyg_uint32
my_isr(cyg_vector_t vector, cyg_addrword_t data)
{

long *counter = (long *) data;
(*counter)++;
cyg_interrupt_acknowledge(vector);
return CYG_ISR_HANDLED;

}

cyg_interrupt_mask(CYGNUM_HAL_INTERRUPT_TIMER2);
cyg_interrupt_detach(handle);
cyg_interrupt_delete(handle);

26/27

Using tftp Protocol in Your Code
#include <network.h>
#include <tftp_support.h>

int main(int argc, char**argv)
{

struct sockaddr_in host;
int err, size, max_size, yuv_size;
char *ifname, *ofname, *bit_buf, yuv_buf;
. . .
/* initialize network interface */
init_all_network_interfaces();
memset((char *) &host, 0, sizeof(host));
host.sin_len = sizeof(host);
host.sin_family = AF_INET;
host.sin_addr = eth0_bootp_data.bp_siaddr;
host.sin_port = 0;
/* retrieve video bitstream */
size = tftp_get(ifname, &host, bit_buf,

max_size, TFTP_OCTET, &err);
. . .
/* output decoded YCbCr frames */
tftp_put(ofname, &host, yuv_buf, yuv_size, TFTP_OCTET, &err);

}

27/27

Final Remark

When it comes to system design,
the completeness of your solution

depends on
the effort you put into it ….

and it shows!

